JPH02172532A - High temperature treatment method of minerals - Google Patents

High temperature treatment method of minerals

Info

Publication number
JPH02172532A
JPH02172532A JP32367488A JP32367488A JPH02172532A JP H02172532 A JPH02172532 A JP H02172532A JP 32367488 A JP32367488 A JP 32367488A JP 32367488 A JP32367488 A JP 32367488A JP H02172532 A JPH02172532 A JP H02172532A
Authority
JP
Japan
Prior art keywords
temperature
mineral
mineral substances
furnace
minerals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32367488A
Other languages
Japanese (ja)
Inventor
Masayasu Sakai
正康 坂井
Toshiyuki Takegawa
敏之 竹川
Tomonori Koyama
智規 小山
Kimiyo Tokuda
君代 徳田
Hisao Yamamoto
久夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32367488A priority Critical patent/JPH02172532A/en
Publication of JPH02172532A publication Critical patent/JPH02172532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a high-temperature treatment of minerals in economically advantageous manner and enable mass production of ultra-fine particles of mineral substances by forming a high-temperature field by a burning method. CONSTITUTION:By feeding fuel A (e.g. propane) and oxygen C or oxygen- enriched air into a combustion furnace 03 with cooled walls to effect combustion, a high-temperature field D having specified temperature is formed in the furnace 03. Mineral powders containing one or more than one or mineral substances B (e.g. fly ash) are supplied to the field D. Vapor E of the mineral substances vaporizing at the specified temperature is discharged from the furnace 03 and at the same time cooling gas F is blown into the vapor E to cool it to a temperature lower than the freezing point of said mineral substances. The ultra-fine particles H of said substances having frozen by cooling are captured by a fume collector 13. As a result, a high-temperature treatment of mineral substances can be performed in an economically advantageous manner and ultra-fine particles of mineral substances constituting minerals can be produce in large quantities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉱物の高温処理方法に関し、特に1又は2以上
の鉱物物質を構成成分として含む鉱物よりその構成成分
である鉱物物質の超微粒子を得る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for high-temperature treatment of minerals, and in particular, the present invention relates to a method for high-temperature treatment of minerals. Regarding how to get it.

〔従来の技術〕[Conventional technology]

従来より、アルミニウムのような低融点金属を燃焼法に
より燃焼させて、アルミナ蒸気を生成させ、これを冷却
して超微粒子アルミナを得る方法があったが、鉱物のよ
うな高融点物質はアーク電解炉で溶融浴を形成名せ、そ
の中心部の高温部から発生する鉱物物質蒸気(鉱物の構
成4分である金属蒸気、金属酸化物蒸気)を放熱冷却さ
せて凝固超微粒子を捕集することが行われていた。この
ため、鉱物より鉱物物質超微粒子を得るには大工ネμギ
ーを必要とし必然的にコスト高となるばかりでなく、そ
の超微粒子の生産量も限られていた。
Conventionally, there has been a method of burning low-melting point metals such as aluminum using a combustion method to generate alumina vapor, which is then cooled to obtain ultrafine alumina particles. Forming a molten bath in a furnace, collecting the solidified ultrafine particles by cooling the mineral vapor (metal vapor and metal oxide vapor, which are the constituents of minerals) generated from the high-temperature part of the bath. was being carried out. For this reason, in order to obtain ultrafine particles of mineral substances from minerals, carpenter's hands are required, which not only inevitably increases the cost, but also limits the amount of ultrafine particles produced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記技術水準に鑑み、鉱物が反応しなくても鉱
物物質蒸気が得られる高温場を、電力加勢(アーク、プ
ラズマ)を利用しなくても安価な方法で形成名せ、かつ
工業規模で鉱物物質超徽粒子が大量生産できる鉱物の高
温処理方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention has been devised to create a high-temperature field in which mineral vapor can be obtained even if minerals do not react, by an inexpensive method without using electric power (arc, plasma), and on an industrial scale. The present invention aims to provide a method for high-temperature processing of minerals that can mass-produce mineral particles.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は ■ 冷却壁構造の燃焼炉内へ燃料と酸素又は酸素富化空
気を供給して@焼させることによって該炉内に所定温度
の高温場を形成名せ、■ 該高温場に1又は2以上の鉱
物物質を含んでなる鉱物粉体を供給し、 ■ 上記所定温度で蒸発する鉱物物質蒸気を上記燃焼炉
から排出させると同時に冷却用ガスを吹込んで該鉱物物
質の凝固点以下の温度に冷却し、 ■ 冷却によ)凝固生成した該鉱物物質超微粒子を捕集
する ことを特徴とする鉱物の高温処理方法である。
The present invention consists of: (1) supplying fuel and oxygen or oxygen-enriched air into a combustion furnace with a cooling wall structure and causing combustion to form a high temperature field at a predetermined temperature in the furnace; supplying a mineral powder containing two or more mineral substances, and (2) discharging the mineral vapor that evaporates at the predetermined temperature from the combustion furnace and at the same time blowing in a cooling gas to bring the temperature below the freezing point of the mineral substance; This is a method for high-temperature treatment of minerals, which is characterized by cooling, and (1) collecting ultrafine particles of the solidified mineral material (by cooling).

〔作用〕[Effect]

(1)燃料と酸素又は酸素富化空気を冷却構造の燃焼炉
内で燃焼させて高温場を形成名せるので、二ネμギー消
費が少なく、方法全体が安1曲となる。
(1) Since fuel and oxygen or oxygen-enriched air are combusted in a combustion furnace with a cooling structure to form a high-temperature field, energy consumption is low and the entire method is inexpensive.

(2)処IJIK物を粉体で供給(吹込む)することに
よって一部の鉱物物質を冷却壁構造の燃焼炉の内壁に付
着させ、その結果炉内壁を断熱状態にして高温場を保て
る。
(2) By supplying (injecting) the IJIK material in the form of powder, some of the mineral substances adhere to the inner wall of the combustion furnace with a cooling wall structure, and as a result, the inner wall of the furnace is insulated and a high temperature field can be maintained.

(3)適性寸法の燃焼炉に鉱物の粉体を吹込むことによ
って粉体が浮遊中に目的の鉱物物質を蒸発させ、次いで
出口部に冷却用ガスを混入することによって、−挙に大
量の燃焼ガスを冷却することができこのことによって工
業規模の大量の目的の鉱物物質の超微粒子が生産できる
(3) By injecting mineral powder into a combustion furnace of suitable dimensions, the desired mineral substance is evaporated while the powder is suspended, and then cooling gas is mixed in at the outlet. The combustion gases can be cooled and this allows the production of ultrafine particles of the desired mineral material in large quantities on an industrial scale.

(4)燃焼炉内の温度を所定温度に制御することによっ
て、蒸発(気化)温度の異なる鉱物物質を分離できる。
(4) By controlling the temperature inside the combustion furnace to a predetermined temperature, mineral substances having different evaporation (vaporization) temperatures can be separated.

〔夾施例〕[Example]

以下゛、本発明の一実施例を第1図及び第2図によって
説明する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は燃焼ガスを上方へ、鉱物物質溶融物を下方へ分
離排出する方式で、第2図は燃焼ガスと溶融物を両方共
に下方へ排出し、その後分離処理する方式で、両方式と
も構成要素と機能は同じである。
Figure 1 shows a method in which the combustion gas is separated and discharged upward and the molten mineral substance is discharged downward. Figure 2 shows a method in which both the combustion gas and the molten substance are discharged downward and then separated. The components and functions are the same.

第1図に示す方式で、鉱物として微粉炭の燃焼灰である
プライアツVユBを処理してシリカを主成分とする超微
粒子を生成させる実験を実施した。先ずフライアッシュ
Bを酸素Cで搬送して、バイブ01よシ燃焼炉03に吹
込み、パイプ01を1出んだマニホールド02からプロ
パンガス燃料Aを吹込んで、水冷ジャケットで造られた
燃焼炉03で燃焼させる。
Using the method shown in FIG. 1, an experiment was carried out in which pulverized coal combustion ash, PRIATS VUB, was treated as a mineral to produce ultrafine particles containing silica as a main component. First, fly ash B is transported with oxygen C, and blown into the combustion furnace 03 through the vibrator 01. Propane gas fuel A is blown into the manifold 02, which exits from the pipe 01, to create the combustion furnace 03 made with a water-cooled jacket. Burn it with.

燃焼炉03内では火炎りを形成して高温で燃焼し、フラ
イアッシュB中の810鵞を主体とする鉱物物質の蒸気
Eとなって、燃焼ガスと共に炉外ダクト10へ導かれる
。このとき燃焼炉03の内壁ではフライアッシュB中の
不蒸発分(主としてAl40s )である鉱物物質が溶
融付着して断熱層06を形成し、内線の高温を保持する
In the combustion furnace 03, a flame is formed and burned at a high temperature to become a mineral vapor E mainly composed of 810 ash in the fly ash B, which is guided to the outside duct 10 together with the combustion gas. At this time, on the inner wall of the combustion furnace 03, mineral substances, which are non-evaporable components (mainly Al40s) in the fly ash B, melt and adhere to form a heat insulating layer 06 to maintain the high temperature of the inner wire.

実験では内部温度を光温度計07によって計測し、プロ
パンAと酸素Cの比率を制御して2500℃に保持した
。このとき不蒸発分は溶融して炉壁に沿って落下し、ス
ラップS1となって下部の水槽08の冷水Vによって冷
却破砕され小片S2となって取出し口09よυ糸外へ取
出される。
In the experiment, the internal temperature was measured by optical thermometer 07, and the ratio of propane A and oxygen C was controlled to maintain it at 2500°C. At this time, the non-evaporated matter melts and falls along the furnace wall, becomes slap S1, is cooled and crushed by the cold water V in the lower water tank 08, and becomes small pieces S2, which are taken out of the outlet 09.

一方、鉱物物質蒸気Eを含んだ燃焼ガスは炉出口部に設
けられた冷却空気ノズ/l/11より吹出される空気F
と混合し一挙に400℃まで低下させた。この温度は熱
電対12で計測し、空気Fの流量を変化させて制御した
On the other hand, the combustion gas containing the mineral vapor E is blown out from the cooling air nozzle /l/11 provided at the furnace outlet.
The temperature was lowered to 400°C all at once. This temperature was measured with a thermocouple 12 and controlled by changing the flow rate of air F.

このように冷却された燃焼ガスGでは鉱物物質蒸気が固
化し、このとき超微粒子であるヒユームHが生成される
。このヒユームHを含む燃焼ガスGはダクト10の後部
に設けられたヒユーム捕集器13のパグフイμり14に
導びかれ、ヒユームHは捕集落下して、回転式パルプ1
5によつ・て糸外へ製品として取出される。ヒユームH
を除かれた燃焼ガスは排気ダクト17を通ってファン1
6によって外部へ排出される。
In the combustion gas G cooled in this way, the mineral vapor solidifies, and at this time, fume H, which is an ultrafine particle, is generated. The combustion gas G containing this fume H is guided to the pug filter 14 of the fume collector 13 provided at the rear of the duct 10, and the fume H is collected and falls to the rotary pulp 1.
5, the product is taken out as a product. Huyum H
The combustion gas removed passes through the exhaust duct 17 to the fan 1.
6 and is discharged to the outside.

実験結果ではSiO2:55%、ATOs: 52%、
その他MyOCaOなど15%の平均粒径32μmのフ
ライアッシュから、 sio鵞:82%%A740.:
 2%、その他16%よシなる平均粒径(L3μm以下
の理想に近いシリカヒユームを生成することができた。
The experimental results show that SiO2: 55%, ATOs: 52%,
In addition, from fly ash with an average particle size of 32 μm containing 15% such as MyOCaO, sio ash: 82%% A740. :
It was possible to produce a silica fume with an average particle size (L3 μm or less), which is close to the ideal, with an average particle size of 2% and 16%.

第2図は第1図の機能と同じであるので説明は省略する
Since the function in FIG. 2 is the same as that in FIG. 1, the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明により、燃焼法により高温場が形成名れるので、
鉱物の高温処理が経済的に有利に実施することができ、
かつ鉱物よシその構成4分である鉱物物質の超微粒子が
大量生産できるという効果が奏される。更に高温場の温
度を制御することにより鉱物の構成4分毎の超微粒子を
分離して採取することも可能になる。
According to the present invention, a high temperature field is created by the combustion method, so
High temperature processing of minerals can be carried out economically and advantageously;
Moreover, it is possible to mass-produce ultrafine particles of mineral substances, which are composed of four parts of minerals. Furthermore, by controlling the temperature of the high-temperature field, it becomes possible to separate and collect ultrafine particles of mineral composition every 4 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を実施するための燃焼炉まわ
りの概略図で、第1図は燃焼ガスを上方へ、鉱物物質溶
融物を下方へ分離排出する方式、第2図は燃焼ガスと溶
融物とも下方へ排出する方式を示す図である。
Figures 1 and 2 are schematic diagrams of the surroundings of a combustion furnace for carrying out the present invention. FIG. 3 is a diagram illustrating a method in which both gas and molten material are discharged downward.

Claims (4)

【特許請求の範囲】[Claims] (1)冷却壁構造の燃焼炉内へ燃料と酸素又は酸素富化
空気を供給して燃焼させることによつて該炉内に所定温
度の高温場を形成名せ、
(1) Forming a high-temperature field at a predetermined temperature in the furnace by supplying fuel and oxygen or oxygen-enriched air to a combustion furnace with a cooling wall structure and causing combustion;
(2)該高温場に1又は2以上の鉱物物質を含んでなる
鉱物粉体を供給し、
(2) supplying mineral powder containing one or more mineral substances to the high temperature field;
(3)上記所定温度で蒸発する鉱物物質蒸気を上記燃焼
炉から排出させると同時に冷却用ガスを吹込んで該鉱物
物質の凝固点以下の温度に冷却し、
(3) discharging the mineral vapor that evaporates at the predetermined temperature from the combustion furnace and simultaneously blowing cooling gas to cool it to a temperature below the freezing point of the mineral substance;
(4)冷却により凝固生成した該鉱物物質超微粒子を捕
集する ことを特徴とする鉱物の高温処理方法。
(4) A method for high-temperature treatment of minerals, which comprises collecting ultrafine particles of the mineral substance solidified by cooling.
JP32367488A 1988-12-23 1988-12-23 High temperature treatment method of minerals Pending JPH02172532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32367488A JPH02172532A (en) 1988-12-23 1988-12-23 High temperature treatment method of minerals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32367488A JPH02172532A (en) 1988-12-23 1988-12-23 High temperature treatment method of minerals

Publications (1)

Publication Number Publication Date
JPH02172532A true JPH02172532A (en) 1990-07-04

Family

ID=18157344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32367488A Pending JPH02172532A (en) 1988-12-23 1988-12-23 High temperature treatment method of minerals

Country Status (1)

Country Link
JP (1) JPH02172532A (en)

Similar Documents

Publication Publication Date Title
CN101618458B (en) Preparation method of sub-micron zinc powder and preparation device thereof
CN104259469A (en) Manufacturing method of micron and nanometer metal spherical powder
JPH1171107A (en) Production of inorganic spherical particles and apparatus therefor
JPH02160040A (en) Production of superfine particle of mineral matter
CN204841627U (en) Refractory compound powder material's preparation facilities
Cano et al. Mullite/ZrO2 coatings produced by flame spraying
JPH02172532A (en) High temperature treatment method of minerals
CN201470881U (en) Submicron zinc powder preparation plant
JPH07247105A (en) Production of metal oxide powder and producing device
JPS6227308A (en) Method and apparatus for producing ultrafine particle
Hou et al. Preparation of Mo (Si, Al) 2 feedstock used for air plasma spraying
BG64518B1 (en) Method for cooling the gas flow in a smelting furnace
JPS61291406A (en) Method for producing ultra-fine particle of oxide and apparatus therefor
JP2575963B2 (en) Manufacturing method of hydraulic material
JP2617550B2 (en) Method for producing and recovering ultrafine particles of a desired component from a mineral substance
JPS6357755A (en) Ni-base alloy powder for thermal spraying and its production
JP2001064703A5 (en)
CA3219176A1 (en) Plasma arc process and apparatus for the production of fumed silica
RU2259903C1 (en) Process for making pellets and powders of uranium dioxide
JPS6111140A (en) Manufacture of extremely fine particle of high-purity ceramic
JPS61205604A (en) Production of ultrafine particle of oxide and device therefor
JPS63147823A (en) Production of zinc oxide fine particle
JPH01226732A (en) Hollow spherical stabilized zirconia and production thereof
JPH02172533A (en) Method for treating minerals
JP3015205B2 (en) Coated metal separation method