JPH0217216A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JPH0217216A
JPH0217216A JP16261488A JP16261488A JPH0217216A JP H0217216 A JPH0217216 A JP H0217216A JP 16261488 A JP16261488 A JP 16261488A JP 16261488 A JP16261488 A JP 16261488A JP H0217216 A JPH0217216 A JP H0217216A
Authority
JP
Japan
Prior art keywords
shaft
oil
sleeve
channels
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16261488A
Other languages
Japanese (ja)
Inventor
Yoshiaki Watanabe
吉章 渡辺
Mikio Nakasugi
幹夫 中杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16261488A priority Critical patent/JPH0217216A/en
Priority to EP89306503A priority patent/EP0349260B1/en
Priority to DE68921256T priority patent/DE68921256T2/en
Priority to US07/372,613 priority patent/US5018880A/en
Publication of JPH0217216A publication Critical patent/JPH0217216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent negative pressure from generating on the outskirts of a shaft thrust face by providing at least one of a channel or a hole to a sleeve on a face contacting to the shaft at the thrust face for forming a route in which oil circulates. CONSTITUTION:A shaft 1 is cut with herringbone form of channels 1a in depth about 2-20mum on radial direction, and fitted to a sleeve 2 to turn. An insertion member 3 is formed nearly in a cylindrical form, and is formed with a hole 3a at the center, spiral pattern of channels 3b on a receiving face for the shaft 1, and channels 3c extending in thrust direction on peripheral surface portion. At low.middle revolution speed, oil begins to flow along spiral pattern of channels 3b at first and flows into the hole 3a at the center part. Thereafter oil flows along channels 3d, 3c. Accordingly, oil pressure at the shaft thrust face and the insertion member 3 becomes in pressure distribution as designated in a figure, therefore negative pressure is not generated in neighborhood of the outskirts of the shaft.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はビデオデツキヘッドやレコードプレーヤのター
ンテーブル等に使用される油潤滑の動圧軸受装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oil-lubricated hydrodynamic bearing device used in video deck heads, record player turntables, and the like.

(従来の技術) 従来の油潤滑の動圧軸受装置は、第6図に示すようにラ
ジアル面にヘリングボーン状の溝101とスラスト面に
渦巻状の溝102が刻設された軸100と、この軸10
0を保持するスリーブlO5とを有し、軸100とスリ
ーブ105との隙間(2〜20ILm程度)にオイルを
内蔵させている。
(Prior Art) As shown in FIG. 6, a conventional oil-lubricated hydrodynamic bearing device includes a shaft 100 having a herringbone-shaped groove 101 on a radial surface and a spiral groove 102 on a thrust surface. This axis 10
The shaft 100 and the sleeve 105 have a sleeve lO5 that holds the oil, and oil is contained in the gap (approximately 2 to 20 ILm) between the shaft 100 and the sleeve 105.

ところで、上記動圧軸受装置は停止時においてオイルの
流れはなく、軸100とスリーブ105とが接触してい
る。そして、軸100が回転開始と同時に、オイルが第
7図(a)に示すように矢印方向に流れ出す、その後、
軸100の回転が徐々に増加していくと、ラジアル面の
へリングボーン状の溝101によってオイルが同図(b
)に示すようなラジアル方向の圧力分布図を形成し、ラ
ジアル面において軸100とスリーブ105とが非接触
状態になる。他方、スラスト面は回転が増加する毎にス
ラスト面の渦巻状のtlt102に沿って流れ、オイル
が同図(C)に示すような圧力分布を形成し、その圧力
で軸100の自重を押上げる構成となっている。
By the way, when the hydrodynamic bearing device is stopped, there is no oil flow, and the shaft 100 and the sleeve 105 are in contact with each other. Then, at the same time as the shaft 100 starts rotating, oil begins to flow in the direction of the arrow as shown in FIG. 7(a).
As the rotation of the shaft 100 gradually increases, the oil flows through the herringbone-shaped groove 101 in the radial surface (b).
) is formed, and the shaft 100 and sleeve 105 are in a non-contact state on the radial surface. On the other hand, as the rotation of the thrust surface increases, the oil flows along the spiral tlt 102 of the thrust surface, and the oil forms a pressure distribution as shown in the same figure (C), which pushes up the weight of the shaft 100. The structure is as follows.

(発明が解決しようとする課題) しかしながら、斯かる従来例において、高速回転型であ
って小型化を図る場合には次の問題点が発生する。即ち
、第一に、高速回転により装置が高温になり、しかも油
潤滑の場合、オイルによって熱放射が妨げられる。従っ
て、冷却装置が必要になるが、装置本体を冷却するため
にファン等を設けた場合にはコストが上昇し、広いスペ
ースが必要になる。また、第二に、高速回転で立上り時
間を同一にしようとすると、スタート時のトルクが大き
くなり、金属接触による摩耗粉が多くなる。そして、こ
の摩耗粉が軸スラスト面の周縁に堆積して装置としての
耐久性が劣化する。
(Problems to be Solved by the Invention) However, in such a conventional example, when a high-speed rotation type is desired to be miniaturized, the following problem occurs. That is, first, the high speed rotation causes the device to become hot, and in the case of oil lubrication, the oil prevents heat radiation. Therefore, a cooling device is required, but if a fan or the like is provided to cool the device body, the cost will increase and a large space will be required. Secondly, if an attempt is made to make the rise time the same at high speed rotation, the starting torque will increase, and wear particles due to metal contact will increase. This abrasion powder accumulates on the periphery of the shaft thrust surface, deteriorating the durability of the device.

第三に、高速回転になると、オイルの流れが速くなり、
圧力分布の高い部分と低い部分との差が極端に大きくな
り、軸スラスト面の周縁に負圧が発生し、スラスト面に
おいて第7図(b)に示す圧力分布の高い部分より負圧
になっている部分にオイルが流れ出す、すると、スラス
ト面のオイルの圧力分布が乱れ、軸100とスリーブ1
05がスラスト面上において接触する。その後、再び第
7図(b)に示すような圧力分布に戻ろうとする0以上
のような運動が連続的に発生する。これにより、振動が
起き、金属接触による削れが起きて寿命が短くなる。
Thirdly, when the engine rotates at high speed, the flow of oil becomes faster.
The difference between the high pressure distribution area and the low pressure distribution area becomes extremely large, and negative pressure is generated around the periphery of the shaft thrust surface. As a result, the oil pressure distribution on the thrust surface is disturbed, and the shaft 100 and sleeve 1
05 makes contact on the thrust surface. Thereafter, a movement of 0 or more occurs continuously in an attempt to return to the pressure distribution as shown in FIG. 7(b). This causes vibration and scraping due to metal contact, shortening the lifespan.

そこで、本発明は従来例の上記した問題点を解決するた
めになされたもので、その目的とするところは、小型化
を図り、コストを低減させ、耐久性を向上させた動圧軸
受装置を提供することにある。
Therefore, the present invention was made to solve the above-mentioned problems of the conventional example, and its purpose is to provide a hydrodynamic bearing device that is smaller in size, reduced in cost, and improved in durability. It is about providing.

(課題を解決するだめの手段) 上記の目的を達成するために、本発明にあっては、軸と
スリーブとが嵌合し、軸又はスリーブの少なくとも一方
に浅溝を形成すると共に、前記軸の端面又は該軸端面と
対向する前記スリーブ側の面の少なくとも一方に浅溝を
形成して回転中のラジアル及びスラスト方向を支持する
動圧軸受装置において、前記スリーブの軸とスラスト面
で接触する面に、溝又は孔の少なくとも一方を設けて油
が循環する経路を形成したことにより構成されている。
(Means for solving the problem) In order to achieve the above object, in the present invention, a shaft and a sleeve are fitted together, a shallow groove is formed in at least one of the shaft or the sleeve, and the shaft A hydrodynamic bearing device that supports the radial and thrust directions during rotation by forming a shallow groove in at least one of the end face of the sleeve or the face of the sleeve opposite to the shaft end face, which contacts the shaft of the sleeve at the thrust face. It is constructed by providing at least one of grooves and holes on the surface to form a path through which oil circulates.

(作 用) 上記の構成を有する本発明においては、スリーブの軸と
スラスト面で接触する面に溝又は孔の少なくとも一方を
設け、回転に伴って溝又は孔に沿ってオイルを循環させ
ることによって、スラスト方向にオイルが循環して軸ス
ラスト面に負圧が発生しなくなる。従って1回転中にス
リーブと軸とが接触することがない、また、スリーブと
軸間の抵抗を増すことなくオイルを増量できることによ
り、温度上昇を抑制できる。
(Function) In the present invention having the above configuration, at least one of a groove or a hole is provided on the surface that contacts the axis of the sleeve on the thrust surface, and oil is circulated along the groove or hole as the sleeve rotates. , oil circulates in the thrust direction and no negative pressure is generated on the shaft thrust surface. Therefore, the sleeve and the shaft do not come into contact during one rotation, and the amount of oil can be increased without increasing the resistance between the sleeve and the shaft, thereby suppressing temperature rise.

(実施例) 以下に本発明を図示の実施例に基づいて説明する1本発
明の第1実施例を示す第1図乃至第3図において、1は
ラジアル方向に2 N20 p、 m程度の深さのへリ
ングポーン状の溝1aが刻設された軸、2はスリーブで
、軸1が嵌合され両者のいずれか一方が回転可能となっ
ている。尚1本実施例では軸1がスリーブ2に対して回
転する。3はインサート部材で、略円筒状に形成され、
中央に孔3a、軸lの受面に渦巻パターンの溝3b、周
面部にスラスト方向に延びる溝3c(第3図示)が形成
されている。4は密閉部材で、スリーブ2に圧入されス
リーブ2内にオイルを密閉している。
(Embodiment) The present invention will be explained below based on the illustrated embodiment.1 In Figs. A shaft with a ring-shaped groove 1a carved therein, and 2 a sleeve, into which the shaft 1 is fitted so that either one of them can rotate. In this embodiment, the shaft 1 rotates relative to the sleeve 2. 3 is an insert member formed in a substantially cylindrical shape;
A hole 3a is formed in the center, a spiral pattern groove 3b is formed in the receiving surface of the shaft 1, and a groove 3c (shown in the third figure) extending in the thrust direction is formed in the peripheral surface. A sealing member 4 is press-fitted into the sleeve 2 to seal oil inside the sleeve 2.

上記の動圧軸受装置を組立てるには、先ずスリーブ2に
第3図に示すようなインサート部材3をスリーブ底面よ
り圧入させる。その後、密閉部材4を圧入し、そしてス
リーブ2内にオイルを注入する。しかる後、軸lをスリ
ーブz内に落し込んで両者を嵌合させることで行なわれ
る。
To assemble the above hydrodynamic bearing device, first, an insert member 3 as shown in FIG. 3 is press-fitted into the sleeve 2 from the bottom surface of the sleeve. Thereafter, the sealing member 4 is press-fitted, and oil is injected into the sleeve 2. Thereafter, the shaft l is dropped into the sleeve z and the two are fitted together.

次に1本実施例の作用について説明する。低速回転では
第1図に示すヘリングボーン状の溝1aに沿ってオイル
が流れ出し、ラジアル面上で第7図(C)に示すような
圧力分布になる。これにより、軸lとスリーブ2がラジ
アル方向にて非接触になる。また、低、中速回転域では
スラスト面上において始めに渦巻状の溝3bに沿ってオ
イルが流れ出す、この溝3bの深さは2〜20JLm程
度の浅い溝であり1次々にオイルが流れるために軸中央
部に進むにつれて圧力が増加する。ここで。
Next, the operation of this embodiment will be explained. At low speed rotation, oil flows out along the herringbone-shaped grooves 1a shown in FIG. 1, resulting in a pressure distribution on the radial surface as shown in FIG. 7(C). As a result, the shaft 1 and the sleeve 2 come out of contact in the radial direction. In addition, in the low to medium speed rotation range, the oil first flows out along the spiral groove 3b on the thrust surface.The depth of this groove 3b is shallow, about 2 to 20 JLm, and the oil flows one after another. The pressure increases as you move toward the center of the shaft. here.

インサート部材3には中央部に孔3aが穿設されている
ために、その孔3a内にオイルが流入する。その後、イ
ンサート部材3の底面に形成されたC字状の溝3dを通
り、さらに溝3Cに沿ってオイルが流れる(第2図(a
)に示す)、従って。
Since the insert member 3 has a hole 3a formed in the center thereof, oil flows into the hole 3a. After that, the oil passes through the C-shaped groove 3d formed on the bottom surface of the insert member 3 and further flows along the groove 3C (see Fig. 2 (a).
), therefore.

以上のようなオイル循環のため軸スラスト面とインサー
ト部材3のオイル圧力が第2図(b)に示すような圧力
分布となるため、軸周縁部近傍に負圧は発生しない。
Because of the oil circulation as described above, the oil pressure on the shaft thrust surface and the insert member 3 has a pressure distribution as shown in FIG. 2(b), so that no negative pressure is generated in the vicinity of the shaft periphery.

第4図及び第5図は本発明の第2実施例を示し、前記第
1実施例と同一の部材には同一の符号を付して説明する
8本実施例ではインサート部材3と密閉部材4との間に
多孔質部材5を介装しである。そして1本実施例の動圧
軸受装置を組立てるには、インサート部材3をスリーブ
2内に圧入し、多孔質部材5を圧入する。そして密閉部
材4をスリーブ2に圧入する。その後、スリーブ2内に
オイルを流し込み、その上から軸1を落し込む、ここで
、多孔質部材5はインサート部材3と一体であっても分
離したものであってもいずれでもよい。
4 and 5 show a second embodiment of the present invention, in which the same members as in the first embodiment are designated by the same reference numerals.In this embodiment, an insert member 3 and a sealing member 4 are shown. A porous member 5 is interposed between the two. To assemble the hydrodynamic bearing device of this embodiment, the insert member 3 is press-fitted into the sleeve 2, and the porous member 5 is press-fitted. Then, the sealing member 4 is press-fitted into the sleeve 2. Thereafter, oil is poured into the sleeve 2, and the shaft 1 is dropped onto it.The porous member 5 may be either integrated with the insert member 3 or separated.

従って、本第2実施例では、オイル循環経路の少なくと
も一部に多孔質部材5を介在させることで、フィルタ機
能を有し、オイル内の摩耗粉を多孔質部材5により除去
することができる。
Therefore, in the second embodiment, by interposing the porous member 5 in at least a portion of the oil circulation path, the porous member 5 has a filter function and can remove wear particles in the oil.

尚、上記第1.第2実施例では溝又は孔の少なくとも一
方を設けたオイルを循環させるインサート部材を使用し
たが、インサート部材を使用しないで、スリーブ自体に
溝又は孔を形成してオイルの循環を行なうこともできる
In addition, the above 1. In the second embodiment, an insert member provided with at least one of a groove or a hole for circulating oil is used, but it is also possible to circulate oil by forming grooves or holes in the sleeve itself without using an insert member. .

以上のように、上記各実施例ではオイル循環がラジアル
面の円周方向だけでなくスラスト方向の縦循環も可能と
なり、また、軸のスラスト面におけるオイル循環により
負圧が発生することがなくなった。これにより、回転中
に発生するスリーブと軸との接触がなく、振動や回転ム
ラが発生しにくくなった。また、オイル循環を良好とし
、オイルによるスリーブと軸間の抵抗を増すことなくオ
イルを増量できるので、温度上昇を抑制できる。
As described above, in each of the above embodiments, oil circulation is possible not only in the circumferential direction of the radial surface but also vertical circulation in the thrust direction, and negative pressure is no longer generated due to oil circulation on the thrust surface of the shaft. . This eliminates contact between the sleeve and the shaft that occurs during rotation, making it less likely that vibrations or uneven rotation will occur. In addition, the oil circulation is improved and the amount of oil can be increased without increasing the resistance between the sleeve and the shaft due to the oil, so temperature rise can be suppressed.

そして、オイル循環によって摩耗粉によるかじれが少な
くなった。
Additionally, the oil circulation reduces scuffing caused by wear debris.

ところで、スラスト面の連環機能を持たせるためには、
軸に孔や溝を形成して行なう等の手段があるが、装置の
小型化に伴い軸がφ2〜3腸層というように細くなり、
軸にそれらを加工することが困難である。また、軸オイ
ルの流れを決定するヘリングボーン状の溝を加工した後
、孔や溝を加工すると、精度が悪くなるが、上記各実施
例ではインサート部材を加工後に圧入することにより、
加工が容易になり、その結果コストダウンを図ることが
できる。
By the way, in order to have a linking function on the thrust surface,
There are methods such as forming holes or grooves in the shaft, but as the device becomes smaller, the shaft becomes thinner, with a diameter of 2 to 3 intestinal layers.
It is difficult to machine them into shafts. Additionally, if the holes and grooves are machined after machining the herringbone-shaped grooves that determine the flow of shaft oil, accuracy will deteriorate, but in each of the above embodiments, by press-fitting the insert member after machining,
Processing becomes easier, and as a result, costs can be reduced.

(発明の効果) 本発明に係る動圧軸受装置は以上の構成及び作用からな
るもので、スラスト面におけるオイル循環により軸スラ
スト面の周縁に負圧が発生することがないので、振動や
回転ムラを防止し得、耐久性が大幅に向上する。また、
冷却装置を設けなくても温度上昇を抑制できるので、コ
ストを低減させ小型化を図ることができる。さらに、加
工が容易になることで、−段とコストを低減させること
ができるという効果を奏する。
(Effects of the Invention) The hydrodynamic bearing device according to the present invention has the above-described configuration and operation, and since negative pressure is not generated at the periphery of the shaft thrust surface due to oil circulation on the thrust surface, vibration and rotational irregularities are prevented. This greatly improves durability. Also,
Since temperature rise can be suppressed without providing a cooling device, costs can be reduced and downsizing can be achieved. Furthermore, the ease of processing has the effect of significantly reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す縦断面図。 第2図(a)、(b)は同実施例におけるインサート部
材及びその周辺部の拡大断面図、その圧力分布図、第3
図(a)、(b)、(C)は同実施例におけるインサー
ト部材の平面図、側面図、底面図、第4図は本発明の第
2実施例を示す縦断面図、第5図は同実施例における多
孔質部材及びその周辺部の拡大断面図、第6図は従来の
動圧軸受装置を示す縦断面図、第7図(a) 、(b)
 、(c)は同従来例におけるオイルの流れを示す断面
図、ラジアル方向の圧力分布面、 スラスト方向の圧力分布図である。 符 号 の 説 明 1・・・軸 a・・・溝 2・・・スリーブ 3・・・インサート部材 3a・・・孔 b・・・溝 4・・・密閉部材 5・・・多孔質部材 第 図 第3 図 (σ) (0> 距堆 第 図 第 図 第5図 第6 図 第 図 (O) (c’)
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention. FIGS. 2(a) and 2(b) are enlarged sectional views of the insert member and its surrounding area in the same example, its pressure distribution diagram, and FIG.
Figures (a), (b), and (C) are a plan view, side view, and bottom view of the insert member in the same embodiment, Figure 4 is a vertical cross-sectional view showing the second embodiment of the present invention, and Figure 5 is a vertical sectional view showing the second embodiment of the present invention. An enlarged sectional view of the porous member and its surrounding area in the same example, FIG. 6 is a longitudinal sectional view showing a conventional hydrodynamic bearing device, and FIGS. 7(a) and (b)
, (c) are a sectional view showing oil flow, a pressure distribution surface in the radial direction, and a pressure distribution diagram in the thrust direction in the same conventional example. Explanation of symbols 1...Shaft a...Groove 2...Sleeve 3...Insert member 3a...Hole b...Groove 4...Sealing member 5...Porous member Fig. 3 Figure (σ) (0> Figure 5 Figure 6 Figure 6 (O) (c')

Claims (3)

【特許請求の範囲】[Claims] (1)軸とスリーブとが嵌合し、軸又はスリーブの少な
くとも一方に浅溝を形成すると共に、前記軸の端面又は
該軸端面と対向する前記スリーブ側の面の少なくとも一
方に浅溝を形成して回転中のラジアル及びスラスト方向
を支持する動圧軸受装置において、前記ス リーブの軸とスラスト面で接触する面に、溝又は孔の少
なくとも一方を設けて油が循環する経路を形成したこと
を特徴とする動圧軸受装置。
(1) The shaft and the sleeve fit together, and a shallow groove is formed in at least one of the shaft or the sleeve, and a shallow groove is formed in at least one of the end surface of the shaft or the surface on the sleeve side facing the shaft end surface. In a hydrodynamic bearing device that supports the radial and thrust directions during rotation, at least one of a groove or a hole is provided on the surface that contacts the shaft of the sleeve in the thrust surface to form a path for oil circulation. Characteristic hydrodynamic bearing device.
(2)前記油の循環する経路が、インサート部材にて形
成される請求項1記載の動圧軸受装置。
(2) The hydrodynamic bearing device according to claim 1, wherein the path through which the oil circulates is formed by an insert member.
(3)前記油の循環する経路に、多孔質材が介在してな
る請求項1又は2記載の動圧軸受装置。
(3) The hydrodynamic bearing device according to claim 1 or 2, wherein a porous material is interposed in the path through which the oil circulates.
JP16261488A 1988-06-28 1988-07-01 Dynamic pressure bearing device Pending JPH0217216A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16261488A JPH0217216A (en) 1988-07-01 1988-07-01 Dynamic pressure bearing device
EP89306503A EP0349260B1 (en) 1988-06-28 1989-06-27 Dynamic pressure bearing device
DE68921256T DE68921256T2 (en) 1988-06-28 1989-06-27 Hydrodynamic bearing.
US07/372,613 US5018880A (en) 1988-06-28 1989-06-28 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16261488A JPH0217216A (en) 1988-07-01 1988-07-01 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH0217216A true JPH0217216A (en) 1990-01-22

Family

ID=15757947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16261488A Pending JPH0217216A (en) 1988-06-28 1988-07-01 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH0217216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979263A (en) * 1995-09-20 1997-03-25 Hitachi Ltd Bearing device and spindle motor provided with same

Similar Documents

Publication Publication Date Title
US4656545A (en) Magnetic disc memory device
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US6843602B2 (en) Hydrodynamic bearing unit
US6672767B2 (en) Dynamic bearing device and motor having the same
JPH01320314A (en) Bearing device
JP3907031B2 (en) Thrust dynamic pressure bearing
KR19980080411A (en) Fluid bearing device
JP2003184864A (en) Hydrodynamic bearing
JPH0217216A (en) Dynamic pressure bearing device
JPH033805B2 (en)
JPH02278007A (en) Thrust bearing
JP2554634Y2 (en) Rolling bearing
JP4024007B2 (en) Hydrodynamic bearing unit
JP3908834B2 (en) Support device for spindle motor of information equipment
JP3572796B2 (en) Hydrodynamic bearing
JP2001200845A (en) Dynamic pressure bearing member
JPH0823370B2 (en) Dynamic bearing device
JPH10184667A (en) Thrust dynamic pressure bearing
KR100207240B1 (en) Head drum assembly
JPS6146257Y2 (en)
JP2024053879A (en) Dynamic pressure bearing and fluid dynamic pressure bearing device equipped with same
KR20010063009A (en) Spindle motor
JPS6319622Y2 (en)
JPH0547292Y2 (en)
JPS631053Y2 (en)