JPH0217201A - Stepless speed control device for hydraulic motor - Google Patents

Stepless speed control device for hydraulic motor

Info

Publication number
JPH0217201A
JPH0217201A JP16637288A JP16637288A JPH0217201A JP H0217201 A JPH0217201 A JP H0217201A JP 16637288 A JP16637288 A JP 16637288A JP 16637288 A JP16637288 A JP 16637288A JP H0217201 A JPH0217201 A JP H0217201A
Authority
JP
Japan
Prior art keywords
hydraulic motor
capacity
speed control
pump
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16637288A
Other languages
Japanese (ja)
Other versions
JP2617998B2 (en
Inventor
Morio Komiya
小宮 盛雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP63166372A priority Critical patent/JP2617998B2/en
Publication of JPH0217201A publication Critical patent/JPH0217201A/en
Application granted granted Critical
Publication of JP2617998B2 publication Critical patent/JP2617998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4061Control related to directional control valves, e.g. change-over valves, for crossing the feeding conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/423Motor capacity control by fluid pressure control means

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To improve responsiveness by connecting a bypass passage going round a stepless speed control valve to a capacity changing means for a hydraulic motor, and interveniently equipping a changeover valve becoming open at a time of lowering in delivery pressure of a pump in the by pass passage. CONSTITUTION:A bypass passage 8 going round a stepless speed control valve 20 is provided between a capacity changing means for a hydraulic motor 1 and a tank 10. This bypass passage 8 is provided with a changeover valve 21 becoming open at a time of lowering in delivery pressure of a pump. Hunting phenomenon, thereby, can be prevented on account of moderate reaction time delay brought by an orifice 18, in usual capacity control. Again, when load becomes lighter than a fixed value, the bypass passage 8 becomes open for being able to raise revolution speed on the hydraulic motor 1 at a stretch, therefore responsibility can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油圧モータの出力を負荷によらず一定に保つ
ための無段変速制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a continuously variable transmission control device for keeping the output of a hydraulic motor constant regardless of the load.

(従来の技術) ツインチ等を駆動する油圧モータには、負荷の変動によ
らず出力を一定に保つために、例えば第4図に示すよう
な回路によりモータ容量の制御を行うものがある。
(Prior Art) Some hydraulic motors that drive twin-inch motors have their motor capacity controlled by a circuit as shown in FIG. 4, for example, in order to keep the output constant regardless of load fluctuations.

この図において、油圧モータ1は星型ピストンモータで
あり、方向制御弁7を介して油圧ポンプ9に駆動される
。油圧モータ1は容量変更手段として第5図に示すよう
なピストン3と4に駆動される偏心ドフム2を備え、こ
の偏心ドラム2の偏心量に応じてモータ容量が変化する
ように構成されている。ピストン3と4を駆動する油室
5と6は油圧ポンプ9の吐出圧に応じて作動する511
段変速制御バルブ20を介して油圧ポンプ9とタンク1
0とに選択的に接続される。
In this figure, the hydraulic motor 1 is a star-shaped piston motor, and is driven by a hydraulic pump 9 via a directional control valve 7. The hydraulic motor 1 is equipped with an eccentric drum 2 driven by pistons 3 and 4 as shown in FIG. 5 as capacity changing means, and is configured so that the motor capacity changes according to the amount of eccentricity of the eccentric drum 2. . The oil chambers 5 and 6 that drive the pistons 3 and 4 operate according to the discharge pressure of the hydraulic pump 9 511
Hydraulic pump 9 and tank 1 via step-change control valve 20
0.

この無段変速制御バルブ20は第6図に示すように、油
圧ポンプ9の吐出圧をスプール11から軸方向に突設し
たパイロットスプール12に作用させ、この圧力とスプ
ール1を反対方向へ付勢するスプリング13の反発力と
のつり合い位置にスプール11を保持している。そして
、偏心ドラム2の油室5に連通するボート14と油室6
に連通するボート15とが、このスプール11の保持位
置に応じて油圧ポンプ9の吐出油を導いたボート16な
いしタンク10に至るボート17に接続される。
As shown in FIG. 6, this continuously variable speed control valve 20 applies the discharge pressure of the hydraulic pump 9 to a pilot spool 12 that projects from a spool 11 in the axial direction, and urges this pressure and the spool 1 in the opposite direction. The spool 11 is held at a position balanced with the repulsive force of the spring 13. A boat 14 and an oil chamber 6 communicate with the oil chamber 5 of the eccentric drum 2.
A boat 15 is connected to a boat 16 leading to a tank 10 or a boat 17 leading to a boat 16 through which oil discharged from the hydraulic pump 9 is guided depending on the holding position of the spool 11.

例えば、この図の状態ではボート14がボート17に、
ボート15がボート16に接続されており、偏心ドラム
2の油室6へのポンプ吐出圧の作用により、偏心ドラム
2の偏心は小さく、油圧モータ1は小容量に保たれ、低
トルクで高速回転している。この状態から、油圧モータ
1の負荷が増加すると、油圧ポンプ9の吐出圧も増加し
、パイロットスプール12に導かれた吐出圧の作用でス
プール11が図の左側へと摺動すると、やがてボート1
4がボート16に、ボート15がボート17に接続され
る。
For example, in the state shown in this figure, boat 14 is connected to boat 17,
The boat 15 is connected to the boat 16, and due to the action of the pump discharge pressure to the oil chamber 6 of the eccentric drum 2, the eccentricity of the eccentric drum 2 is small, the hydraulic motor 1 is kept at a small capacity, and rotates at high speed with low torque. are doing. From this state, when the load on the hydraulic motor 1 increases, the discharge pressure of the hydraulic pump 9 also increases, and the spool 11 slides to the left in the figure due to the discharge pressure guided to the pilot spool 12. Eventually, the boat 1
4 is connected to the boat 16, and the boat 15 is connected to the boat 17.

この結果、油室5に吐出圧が作用し、偏心ドラム2は以
後油室6の作動油をボート15と1.7を介してタンク
10に還流しつつ、吐出圧の上昇に応じて偏心拡大方向
に変位する。これにより、油圧そ一タ1は容量を増加さ
せ、運転状態は高トルクかつ低回転へと変化する。
As a result, the discharge pressure acts on the oil chamber 5, and the eccentric drum 2 returns the hydraulic oil in the oil chamber 6 to the tank 10 via the boats 15 and 1.7, and expands its eccentricity as the discharge pressure increases. displacement in the direction. As a result, the capacity of the hydraulic motor 1 increases, and the operating state changes to high torque and low rotation.

つまり、第7図のグラフに示すように油圧モータ1の負
荷がある一定の値T、に達すると、ボート14と16が
連通し、油室5に供給されるポンプ吐出圧により偏心ド
ラム2が偏心拡大方向に変位を開始する。そして、偏心
ドラム2の変位が最大となる負荷T!まで、偏心ドラム
2は負荷の増加に応じて偏心量を拡大し、油圧モータ1
の容量を増加させる。これにより、油圧モータ1は負荷
がT、とT2の闇にある限りは、負荷変動によらず、一
定馬力を保って運転される。
In other words, when the load on the hydraulic motor 1 reaches a certain value T, as shown in the graph of FIG. Displacement begins in the direction of eccentric expansion. Then, the load T at which the displacement of the eccentric drum 2 becomes maximum! The eccentric drum 2 expands the amount of eccentricity according to the increase in load, and the hydraulic motor 1
Increase the capacity of. As a result, as long as the load is between T and T2, the hydraulic motor 1 is operated at a constant horsepower regardless of load fluctuations.

なお、油圧モータ1の負荷変動から偏心ドラム2の変位
に至るまでの反応Ic!閏が短いと、ポンプ容量が周期
的に変動するいわゆるハンチング現象を起こす恐れがあ
るため、偏心ドラム2の反応に適度の遅れをもたらすべ
く、無段変速制御バルブ20のタンク10に連通するボ
ート17にはオリフィス18が介装される。
Incidentally, the reaction Ic from the load fluctuation of the hydraulic motor 1 to the displacement of the eccentric drum 2! If the jump is short, there is a risk of causing a so-called hunting phenomenon in which the pump capacity changes periodically. Therefore, in order to bring about an appropriate delay in the response of the eccentric drum 2, the boat 17 connected to the tank 10 of the continuously variable speed control valve 20 is An orifice 18 is interposed therein.

(発明の課M) ところで、この油圧モータ1を例えばワイヤーを巻き上
げるウィンチの駆動手段として用いる場合には、ワイヤ
ーが無負荷になったら直ちに油圧モータ1の回転を高め
てワイヤーの巻き取りを早めることが作業効率上望まし
い、しかし、このような場合でも、偏心ドラム2の偏心
縮小方向への変位に伴うボート17とタンク9との作動
油の流通にオリフィス18が抵抗するために、油圧モー
タ1の容量の減少は緩慢であり、その分ワイヤーの巻き
取りに余計な時間がかかるという難点があった。
(Invention Section M) By the way, when this hydraulic motor 1 is used, for example, as a drive means for a winch that winds up a wire, the rotation of the hydraulic motor 1 should be increased as soon as the wire becomes unloaded to speed up the winding of the wire. However, even in such a case, the hydraulic motor 1 is The problem was that the capacity decreased slowly, and it took extra time to wind up the wire.

本発明は、以上の問題、?!、に鑑みて、ハンチングの
防止機能と、負荷が一定以上に軽くなった時の迅速な容
量調整機能とを兼備した無段変速制御装置を提供するこ
とを目的とする。
The present invention solves the above problems? ! In view of the above, it is an object of the present invention to provide a continuously variable transmission control device that has both a hunting prevention function and a rapid capacity adjustment function when the load becomes lighter than a certain level.

(課題を達成するための手段) 本発明は、油圧モータの容量変更手段を大容量側へ駆動
する油室と不審l!111IIへ駆動する油室とを、油
圧モータを駆動する油圧ポンプの吐出圧に応動する無段
変速制御バルブを介して選択的に油圧ポンプとタンクと
に接続するとともに、このタンクとの接a部に第17 
フイスを介装した油圧モータの無段変速制御装置におい
て、油圧モータの容量変更手段を大容量側へ駆動する油
室を前記第17 フイスを迂回してタンクに直接接続す
るバイパス回路を設けるとともに、このバイパス回路を
ポンプ吐出圧の低下時に開(切換弁を備えている。
(Means for Achieving the Object) The present invention provides an oil chamber for driving a capacity changing means of a hydraulic motor to a larger capacity side. 111II is selectively connected to the hydraulic pump and the tank via a continuously variable speed control valve that responds to the discharge pressure of the hydraulic pump that drives the hydraulic motor, and a contact part with the tank 17th
In the continuously variable transmission control device for a hydraulic motor with a filter interposed therein, a bypass circuit is provided for directly connecting an oil chamber for driving the capacity changing means of the hydraulic motor toward a larger capacity side to the tank bypassing the seventeenth filter, and This bypass circuit is opened when the pump discharge pressure decreases (it is equipped with a switching valve).

(作用) 油圧モータの負荷変動とともに油圧ポンプの吐出圧が変
わり、これに応じて油圧モータの!!!F量変更手段を
大容量側へ駆動する油室と小容量側へ駆動する油室が、
油圧ポンプとタンクとに選択的に接続されることで、油
圧モータの容量が負荷に応じて無段階に変化する。タン
ク接続部に介装されたオリアイスはこれらの油室からの
作動油の流出に抵抗を与えることで、この容量変化を緩
やかにする。
(Function) As the load on the hydraulic motor changes, the discharge pressure of the hydraulic pump changes, and the hydraulic motor changes accordingly! ! ! The oil chamber that drives the F amount changing means toward the large capacity side and the oil chamber that drives it toward the small capacity side are
By selectively connecting the hydraulic pump and the tank, the capacity of the hydraulic motor changes steplessly according to the load. The OLIIS installed in the tank connection section provides resistance to the outflow of hydraulic oil from these oil chambers, thereby slowing down this change in capacity.

一方、油圧モータの負荷が軽くなり、油圧ポンプの吐出
圧が一定以下に低下した時は、切換弁がバイパス通路を
開き、容i変更手段を大容量側へ駆動する油室を第17
 フイスを迂回して直接タンクに連通するので、作動油
の流通が早まり、油圧モータは速やかに小容量へと変化
し、直ちに高速回転に移行する。
On the other hand, when the load on the hydraulic motor becomes lighter and the discharge pressure of the hydraulic pump drops below a certain level, the switching valve opens the bypass passage and switches the oil chamber that drives the volume changing means to the larger capacity side to the 17th oil chamber.
Since it bypasses the filter and communicates directly with the tank, the flow of hydraulic oil is accelerated, the hydraulic motor quickly changes to a small capacity, and immediately shifts to high speed rotation.

(実施例) 第1図〜第3図に本発明の実施例を示す、なお、前記従
来例との同一構成部については同一番号を付して詳しい
説明を省略する。
(Embodiment) An embodiment of the present invention is shown in FIGS. 1 to 3. It should be noted that the same components as those in the conventional example are given the same numbers and detailed explanations will be omitted.

第1図に示される無段変速制御装置は前記従来例と同様
の構成に無段変速制御バルブ20を迂回するバイパス回
路8を設け、その途中に油圧ポンプ9の吐出圧に応じて
切り換わる切換弁21を介装したものである。切換弁2
1は第2図に示すように、バルブボディ21Aに摺動自
由に収装したスプール22に面して3つのボート23〜
25を開口し、摺動するスプール22がバイパス回路8
を構成するボート24と25とを連通あるいは遮断する
ものである。すなわちボート24はボート14に連通す
ると共に、ボート25はオリフィス18を迂回して直接
タンク10に連通する。ボート23にはボート16を介
して油圧ポンプ9の吐出圧が常時導かれ、スプール22
はこのボート23に導かれるポンプ吐出圧と対向する向
きにスプリング26により付勢され、通常のポンプ吐出
圧により図示のように左方向へ摺動して、ボート24と
25を連通する。
The continuously variable transmission control device shown in FIG. 1 has a configuration similar to that of the conventional example, but is provided with a bypass circuit 8 that bypasses the continuously variable transmission control valve 20, and a bypass circuit 8 that bypasses the continuously variable transmission control valve 20 is provided in the middle of the bypass circuit 8, which is switched in accordance with the discharge pressure of the hydraulic pump 9. A valve 21 is installed. Switching valve 2
1, as shown in FIG.
25 and the sliding spool 22 connects to the bypass circuit 8.
The boat 24 and the boat 25 that make up the boat 24 and 25 communicate with each other or are cut off from each other. That is, the boat 24 communicates with the boat 14, and the boat 25 bypasses the orifice 18 and directly communicates with the tank 10. The discharge pressure of the hydraulic pump 9 is constantly guided to the boat 23 via the boat 16, and the spool 22
is biased by a spring 26 in a direction opposite to the pump discharge pressure guided to the boat 23, and slides to the left as shown in the figure due to the normal pump discharge pressure, thereby communicating the boats 24 and 25.

次に作用を説明する。Next, the action will be explained.

油圧モータ1は油圧ポンプ9に駆動され、通常の負荷に
対しては負荷の変動によらず一定馬力を出力するように
、無段変速制御バルブ20が油圧ポンプ9の吐出圧に基
づいて偏心ドラム2の偏心量を無段階にW4整する。
The hydraulic motor 1 is driven by a hydraulic pump 9, and a continuously variable speed control valve 20 is controlled by an eccentric drum based on the discharge pressure of the hydraulic pump 9 so that a constant horsepower is output under normal loads regardless of load fluctuations. 2 eccentricity is adjusted steplessly by W4.

すなわち、ポンプ吐出圧が上昇すると、無段変速制御バ
ルブ20を介しでポンプ吐出圧を供給されるtlS5図
に示す油室5の圧力上昇により、偏心ドラム2が偏心拡
大方向に変位し、モータ容量を増加させて油圧モータ1
の回転数を減少させる。
That is, when the pump discharge pressure increases, the pressure in the oil chamber 5, which is supplied with the pump discharge pressure through the continuously variable speed control valve 20 as shown in FIG. Hydraulic motor 1 by increasing
Decrease the rotation speed.

また、ポンプ吐出圧が低下すると、運転中の油圧モータ
1が偏心ドラム2に及ぼす偏心縮小方向への荷重により
、偏心ドフム2は油室5の圧力低下に応じて偏心縮小側
へ変位し、モータ容量を減少させて油圧モータ1の回転
数を増加させる。
Furthermore, when the pump discharge pressure decreases, due to the load exerted on the eccentric drum 2 by the hydraulic motor 1 during operation in the direction of eccentricity reduction, the eccentric dome 2 is displaced toward the eccentricity reduction side in accordance with the pressure drop in the oil chamber 5, and the motor The rotation speed of the hydraulic motor 1 is increased by decreasing the capacity.

この偏心ドラム2の変位に伴い、油室6とタンク10と
の闇でボート14と17を介して作動油が流通するが、
この流通に対してボート17に介装されたオリアイス1
8が抵抗することにより、通常運転においでは負荷の変
動に対してモータ容量は緩やかに変化する。このため、
負荷変動に伴うハンチング現象は起きに<<、油圧モー
タ1は安定的に運転される。
With this displacement of the eccentric drum 2, hydraulic oil flows through the boats 14 and 17 between the oil chamber 6 and the tank 10.
Oriais 1 installed on boat 17 for this distribution.
8 resists, so that the motor capacity changes gradually with respect to load fluctuations during normal operation. For this reason,
The hunting phenomenon associated with load fluctuations does not occur, and the hydraulic motor 1 is operated stably.

なお、この状態では切換弁21はボート23に導かれた
油圧ポンプ9の吐出圧により、スプール22がスプリン
グ26に抗して第2図に示す位置より右寄りに保持され
、ボート24と25の連通は遮断されている。したがっ
て油室6とタンク10との間を流通する作動油はすべて
オリアイス18を経由する。
In this state, the switching valve 21 is held by the discharge pressure of the hydraulic pump 9 guided to the boat 23 so that the spool 22 is held to the right of the position shown in FIG. 2 against the spring 26, thereby preventing communication between the boats 24 and 25. is blocked. Therefore, all the hydraulic oil flowing between the oil chamber 6 and the tank 10 passes through the oriice 18.

しかしながら、油圧モータ1の負荷が取り除かれるなど
して、油圧ポンプ9の吐出圧が一定以下に低下すると、
切換弁21においては、ボート23の圧力低下により、
スプリング26に付勢されたスプール22が第2図に示
す位置へと摺動し、ボート24と25を連通する。また
、無段変速制御バルブ20においてはパイロットスプー
ル12に作用する圧力の低下によりスプリング13に付
勢されたスプール11が第2図に示す位置へと摺動し、
ボート15をボート16に、ボート14をボート17に
接続する。
However, if the load on the hydraulic motor 1 is removed and the discharge pressure of the hydraulic pump 9 drops below a certain level,
In the switching valve 21, due to the pressure drop in the boat 23,
The spool 22, biased by the spring 26, slides to the position shown in FIG. 2, bringing the boats 24 and 25 into communication. Furthermore, in the continuously variable speed control valve 20, the spool 11, which is biased by the spring 13, slides to the position shown in FIG. 2 due to a decrease in the pressure acting on the pilot spool 12.
Boat 15 is connected to boat 16 and boat 14 is connected to boat 17.

この結果、偏心ドラム2はボート15を介して油室6に
供給されるポンプ吐出圧と油圧モータ1の及ぼす偏心縮
小方向の荷重により、同方向へと変位する。この時、油
室5の作動油はボート24と25の連通により開かれた
バイパス通路8を通ってオリイス18を介さずに抵抗な
くタンク10に還流するので、偏心ドラム2は速やかに
変位し、油圧モータ1の容量は直ちに最小となる。
As a result, the eccentric drum 2 is displaced in the same direction due to the pump discharge pressure supplied to the oil chamber 6 via the boat 15 and the load exerted by the hydraulic motor 1 in the direction of eccentricity reduction. At this time, the hydraulic oil in the oil chamber 5 flows back to the tank 10 without resistance through the bypass passage 8 opened by the communication between the boats 24 and 25 without going through the orifice 18, so the eccentric drum 2 is quickly displaced. The capacity of the hydraulic motor 1 immediately becomes minimum.

このため、油圧モータ1の回転数は最大となり、例えば
ウィンチを駆動する場合には、負荷が取り除かれると同
時にワイヤが高速で巻き上げられる。
Therefore, the rotational speed of the hydraulic motor 1 becomes maximum, and when driving a winch, for example, the wire is hoisted at high speed at the same time as the load is removed.

なお、一定以上の負荷が再び油圧モータ1に加わると切
換弁21のスプール22がポンプ吐出圧により摺動して
ボート24と25の連通を遮断するので、再び通常の油
圧モータ1の容量制御が行なわれる。
Note that when a load above a certain level is applied to the hydraulic motor 1 again, the spool 22 of the switching valve 21 slides due to the pump discharge pressure and cuts off the communication between the boats 24 and 25, so that the normal capacity control of the hydraulic motor 1 is resumed. It is done.

切換弁21に使用するスプール22に第3図に示すよう
な切欠27を形成しておくと、ボート24と25の連通
がポンプ吐出圧の低下に対して徐々に行なわれるため、
偏心ドラム2の変位速度を吐出圧の低下に応じて徐々に
増加させることもできる。
If a notch 27 as shown in FIG. 3 is formed in the spool 22 used for the switching valve 21, communication between the boats 24 and 25 will be established gradually as the pump discharge pressure decreases.
It is also possible to gradually increase the displacement speed of the eccentric drum 2 as the discharge pressure decreases.

(発明の効果) 以上のように、本発明の無段変速制御装置は油圧モータ
の容量変更手段を大容量側へ駆動する油室とタンクとを
、通常の制御状態におけるオリフィスを介した連通とは
別に、直接連通するバイパス通路を設け、このバイパス
通路にポンプ吐出圧の低下時に開く切換弁を介装したた
め、油圧モータの負荷が一定以下になると、容1i変更
手段の穿1変更に伴ってこの油室とタンクとの間で作動
油がバイパス通路を介して速やかに流通し、容量変更を
短時間で終了させる。
(Effects of the Invention) As described above, the continuously variable transmission control device of the present invention allows communication between the oil chamber that drives the capacity changing means of the hydraulic motor toward the large capacity side and the tank through the orifice in the normal control state. Separately, a bypass passage that communicates directly is provided, and a switching valve that opens when the pump discharge pressure decreases is installed in this bypass passage, so that when the load on the hydraulic motor falls below a certain level, the change in volume 1i of the volume 1i change means Hydraulic oil quickly flows between the oil chamber and the tank via the bypass passage, completing the capacity change in a short time.

このため、通常の容量制御においてはオリフィスがもた
らす適度の反応時間の遅れによりハンチング現象を防止
しつつ、負荷が一定以下に軽くなったような場合には油
圧モータの回転を一気に高めて作業を効率良く行うこと
ができる。
For this reason, in normal capacity control, the hunting phenomenon is prevented by the moderate reaction time delay brought about by the orifice, and when the load becomes light below a certain level, the rotation of the hydraulic motor is suddenly increased to improve work efficiency. can do well.

【図面の簡単な説明】 第1図は本発明の実施例を示す油圧モータの駆動回路図
、第2図は同じく無段変速制御装置の断面図、第3図は
切換弁に使用するスプールに関して別の構成を示すスプ
ールの側面図である。 また、第4図〜第7図は従来例を示し、第4図は油圧モ
ータの駆動回路図、第5図は偏心ドラムの正面図、第6
図は無断変速制御バルブの断面図、第7図は油圧モータ
の制御特性を示すグラフである。 1・・・油圧モータ、2・・・偏心ドラム、5,6・・
・油室、8・・・バイパス通路、9・・・油圧ポンプ、
10・・・タンク、11.22・・・スプール、12・
・・パイロットスプール、13.26・・・スプリング
、14〜17.23〜25・・・ボート、18・・・オ
リフィス、20・・・無段変速制御バルブ、21・・・
切換弁。 (升173)
[Brief Description of the Drawings] Fig. 1 is a drive circuit diagram of a hydraulic motor showing an embodiment of the present invention, Fig. 2 is a sectional view of a continuously variable transmission control device, and Fig. 3 is a diagram of a spool used in a switching valve. FIG. 7 is a side view of the spool showing another configuration. 4 to 7 show conventional examples, FIG. 4 is a drive circuit diagram of a hydraulic motor, FIG. 5 is a front view of an eccentric drum, and FIG.
The figure is a sectional view of the continuously variable speed control valve, and FIG. 7 is a graph showing the control characteristics of the hydraulic motor. 1... Hydraulic motor, 2... Eccentric drum, 5, 6...
・Oil chamber, 8... Bypass passage, 9... Hydraulic pump,
10...Tank, 11.22...Spool, 12.
...Pilot spool, 13.26...Spring, 14-17.23-25...Boat, 18...Orifice, 20...Continuously variable speed control valve, 21...
switching valve. (Sho 173)

Claims (1)

【特許請求の範囲】[Claims] 油圧モータの容量変更手段を大容量側へ駆動する油室と
小容量側へ駆動する油室とを、油圧モータを駆動する油
圧ポンプの吐出圧に応動する無段変速制御バルブを介し
て選択的に油圧ポンプとタンクとに接続するとともに、
このタンクとの接続部にオリフィスを介装した油圧モー
タの無段変速制御装置において、油圧モータの容量変更
手段を大容量側へ駆動する油室を前記オリフィスを迂回
してタンクに直接接続するバイパス回路を設け、このバ
イパス回路をポンプ吐出圧の低下時に開く切換弁を備え
たことを特徴とする油圧モータの無段変速制御装置。
The oil chamber that drives the capacity change means of the hydraulic motor toward the large capacity side and the oil chamber that drives it toward the small capacity side are selectively controlled via a continuously variable speed control valve that responds to the discharge pressure of the hydraulic pump that drives the hydraulic motor. In addition to connecting the hydraulic pump and tank,
In this stepless variable speed control device for a hydraulic motor that has an orifice interposed in the connection part with the tank, a bypass bypass that bypasses the orifice and directly connects the oil chamber that drives the capacity changing means of the hydraulic motor to the larger capacity side. 1. A continuously variable speed control device for a hydraulic motor, comprising a circuit and a switching valve that opens the bypass circuit when the pump discharge pressure decreases.
JP63166372A 1988-07-04 1988-07-04 Continuously variable transmission control device for hydraulic motor Expired - Lifetime JP2617998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166372A JP2617998B2 (en) 1988-07-04 1988-07-04 Continuously variable transmission control device for hydraulic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166372A JP2617998B2 (en) 1988-07-04 1988-07-04 Continuously variable transmission control device for hydraulic motor

Publications (2)

Publication Number Publication Date
JPH0217201A true JPH0217201A (en) 1990-01-22
JP2617998B2 JP2617998B2 (en) 1997-06-11

Family

ID=15830189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166372A Expired - Lifetime JP2617998B2 (en) 1988-07-04 1988-07-04 Continuously variable transmission control device for hydraulic motor

Country Status (1)

Country Link
JP (1) JP2617998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050225A (en) * 2017-12-29 2018-05-18 浙江大学城市学院 Stepless speed changing with hydraulic transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050225A (en) * 2017-12-29 2018-05-18 浙江大学城市学院 Stepless speed changing with hydraulic transmission system
CN108050225B (en) * 2017-12-29 2023-09-08 浙江大学城市学院 Hydraulic transmission stepless speed change system

Also Published As

Publication number Publication date
JP2617998B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US4075842A (en) Load responsive fluid control system
US4107923A (en) Load responsive valve assemblies
US4383412A (en) Multiple pump load sensing system
JP5389461B2 (en) Hydraulic motor
US4028889A (en) Load responsive fluid control system
JPH04136507A (en) Hydraulic circuit
US4147178A (en) Load responsive valve assemblies
JPH04173433A (en) Hydraulic system for vehicle
US4089346A (en) Load responsive fluid control valves
JPH0217201A (en) Stepless speed control device for hydraulic motor
EP0610940B1 (en) Regulator for a variable displacement pump
JP3264651B2 (en) Hydraulic control device
JP2557002B2 (en) Operation valve used for hydraulic circuit
JP3534319B2 (en) Unloading device used for hydraulic circuit
US4267860A (en) Load responsive valve assemblies
JPH08100805A (en) Pressure control valve
US4174613A (en) Load responsive valve assemblies
JPH06117406A (en) Drive circuit for fluid pressure actuator
JPH044304A (en) Hydraulic control circuit
JP3574993B2 (en) Hydraulic motor circuit
JP3148722B2 (en) Hydraulic drive
US5140815A (en) Valve apparatus
JPH11117906A (en) Hydraulic driving device
JPS59713B2 (en) Yuatsu Pumpno Ryuuriyouseigiyosouchi
US4165761A (en) Load responsive fluid control valves