JPH02170364A - Method of stopping fuel battery with methanol modifier - Google Patents

Method of stopping fuel battery with methanol modifier

Info

Publication number
JPH02170364A
JPH02170364A JP63325467A JP32546788A JPH02170364A JP H02170364 A JPH02170364 A JP H02170364A JP 63325467 A JP63325467 A JP 63325467A JP 32546788 A JP32546788 A JP 32546788A JP H02170364 A JPH02170364 A JP H02170364A
Authority
JP
Japan
Prior art keywords
methanol
hydrogen
fuel cell
fuel battery
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63325467A
Other languages
Japanese (ja)
Inventor
Kenji Sakamoto
研二 坂本
Katsuhiko Abe
克彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP63325467A priority Critical patent/JPH02170364A/en
Publication of JPH02170364A publication Critical patent/JPH02170364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To suppress hydrogen release to the outside and enhance the safety by actuating the methanol supply system for burner combustion of a methanol modifying device at the same time as stop of power generation in a fuel battery, and by performing mixed combustion of the methanol with unreacted hydrogen in the fuel battery. CONSTITUTION:At the time of stopping the drive of a fuel battery 2, a controller 36 stops operation of a water pump 7 and a methanol pump 10 and opens a load contactor 41. Then another methanol pump 20 is driven to make mixed combustion of methanol with unreacted hydrogen in the fuel battery 2 with the aid of air given by a blower 19, to cause consumption of hydrogen generated from the fuel battery 2. This combusting operation is continued till complete consumption of the uncombusted hydrogen, and then drive of the methanol pump 20 is stopped. This suppresses hydrogen release to the outside when the drive is stopped, which allows ensuring the safety.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、メタノール改質装置を備えた燃料電池の駆
動停止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for stopping the operation of a fuel cell equipped with a methanol reformer.

[従来技術] ′従来から水素と酸素により電気を発生ざヒる燃料電池
があり、この水素をメタノール改質反応により得る方法
がある。そして、このメタノール改質装置においては、
メタノールポンプにより供給されるメタノールと水ポン
プにより供給される水とを原料としてCu−Zn系触媒
下で水素と二酸化炭素を生成し燃料電池に水素を供給す
るとともに、燃料電池での未反応水素を還流してその未
反応水素をバーナで燃焼させメタノール改質反応に必要
な熱を得る方法がある。
[Prior Art] 'There has conventionally been a fuel cell that generates electricity using hydrogen and oxygen, and there is a method of obtaining this hydrogen through a methanol reforming reaction. In this methanol reformer,
Using methanol supplied by a methanol pump and water supplied by a water pump as raw materials, hydrogen and carbon dioxide are generated under a Cu-Zn catalyst, supplying hydrogen to the fuel cell, and removing unreacted hydrogen in the fuel cell. There is a method of refluxing and burning the unreacted hydrogen in a burner to obtain the heat necessary for the methanol reforming reaction.

[発明が解決しようとする課題] ところが、燃料電池の発電を停止する際には、メタノー
ル改質装置への水ポンプとメタノールポンプの停止が行
なわれるが、メタノール改質装置の触媒層又は改質原料
供給系には未反応原料が残つ−05す、ポンプの駆動停
止後も余熱等により改質反応が起こり水素が発生してし
まう。そして、その水素が燃料電池を介してメタノール
改質装置のバーナに供給されるため、該バーナにおいて
一旦水素炎が消えると外部に水素が放出されてしまうと
いう問題があった。
[Problem to be Solved by the Invention] However, when stopping the power generation of the fuel cell, the water pump and methanol pump to the methanol reformer are stopped, but the catalyst layer or reformer of the methanol reformer is If unreacted raw materials remain in the raw material supply system, a reforming reaction occurs due to residual heat even after the pump is stopped, and hydrogen is generated. Since the hydrogen is supplied to the burner of the methanol reformer via the fuel cell, there is a problem in that once the hydrogen flame in the burner is extinguished, the hydrogen is released to the outside.

この発明の目的は、燃料電池の駆動停止時に水素の外部
への放出を抑制し安全性に優れたメタノール改質装置を
備えた燃FI電池の駆動停止方法を提供することにある
An object of the present invention is to provide a method for stopping the operation of a fuel FI cell equipped with a methanol reformer that suppresses the release of hydrogen to the outside when the fuel cell is stopped and has excellent safety.

[課題を解決するための手段] この発明は、水素と酸素により電気を発生さヒる燃料電
池と、メタノール又は水素を燃焼させメタノール改質反
応に必要な熱を供給するバーナを備え、水とメタノール
を原料として触媒下でメタノール改質反応を行い、水素
と二酸化炭素を生成するメタノール改質装置とを備えた
燃料電池において、 前記燃料電池の発電停止と同時に、前記バーナの燃焼用
メタノール供給系を作動して、メタノールと前記燃料電
池からの未反応水素とを燃焼させ、燃料電池からの未反
応水素を消費するようにしたメタノール改質装置を備え
た燃料電池の駆動停止方法をその要旨とするものである
[Means for Solving the Problems] The present invention includes a fuel cell that generates electricity using hydrogen and oxygen, and a burner that burns methanol or hydrogen and supplies the heat necessary for the methanol reforming reaction. In a fuel cell equipped with a methanol reformer that performs a methanol reforming reaction under a catalyst using methanol as a raw material to generate hydrogen and carbon dioxide, at the same time as the power generation of the fuel cell is stopped, a methanol supply system for combustion of the burner is provided. The gist of this invention is a method for stopping the operation of a fuel cell equipped with a methanol reformer that operates to burn methanol and unreacted hydrogen from the fuel cell and consume the unreacted hydrogen from the fuel cell. It is something to do.

[作用1 燃料電池の発電節[ヒと同115に、メタノール改質装
置のバーナ燃焼用メタノール供給系を作動して、メタノ
ールと燃料電池での未反応水素とを混合燃焼させる。そ
の結果、燃料電池からの未反応水素が消費され、外部に
水素が放出さけることができなくなる。
[Action 1: Power generation of fuel cell] At 115, the methanol supply system for burner combustion of the methanol reformer is operated to mix and burn methanol and unreacted hydrogen in the fuel cell. As a result, unreacted hydrogen from the fuel cell is consumed, and hydrogen cannot be released to the outside.

[実施例] 以下、この発明を車両に搭載される燃料電池に具体化し
た一実施例を図面に従って説明する。
[Embodiment] An embodiment in which the present invention is embodied in a fuel cell mounted on a vehicle will be described below with reference to the drawings.

第1図は本実施例の走行モータの電源供給系を示し、全
体としてメタノール改質装置1と燃お1電池2とDC/
DCコンバータ3と鉛蓄電池4と走行用直流モータ5と
から構・成されている。
FIG. 1 shows the power supply system of the traveling motor of this embodiment, which includes a methanol reformer 1, a combustion battery 2, and a DC/DC power supply system as a whole.
It is composed of a DC converter 3, a lead acid battery 4, and a running DC motor 5.

水タンク6の水は水ポンプ7の駆動により混合器8に供
給されるとともに、メタノールタンク9のメタノールは
メタノールポンプ10の駆動により混合器8に供給され
、この混合器8にて水とメタノールが混合され改質原料
となりメタノール改質装置1に供給される。
The water in the water tank 6 is supplied to the mixer 8 by driving the water pump 7, and the methanol in the methanol tank 9 is supplied to the mixer 8 by driving the methanol pump 10. In this mixer 8, water and methanol are mixed. The mixed raw materials are supplied to the methanol reformer 1 as reforming raw materials.

メタノール改質装置1は第2図に及び第2図のA−A断
面を示す第3図に示すように、円筒型をなすフレーム1
1には断熱材12が配置されている。そのフレーム11
内には触媒層13が同心円上に複数立設され、触tR層
13の中には改質触媒14が充填されている。この改質
触媒14としてはcuo、zno系触媒が使用される。
The methanol reformer 1 has a cylindrical frame 1, as shown in FIG. 2 and FIG.
1, a heat insulating material 12 is arranged. That frame 11
A plurality of catalyst layers 13 are arranged concentrically in the interior, and a reforming catalyst 14 is filled in the contact layer 13. As the reforming catalyst 14, a cuo or zno type catalyst is used.

又、前記混合器8にて混合されたメタノール/水の改質
原料は改質原料供給管15を介してメタノール改質装置
1のフレーム11内に供給されるとともに、その改質原
料供給管15は”ル−ム11内の中心部に螺旋状に延設
され、ざらに、分岐部16から各触ts層13の底部に
接続されている。各反応管13の上端部は集合されて水
素排出管17にて外部に連通している。
Further, the reforming raw material of methanol/water mixed in the mixer 8 is supplied into the frame 11 of the methanol reformer 1 via the reforming raw material supply pipe 15, and the reforming raw material supply pipe 15 is spirally extended in the center of the room 11, and is roughly connected from the branch part 16 to the bottom of each contact layer 13.The upper end of each reaction tube 13 is collected and hydrogen is It communicates with the outside through a discharge pipe 17.

フレーム11の内筒上部にはバーナ18が設けられ、そ
のバーナ18にはブロワ19にて空気(酸素)が供給さ
れるとともにメタノールポンプ20にて前記メタノール
タンク9からメタノールが供給される。そして、メタノ
ール改質装置1の起動時の昇温の際にはバーナ18によ
りメタノールが空気中の酸素にて燃焼してその高温の燃
焼ガスは内筒を通過し前記改質原料供給管15内のメタ
ノール/水の改質原料を加熱するとともに、外筒を通過
し各触媒層13を加熱して排気通路21から外部に排出
される。
A burner 18 is provided in the upper part of the inner cylinder of the frame 11, to which air (oxygen) is supplied by a blower 19 and methanol is supplied from the methanol tank 9 by a methanol pump 20. When the temperature rises at the time of startup of the methanol reformer 1, methanol is combusted with oxygen in the air by the burner 18, and the high temperature combustion gas passes through the inner cylinder and enters the reforming raw material supply pipe 15. The methanol/water reforming raw material is heated, passes through the outer cylinder, heats each catalyst layer 13, and is discharged to the outside from the exhaust passage 21.

ざらに、バーナ18には燃料電池2の未反応水素が供給
され、メタノール改質装置1の昇温が終了した後におい
てはこの水系が前記ブロワ19により供給される空気中
の酸素にて燃焼してその高温の燃焼ガスは前記改質原料
供給管15を過温りるとともに、触媒層13を加熱する
。即ら、メタノール改質装置1の昇温時はメタノール炎
にて触媒層を加熱し、−旦反応温度の約320℃に達し
メタノール改質反応が行われた後は、メタノール炎を停
止し、燃料電池2からの未反応水素による水素炎に切換
え改質反応に必要な熱を供給する。
Roughly speaking, unreacted hydrogen from the fuel cell 2 is supplied to the burner 18, and after the temperature of the methanol reformer 1 has finished rising, this aqueous system is combusted by the oxygen in the air supplied by the blower 19. The high-temperature combustion gas overheats the reforming material supply pipe 15 and heats the catalyst layer 13. That is, when the temperature of the methanol reformer 1 is raised, the catalyst layer is heated with a methanol flame, and once the reaction temperature of about 320° C. is reached and the methanol reforming reaction is performed, the methanol flame is stopped. The hydrogen flame generated by unreacted hydrogen from the fuel cell 2 is switched to supply the heat necessary for the reforming reaction.

そして、燃焼ガスはメタノール改質装置1の内筒から外
筒を通過し、排気通路21から外部に排出される。
Then, the combustion gas passes from the inner cylinder of the methanol reformer 1 to the outer cylinder, and is discharged to the outside from the exhaust passage 21.

又、触媒層13においては、上述したバーナー8での燃
焼によるi!am雰囲気下においてメタノールと水とを
原料として改質触媒14にて水素を生成する(CHOH
+H20→3H2+CO2一ΔQ)。この水素生成反応
は吸熱反応であるために加熱が必要となっている。
In addition, in the catalyst layer 13, i! due to combustion in the burner 8 mentioned above is generated. Hydrogen is produced in the reforming catalyst 14 using methanol and water as raw materials in an am atmosphere (CHOH
+H20→3H2+CO2-ΔQ). This hydrogen production reaction is an endothermic reaction and therefore requires heating.

燃料電池2は、リン酸電解質22を介して水素極23と
酸素極24が対向配置され、水素極23側に前記メタノ
ール改質装置1により生成された水素が前記水素排出管
17からフィルタ25を介して供給される。又、酸素極
24側にブロワ26により空気(酸素)が供給される。
In the fuel cell 2, a hydrogen electrode 23 and an oxygen electrode 24 are disposed facing each other with a phosphoric acid electrolyte 22 in between, and hydrogen generated by the methanol reformer 1 is passed from the hydrogen discharge pipe 17 to the filter 25 on the hydrogen electrode 23 side. Supplied via Further, air (oxygen) is supplied to the oxygen electrode 24 side by a blower 26.

さらに、この燃FI電池2には該燃料電池2を加熱及び
冷却するための熱交換器(オイル管)27が配置され、
この管内にはオイルポンプ28の駆動により熱交換器2
9及びオイルタンク30を介してオイルが循環される。
Furthermore, a heat exchanger (oil pipe) 27 for heating and cooling the fuel cell 2 is arranged in the fuel FI cell 2,
A heat exchanger 2 is installed inside this pipe by driving an oil pump 28.
Oil is circulated through 9 and an oil tank 30.

熱交換器29には起動用バーナ31が設けられ、メタノ
ールポンプ32により前記メタノールタンク9からメタ
ノールが供給されるとともにブロワ33により空気が供
給される。そして、燃料電池2の起動時には起動用バー
ナ31にてメタノールが燃焼してオイルが加熱され、オ
イルが循環され燃料電池2が約100℃付近まで昇温さ
れる。
The heat exchanger 29 is provided with a starting burner 31, to which methanol is supplied from the methanol tank 9 by a methanol pump 32 and air is supplied by a blower 33. When starting up the fuel cell 2, methanol is burned in the starting burner 31 to heat the oil, the oil is circulated, and the temperature of the fuel cell 2 is raised to around 100°C.

燃料電池2の温度が約100℃に達すると発電が開始さ
れる。燃料電池2は発電を開始すると発熱反応により温
度が上昇するが反応に適正な温度は190℃±20℃付
近であり、その温度範囲内に温度制御する必要がある。
When the temperature of the fuel cell 2 reaches approximately 100° C., power generation begins. When the fuel cell 2 starts generating electricity, the temperature rises due to an exothermic reaction, but the appropriate temperature for the reaction is around 190° C.±20° C., and it is necessary to control the temperature within that temperature range.

燃料電池2の冷却はブロワ33を駆動し、熱交換器29
にて循環するオイルが冷却することにより行われる。又
、燃料電池2の昇温はメタノールポンプ32とブロワ3
3を駆動するとともに、起動用バーナ31によりメタノ
ール炎を着火し、熱交換器29にて循環するオイルを加
熱することにより行われる。
The fuel cell 2 is cooled by driving the blower 33 and the heat exchanger 29.
This is done by cooling the circulating oil. Also, the temperature of the fuel cell 2 is raised by the methanol pump 32 and the blower 3.
3 and ignites a methanol flame with the starting burner 31 to heat the circulating oil in the heat exchanger 29.

又、燃料電池2においては、メタノール改質装置1から
供給される水素とプロ926により供給される空気(酸
素)により水素極23と酸素極24との間に起電力が発
生する。又、水素の未反応物は逆火防止器34に介して
前記メタノール改質装置1のバーナ18に戻される。
Further, in the fuel cell 2, an electromotive force is generated between the hydrogen electrode 23 and the oxygen electrode 24 due to the hydrogen supplied from the methanol reformer 1 and the air (oxygen) supplied by the pro 926. Further, unreacted hydrogen is returned to the burner 18 of the methanol reformer 1 via the flashback preventer 34.

燃料電池2の画電極はDC/DCコンバータ3に接続さ
れている。又、DC/DCコンバータ3の出力端子間に
は鉛蓄電池4を介して車両の走行モータ5が接続されて
いる。走行モータ5は切替コンタクタ(前進用、後進用
>35a、35bが並列に接続されるとともに、走行モ
ータ5に対しトランジスタTrが直列に接続されている
。又、接続点a、bにはフライホイールダイオードD1
゜D2が接続されている。そして、いずれかの切替コン
タクタ35a、35bを閉路した状態でトランジスタT
rがヂョッパ制御されることにより走行モータ5の回転
速度が制御されるようになっている。
The picture electrode of the fuel cell 2 is connected to a DC/DC converter 3. Further, a vehicle travel motor 5 is connected between the output terminals of the DC/DC converter 3 via a lead acid battery 4 . The travel motor 5 has switching contactors (for forward and reverse > 35a, 35b connected in parallel, and a transistor Tr connected in series to the travel motor 5.Furthermore, a flywheel is connected to the connection points a and b. Diode D1
゜D2 is connected. Then, with either switching contactor 35a or 35b closed, the transistor T
The rotational speed of the travel motor 5 is controlled by carrying out chopper control of r.

システム全体を制御するコントローラ36は前記各ブロ
ワ19,26.33、ポンプ7.10゜20.28.3
2を駆動制御するとともに、メタノール改質装置1の触
媒温度を検出する温度センサ37からの信号と燃料電池
2の温度を検出する温度センサ38からの信号を入力し
て各温度を検知する。又、コントローラ36は電圧検出
部39による燃料電池2の出力電圧VrCを検知すると
ともに、電圧検出部40による鉛蓄電池4の端子電圧V
Bを検知する。ざらに、コントローラ36は電流センサ
42による鉛蓄電池4の充放電電流■8を検知するとと
もに、温度センサ゛43による鉛蓄電池4の温度を検知
する。
A controller 36 that controls the entire system includes each of the blowers 19, 26.33 and pumps 7.10°20.28.3.
At the same time, a signal from a temperature sensor 37 that detects the catalyst temperature of the methanol reformer 1 and a signal from a temperature sensor 38 that detects the temperature of the fuel cell 2 are inputted to detect each temperature. Further, the controller 36 detects the output voltage VrC of the fuel cell 2 by the voltage detection section 39, and detects the terminal voltage VrC of the lead-acid battery 4 by the voltage detection section 40.
Detect B. Roughly speaking, the controller 36 detects the charging/discharging current 8 of the lead acid battery 4 by the current sensor 42, and also detects the temperature of the lead acid battery 4 by the temperature sensor 43.

コントローラ36はDC/DCコンバータ3に燃料電池
2からの出力電流指令値を出力するとともに、DC/D
Cコンバータ3と鉛蓄電池4との間に設けられた負荷コ
ンタクタ41を開閉制御する。
The controller 36 outputs the output current command value from the fuel cell 2 to the DC/DC converter 3, and also outputs the output current command value from the fuel cell 2 to the DC/DC converter 3.
The load contactor 41 provided between the C converter 3 and the lead acid battery 4 is controlled to open and close.

次に、このシステムの起動制御を説明する。Next, the startup control of this system will be explained.

まず、コントローラ36はメタノール改質装着1の触媒
温度が改質反応可能な最低温度(約250℃)に達する
までの間、メタノールポンプ20とブロワ19を駆動し
てメタノールをバーナ18で燃焼させ触媒層13を昇温
する。同時に、コントローラ36は燃料電池2が発電可
能な最低温度(約100℃)に達するまでの間、メタノ
ールポンプ32とブロワ33を駆動して起動用バーナ3
1でメタールを燃焼させ、オイルポンプ2Bによりオイ
ルを循環さV燃料電池2を昇温さUる。
First, the controller 36 drives the methanol pump 20 and the blower 19 until the catalyst temperature of the methanol reforming installation 1 reaches the lowest temperature (approximately 250° C.) at which the reforming reaction can occur, so that the methanol is combusted by the burner 18 and the catalyst The temperature of layer 13 is increased. At the same time, the controller 36 drives the methanol pump 32 and the blower 33 until the fuel cell 2 reaches the minimum temperature (approximately 100°C) at which it can generate electricity, and the starting burner 3
1, the metal is combusted, and the oil is circulated by the oil pump 2B to raise the temperature of the fuel cell 2.

そして、コン1〜ローラ36はメタノール改質装置1で
改質反応可能な最低温度(約250℃)に達するととも
に燃料電池2で発電可能な最低温度(約100℃)に達
すると、水ポンプ7とメタノールポンプ10を駆動し、
メタノール改質装置1に改質原料の供給を開始する。す
ると、メタノール改質装@1の改質触l514で改質さ
れた水素はフィルタ25を経由して燃料電池2に供給さ
れる。
When the controller 1 to the roller 36 reach the lowest temperature (approximately 250°C) at which the methanol reformer 1 can undergo a reforming reaction and the lowest temperature at which the fuel cell 2 can generate electricity (approximately 100°C), the water pump 7 and drives the methanol pump 10,
Supply of the reforming raw material to the methanol reformer 1 is started. Then, the hydrogen reformed by the reforming catalyst 1514 of the methanol reformer @1 is supplied to the fuel cell 2 via the filter 25.

この時燃料電池からの未反応水素は逆火防止器34を介
してメタノール改質装置1のパーツ18で燃焼させる。
At this time, unreacted hydrogen from the fuel cell is combusted in the part 18 of the methanol reformer 1 via the flashback preventer 34.

それ以後、コントローラ36はメタノール改質装置1の
メタノールポンプ20!停止しメタノール改質装置1で
のバーナ18の燃焼を未反応水素主体で行なわせる。
After that, the controller 36 controls the methanol pump 20! of the methanol reformer 1! The operation is stopped and the burner 18 in the methanol reformer 1 is caused to mainly burn unreacted hydrogen.

コントローラ36は燃料電池2への水素供給が始まると
同時にプロ926を駆動し空気(酸素)を供給する。水
素と酸素の供給が始まると燃料電池2の両電極間にオー
プン電圧が発生する。コントローラ36はオープン電圧
が規定の電圧に達した後、負荷コンタクタ41を閉じて
外部への電力供給を開始する。この時、コン1−〇−ラ
36はDC/DCコンバータ3に燃料電池2からの出力
電流指令値を出力し、DC/DCコンバータ3はその値
に従って多段階に定電流出力制御を行っている。ざらに
、コントローラ36は鉛蓄電池4の端子電圧VBと充放
電電流IBと温度を常時検出することにより鉛蓄電池4
の充電状態を鋒出している。DC/DCコンバータ3へ
の出力電流指令値は鉛蓄電池4の充電状態に相関して出
力するようにしている。即ち、鉛蓄電・池4の放電が進
んでいる場合には燃料電池2の出力を最大側に設定し、
鉛蓄電池4が充分に充電されている場合には低出力側に
設定している。コントローラ36は燃料電池2の発電が
開始されると同時に起動用ブロワ33により燃料電池2
を冷却する。
The controller 36 drives the processor 926 to supply air (oxygen) at the same time as hydrogen supply to the fuel cell 2 begins. When the supply of hydrogen and oxygen begins, an open voltage is generated between both electrodes of the fuel cell 2. After the open circuit voltage reaches a specified voltage, the controller 36 closes the load contactor 41 and starts supplying power to the outside. At this time, the controller 36 outputs the output current command value from the fuel cell 2 to the DC/DC converter 3, and the DC/DC converter 3 performs constant current output control in multiple stages according to that value. . Roughly speaking, the controller 36 constantly detects the terminal voltage VB, charging/discharging current IB, and temperature of the lead-acid battery 4.
It shows the state of charge of the battery. The output current command value to the DC/DC converter 3 is output in correlation with the state of charge of the lead acid battery 4. That is, when the discharge of the lead-acid battery/battery 4 is progressing, the output of the fuel cell 2 is set to the maximum side,
When the lead acid battery 4 is sufficiently charged, the output is set to the low output side. The controller 36 causes the starting blower 33 to start the fuel cell 2 at the same time that the fuel cell 2 starts generating electricity.
to cool down.

次に、この燃料電池2と鉛蓄電池4の運転方法を説明す
る。
Next, a method of operating the fuel cell 2 and lead acid battery 4 will be explained.

燃料電池2の出力電力はDC/DCコンバータ3を経由
して走行モータ5等の負荷、又は、補助バッテリーとし
ての鉛蓄電池4に供給されるわiノであるが、DC/D
Cコンバータ3はその出力を常に鉛蓄電池4の充電電圧
VBになるように制御し、燃料電池2と鉛蓄電池4によ
るハイブリッド運転を行なわせる。又、メタノール改質
装置1゜燃料電池2.DC/DCコンバータ3の出力は
鉛蓄電池4の放電が進んでいる状態では出力最大側にし
、満充電状態になるにつれて低い出力になるように制御
する。
The output power of the fuel cell 2 is supplied via a DC/DC converter 3 to a load such as a travel motor 5 or to a lead acid battery 4 as an auxiliary battery.
The C converter 3 controls its output so that it always becomes the charging voltage VB of the lead-acid battery 4, and performs a hybrid operation using the fuel cell 2 and the lead-acid battery 4. Also, methanol reformer 1゜fuel cell 2. The output of the DC/DC converter 3 is controlled to be at the maximum level when the lead-acid battery 4 is being discharged, and to become lower as the battery becomes fully charged.

ざらに、燃料電池2の駆動停止の際にはコン1〜ローラ
36は水ポンプ7とメタノールポンプ10の駆動を停止
するとともに負荷コンタクタ41を開路する。さらに、
コントローラ36はメタノールポンプ20を駆動してメ
タノールと燃料電池2での未反応水素とをブロワ19に
よる空気(酸基)にて混合燃焼ざV、燃料電池2から発
生ずる水素を消費させる。叩ら、メタノール改74装置
1の改質触媒14又は改質原料供給系には未反応原料が
残っており、駆動停止後も余熱等により改質が起こり断
続的に水素が発生する。この状態でメタノール炎を連続
的に燃焼されることにより、水素炎が断続的になっても
、水素炎が消えることなく外部に水素を放出さUない。
Roughly speaking, when the drive of the fuel cell 2 is stopped, the controller 1 to the roller 36 stop driving the water pump 7 and the methanol pump 10, and open the load contactor 41. moreover,
The controller 36 drives the methanol pump 20 to mix and burn methanol and unreacted hydrogen in the fuel cell 2 with air (acid radicals) by the blower 19, causing the hydrogen generated from the fuel cell 2 to be consumed. Unreacted raw materials remain in the reforming catalyst 14 or the reforming raw material supply system of the methanol reformer 74 apparatus 1, and even after the drive is stopped, reforming occurs due to residual heat, etc., and hydrogen is generated intermittently. By continuously burning the methanol flame in this state, even if the hydrogen flame becomes intermittent, the hydrogen flame will not go out and hydrogen will not be released to the outside.

そして、コン1〜ローラ36はこの燃料電池2の発電停
止の際のメタノールポンプ20の駆動によるメタノール
と燃料電池2からの未反応水素との燃焼動作を未反応水
素が完全に消費されるまでの14間行った後、メタノー
ルポンプ20の駆動を停止する。
Then, when the fuel cell 2 stops generating power, the controller 1 to the roller 36 perform the combustion operation of the methanol driven by the methanol pump 20 and the unreacted hydrogen from the fuel cell 2 until the unreacted hydrogen is completely consumed. After 14 minutes, driving of the methanol pump 20 is stopped.

このように本実施例によれば、燃料電池2の発電停止時
に、メタノール改質装置1のバーナ18の燃焼用メタノ
ール供給系(メタノールポンプ20>を作動して、メタ
ノールと燃料電池2での未反応水素とを同時に燃焼させ
、燃料電池2からの未反応水素を消費ざヒるようにした
。従って、燃料電池2の駆動停止時に水素の外部への放
出を抑制し安全性に優れたものとすることができる。
According to this embodiment, when the fuel cell 2 stops generating electricity, the combustion methanol supply system (methanol pump 20) of the burner 18 of the methanol reformer 1 is operated to remove methanol and the unused fuel in the fuel cell 2. The hydrogen is burned simultaneously with the reacted hydrogen, so that the unreacted hydrogen from the fuel cell 2 is not consumed.Therefore, when the fuel cell 2 is stopped, the release of hydrogen to the outside is suppressed, resulting in excellent safety. can do.

[発明の効果] 以上詳述したようにこの発明によれば、燃料電池の駆動
停止時に水素の外部への放出を抑制し安全性を確保する
ことができる優れた効果を発揮する。
[Effects of the Invention] As detailed above, according to the present invention, the excellent effect of suppressing the release of hydrogen to the outside when the fuel cell is stopped and ensuring safety is exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の燃料電池の概略構成図、第2図はメタ
ノール改質装置の断面図、第3図は第2図のA−A断面
図である。 1はメタノール改質装置、2は燃料電池、18はバーナ
、20はメタノールポンプ。 特許出願人 株式会社 豊田自動織機製作所式 理 人
  弁理士 恩1)博宣 メタ/−zル
FIG. 1 is a schematic configuration diagram of a fuel cell according to an embodiment, FIG. 2 is a sectional view of a methanol reformer, and FIG. 3 is a sectional view taken along line AA in FIG. 1 is a methanol reformer, 2 is a fuel cell, 18 is a burner, and 20 is a methanol pump. Patent Applicant: Toyota Industries Corporation, Patent Attorney: 1) Hironobu Meta/-zru

Claims (1)

【特許請求の範囲】 1、水素と酸素により電気を発生させる燃料電池と、 メタノール又は水素を燃焼させメタノール改質反応に必
要な熱を供給するバーナを備え、水とメタノールを原料
として触媒下でメタノール改質反応を行い、水素と二酸
化炭素を生成するメタノール改質装置と を備えた燃料電池において、 前記燃料電池の発電停止と同時に、前記バーナの燃焼用
メタノール供給系を作動して、メタノールと前記燃料電
池からの未反応水素とを燃焼させ、燃料電池からの未反
応水素を消費するようにしたメタノール改質装置を備え
た燃料電池の駆動停止方法。
[Claims] 1. A fuel cell that generates electricity using hydrogen and oxygen, and a burner that burns methanol or hydrogen and supplies the heat necessary for the methanol reforming reaction, and uses water and methanol as raw materials under a catalyst. In a fuel cell equipped with a methanol reformer that performs a methanol reforming reaction to produce hydrogen and carbon dioxide, at the same time as the fuel cell stops generating electricity, a methanol supply system for combustion of the burner is activated to convert methanol and A method for stopping the operation of a fuel cell equipped with a methanol reformer that burns unreacted hydrogen from the fuel cell and consumes the unreacted hydrogen from the fuel cell.
JP63325467A 1988-12-22 1988-12-22 Method of stopping fuel battery with methanol modifier Pending JPH02170364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325467A JPH02170364A (en) 1988-12-22 1988-12-22 Method of stopping fuel battery with methanol modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325467A JPH02170364A (en) 1988-12-22 1988-12-22 Method of stopping fuel battery with methanol modifier

Publications (1)

Publication Number Publication Date
JPH02170364A true JPH02170364A (en) 1990-07-02

Family

ID=18177199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325467A Pending JPH02170364A (en) 1988-12-22 1988-12-22 Method of stopping fuel battery with methanol modifier

Country Status (1)

Country Link
JP (1) JPH02170364A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348771A (en) * 1986-08-14 1988-03-01 Fuji Electric Co Ltd Starting method for fuel cell power generating system
JPS63155564A (en) * 1986-12-18 1988-06-28 Fuji Electric Co Ltd Fuel cell power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348771A (en) * 1986-08-14 1988-03-01 Fuji Electric Co Ltd Starting method for fuel cell power generating system
JPS63155564A (en) * 1986-12-18 1988-06-28 Fuji Electric Co Ltd Fuel cell power generation system

Similar Documents

Publication Publication Date Title
US20180375135A1 (en) Fuel cell system and method for controlling fuel cell system
JP4905642B2 (en) Fuel cell system and moving body
JP5721825B2 (en) Fuel cell device
US10826090B2 (en) Method for controlling fuel cell system and fuel cell system
JP3242547B2 (en) In-vehicle fuel cell power generator
CA3009462C (en) Fuel cell system and control method for fuel cell system
JPH06196176A (en) Combustion equipment
WO2017104258A1 (en) Fuel cell system and control method for fuel cell system
JPH02168802A (en) Electric vehicle
JPH02174502A (en) Electric vehicle
CN111164812A (en) Fuel cell system and control method of fuel cell system
JP3548043B2 (en) Fuel cell power generation system
JP5541447B2 (en) Fuel cell system
JP2715500B2 (en) Fuel cell with methanol reformer
JP4800691B2 (en) Fuel cell reformer
JP3722868B2 (en) Fuel cell system
JP2001085040A (en) Fuel cell power supply system and its operating method
JPH02174503A (en) Electric vehicle
JPH02170369A (en) Fuel battery with hydrogen supplying function
JPH02170364A (en) Method of stopping fuel battery with methanol modifier
JPH02168803A (en) Electric vehicle
JP2002100389A (en) Fuel gas reformer and fuel cell system
JPH0682555B2 (en) Fuel cell power generator operation start-up method
JPH0697618B2 (en) Fuel cell power generator
JPS63155564A (en) Fuel cell power generation system