JPH02169986A - Lining refractory member for induction melting furnace and furnace construction using same - Google Patents

Lining refractory member for induction melting furnace and furnace construction using same

Info

Publication number
JPH02169986A
JPH02169986A JP32372888A JP32372888A JPH02169986A JP H02169986 A JPH02169986 A JP H02169986A JP 32372888 A JP32372888 A JP 32372888A JP 32372888 A JP32372888 A JP 32372888A JP H02169986 A JPH02169986 A JP H02169986A
Authority
JP
Japan
Prior art keywords
layer
furnace
sintered
refractory
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32372888A
Other languages
Japanese (ja)
Other versions
JPH0340319B2 (en
Inventor
Akira Hashimoto
晃 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32372888A priority Critical patent/JPH02169986A/en
Publication of JPH02169986A publication Critical patent/JPH02169986A/en
Publication of JPH0340319B2 publication Critical patent/JPH0340319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To shorten drying time and sintering time without mixing impurity in melted metal, to increase the number of times of uses, and to prevent melting amount due to repairing from decreasing by composing a lining refractory member of a plurality of sintered layers having different sintering degrees. CONSTITUTION:After a bottom face intermediate layer 4 is formed, a molded form 2 is vertically inserted into the center of a furnace, a backup material is filled around the side face, and stamped to form a backup layer 3. Sintering, drying are conducted to complete an induction melting furnace. A plurality of sintered layers are composed of a blocklike sintered layer 20a formed at the innermost side, an intermediate sintered layer 20b not sufficiently sintered, and an unsintered layer 20c, and the backup layer 3 becomes completely unsintered layer. The innermost layer has high refractory degree, the semisintered layer disposed outside the innermost layer has satisfactory heat insulation, and altered to a sintered layer as it is used so that the durability is increased, and slag resistance is strengthened. Thus, the capacity of the number of times of melting is increased, its thermal efficiency is enhanced, and its electric efficiency can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高周波又は比較的低周波の電流により誘導され
る誘導電流により発生される高温によって、金属類の鉱
物を熔解製煉する誘導熔解炉の最内面に設けられる新規
なる内張耐火部材および該内張耐火部材を用いる誘導熔
解炉の築炉施工方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an induction melting furnace for melting and smelting metallic minerals using high temperatures generated by an induced current induced by a high frequency or relatively low frequency current. The present invention relates to a new lining refractory member provided on the innermost surface of the lining and a method for constructing an induction melting furnace using the lining refractory member.

[従来の技術] 高周波電流又は比較的低周波電流による誘導加熱により
炉内の被熔解物を加熱し、熔解する誘導熔解炉は従来よ
り各種のものが採用されている。第5図はその一例を示
すものである。誘導熔解炉1aは底面を有し上部に開口
部を有する外枠体8と、この内部に位置する高周波発生
用の電気誘導水冷コイル5と、このコイル5を保持する
ためのコイルセメント層6と、最内面にあってコア部を
形成する金属製シリンダ9と。
[Prior Art] Various types of induction melting furnaces have been used in the past to heat and melt the material to be melted in the furnace by induction heating using a high frequency current or a relatively low frequency current. FIG. 5 shows an example. The induction melting furnace 1a includes an outer frame 8 having a bottom surface and an opening at the top, an electric induction water cooling coil 5 for high frequency generation located inside the outer frame 8, and a coil cement layer 6 for holding the coil 5. , and a metal cylinder 9 which is on the innermost surface and forms a core part.

これを保持すべくコイル5と金属製シリンダ9間に形成
されるライニング材からなる側面中間層3aおよび底面
中間層4a等とから構成される。
It is composed of a side intermediate layer 3a and a bottom intermediate layer 4a made of a lining material, which are formed between the coil 5 and the metal cylinder 9 to maintain this.

以上の構成からなる誘導熔解炉1aを作るには、まず外
枠体8内にコイル5を入れ、このコイル5をコイルセメ
ントによりコイルが見えなくなるまでかため、次に空間
部にコイルセメントを投入しスタンピング等によりこれ
をかためコイルセメント層6を形成する。
To make the induction melting furnace 1a with the above configuration, first put the coil 5 in the outer frame 8, harden the coil 5 with coil cement until the coil is no longer visible, and then put coil cement into the space. This is hardened by stamping or the like to form a coil cement layer 6.

次にライニング材を投入し、底面中間層4aを水平に形
成する。
Next, a lining material is added to form the bottom intermediate layer 4a horizontally.

環状の金属製シリンダ9を炉内の中心に装入した後、そ
の外周りにライニング材を入れ側面中間層3aを形成す
る。
After the annular metal cylinder 9 is placed in the center of the furnace, a lining material is placed around the outside to form the side intermediate layer 3a.

次にライニング材と同じ化学的性質と熱膨張率を有する
トッピングセメント材により炉頂部7のトッピングを行
う、トッピングは乾式でなく湿式のものからなり、水ガ
ラス溶液を混練し、エアーランマ等により叩き込み成形
する0次に65[℃]で数時間保温し炉頂部7を乾燥す
る。
Next, the furnace top 7 is topped with a topping cement material that has the same chemical properties and coefficient of thermal expansion as the lining material.The topping is a wet method rather than a dry method, and a water glass solution is kneaded and then hammered into shape using an air rammer, etc. Next, the furnace top 7 is dried by keeping it warm at 65[° C.] for several hours.

焼結方法としては金属製シリンダ内に金属及びその細片
を入れ、昇温速度300[℃]まで100 [c/hr
lで行い、800[℃]で2時間キープし、その後25
0 [c/hrlで1650[℃]まで昇温し、165
0[℃]で3 [hrl保温する。
The sintering method involves placing the metal and its small pieces in a metal cylinder and increasing the temperature at a rate of 100 [c/hr] up to 300 [°C].
1, kept at 800 [℃] for 2 hours, then 25
0 [c/hrl to raise the temperature to 1650 [℃], 165
Keep warm at 0 [℃] for 3 [hrl].

以上の従来技術の他に金属製シリンダ9を用いない従来
技術がある(図示は省略)、このものは全体構造として
第5図のものと似ているが金属製シリンダ9の装入され
る部分に截頭円錐体状の鉄製中子を入れ、該中子とコイ
ル5(第5図)の間に耐火物スタンプ材を装入し、スタ
ンピング等によりこれをかためた後、炉体を昇温させて
焼結するようにしたものである。
In addition to the prior art described above, there is a prior art that does not use the metal cylinder 9 (not shown), which has a general structure similar to that shown in Fig. 5, but the part into which the metal cylinder 9 is inserted. A truncated cone-shaped iron core is inserted into the core, and a refractory stamp material is inserted between the core and the coil 5 (Fig. 5), and after hardening it by stamping, etc., the furnace body is lifted up. It is designed to be heated and sintered.

[本発明の目的:解決すべき問題点] 第5図に示す従来技術の誘導熔解炉ではコアに金属製シ
リンダ9を使用しているため、被熔解物の熔解時におい
て熔解金属内に金属製シリンダ9の一部が熔は込み、不
純物として混入される問題点が生ずる。また金属製シリ
ンダ9が次第に消耗し、炉の寿命を低下させる問題点も
生ずる。また後者の従来技術のものは不純物混入の心配
はないが、前記した耐火物スタンプ材内の水分及びバイ
ンダを除去するために長時間の乾燥時間及び焼結時間を
必要とする問題点が生ずる。また炉の内面側全体が耐火
物スタンプ材からなるため、比較的高価のものとなる問
題点も生ずる。更に従来技術では耐火物スタンプ材で形
成される内張耐火部材が単層の焼結層からなるため、耐
火度が低下し、使用回数も少なく、電気効率が低い問題
点を有していた。
[Objective of the present invention: Problems to be solved] Since the conventional induction melting furnace shown in FIG. A problem arises in that part of the cylinder 9 is immersed in the melt and mixed in as impurities. Further, there is a problem that the metal cylinder 9 gradually wears out, which shortens the life of the furnace. Although the latter conventional technique does not have the risk of contamination with impurities, it does have the problem of requiring a long drying time and sintering time to remove the moisture and binder in the refractory stamp material. Furthermore, since the entire inner surface of the furnace is made of refractory stamp material, there is also the problem that the furnace is relatively expensive. Furthermore, in the prior art, the lining refractory member made of a refractory stamp material consists of a single sintered layer, which has the disadvantages of low fire resistance, low usage frequency, and low electrical efficiency.

本発明は前記従来技術における諸問題と諸欠点を解決す
べく創案されたもので、熔解金属内に不純物を混入させ
ず、乾燥および焼結が短時間で出来、使用回数も多く、
補修によって熔解容量の減少もなく、大巾のコストダウ
ンを可能とする誘導熔解炉の内張耐火部材を提供すると
共に、これを用いた築炉施工方法を提供することを目的
とする。
The present invention was created to solve the problems and drawbacks of the prior art, and it does not mix impurities into the molten metal, can be dried and sintered in a short time, can be used many times,
It is an object of the present invention to provide a refractory lining member for an induction melting furnace that does not cause a decrease in melting capacity through repair and enables a significant cost reduction, and to provide a method for constructing a furnace using the same.

[本発明の構成二問題点解決の手段] 本発明は前記目的を達成するために外側より耐力構造層
と耐火断熱層および電気誘導水冷コイルを内蔵し、上部
に開放部を有する炉体の内面側に内張耐火部材の層を有
する誘導熔解炉において、最内側に焼結程度の異なる複
数の層を形成することを特徴とする内張耐火部材である
[Structure of the present invention: Means for solving the two problems] In order to achieve the above-mentioned objects, the present invention provides an inner surface of a furnace body having a load-bearing structure layer, a refractory heat insulating layer, and an electric induction water cooling coil built in from the outside and having an open portion at the top. This is a refractory lining member characterized in that a plurality of layers with different degrees of sintering are formed on the innermost side in an induction melting furnace having a layer of refractory lining member on the side.

これにより電気効率を向上し得るものにすると共に、こ
の機能を有する内張耐火部材を用いる築炉施工方法とし
ては、予め内張耐火部材の基となる成形体を下方に先細
りの截頭円錐体の中子と間隙20[+u+]ないし[6
0mm]を隔て、これを囲繞する外枠とからなる内張耐
火部材成形用型枠中にSK28番以上の耐火物スタンプ
材をバインダと共に均一に混合せしめて型詰めし、脱型
して100[”c]以上400[℃]以下の温度で乾燥
して仕上り成型体(スリーブとも称される)とした後、
これを外側より耐力構造層と耐火断熱層および電気誘導
水冷コイルを内蔵し、上部に開口部を有する炉体の内部
中心に前記開口部より装入し、前記炉体と成形体間をバ
ックアップ材でかためた後、前記成形体内を時間当り1
00[℃]より300[℃]の速度で昇温し、900[
℃]ないし1100[’c]で約30[分]ないし1.
5[時間コ保持し。
In addition to improving electrical efficiency, the method for constructing a furnace using a refractory lining member having this function is to first form a molded body, which is the base of the refractory lining member, into a truncated conical shape that tapers downward. The core and the gap 20[+u+] to [6
A refractory stamp material of SK28 or higher is uniformly mixed with a binder in a mold for forming a lining refractory member consisting of an outer frame surrounding the outer frame with a distance of 0 mm], the mold is packed, and the mold is demolded to form a mold of 100 mm. After drying at a temperature of ``c'' or higher and 400[℃] or lower to form a finished molded product (also called a sleeve),
This is inserted into the center of the furnace body from the outside, which contains a load-bearing structure layer, a refractory heat insulation layer, and an electric induction water cooling coil, and has an opening at the top, and a backup material is placed between the furnace body and the molded body. After hardening, the inside of the molded body is heated at 1 hour per hour.
The temperature was raised from 00[℃] at a rate of 300[℃] to 900[℃].
℃] to 1100['c] for about 30 minutes to 1.
5 [Hold for hours.

次いで時間当り200[℃]ないし300[℃]の速度
で昇温し1500[℃]ないし1700[℃]で約30
[分]ないし1.5[時間]保持することにより前記成
形体を焼結程度の異なる複数の層からなる内張耐火部材
として形成されることを特徴とする内張耐火部材を用い
る築炉施工方法を構成するものである。なお前記の成形
体の成形方法としてはまず截頭円錐体からなる中子を間
隙を介して囲む成形用外枠を用い。
Next, the temperature was raised at a rate of 200 [°C] to 300 [°C] per hour, and the temperature was increased to about 30 [°C] to 1,500 [°C] to 1,700 [°C].
Furnace construction using a refractory lining member, characterized in that by holding the molded body for [minutes] to 1.5 [hours], the molded body is formed as a refractory lining member consisting of a plurality of layers with different degrees of sintering. This constitutes a method. In the method for forming the above-mentioned molded article, first, an outer molding frame is used which surrounds a core made of a truncated cone with a gap in between.

前記間隙内に適宜粒度(SK28番以上又は4F程度の
)アルミナ質、マグネシア質、スピネル質、シリカ質を
含む一般耐火部物材料のスタンプ材に有機物および無機
物バインダを混入して装入し、これをスタンピングする
。つき上ったら内部を取り出し、そのままの状態で24
時間ないし48時間常温乾燥した後、乾燥炉内で100
[℃]以上で400[℃]以下の状態で適宜時間乾燥し
て完成される。
A stamp material of a general refractory material containing alumina, magnesia, spinel, and silica with an appropriate particle size (SK28 or higher or about 4F) is mixed with organic and inorganic binders and charged into the gap. Stamping. Once it reaches the top, take out the inside and leave it as it is for 24 hours.
After drying at room temperature for 48 hours, dry in a drying oven for 100%
It is completed by drying at a temperature of [°C] or more and 400 [°C] or less for an appropriate time.

またバックアップ材としては前記成形体と同一の材料を
用いてもよいが、これより安価な材料1例えば成形体を
電融マグネシア質としたときにバックアップ材を焼結マ
グネシアクリンカを使用するが如くする。バックアップ
層と成形層との比率は適宜設定されるが、例えばバック
アップ層を約60[%]とするものが一般的に採用され
る。
The same material as the molded body may be used as the backup material, but a cheaper material 1, for example, when the molded body is made of fused magnesia, sintered magnesia clinker may be used as the backup material. . Although the ratio of the backup layer to the molding layer is appropriately set, for example, the ratio of the backup layer to about 60% is generally adopted.

[作用] 以上の如き製造方法により、前記成形体には焼結程度の
異なる複数の層が形成される。最内側の層は焼結層で耐
火度が高く、その外側の半焼結層は断熱性も良く、使用
されるに従い焼結層に変化していくので耐久性が大とな
り、かつ耐久ラグ性が強くなり、それにより熔解回数容
量が多くなり、熱効率も高くなり電気効率を向上するこ
とができる。また成形体とバックアップ層を設け、バッ
クアップ層を安価な材質のもので形成することにより大
巾のコストダウンをはかることができる。
[Function] By the manufacturing method as described above, a plurality of layers having different degrees of sintering are formed in the molded body. The innermost layer is a sintered layer with high fire resistance, and the outer semi-sintered layer has good heat insulation properties, and as it is used, it changes to a sintered layer, making it highly durable and durable. This increases the melting capacity, increases thermal efficiency, and improves electrical efficiency. Further, by providing a molded body and a backup layer, and forming the backup layer from an inexpensive material, it is possible to significantly reduce costs.

[実施例] 以下1本発明の実施例を図面に基づき説明する。[Example] An embodiment of the present invention will be described below based on the drawings.

第1図は誘導熔解炉1の全体構造を示す1図において第
5図と同一符号のものは同−構造又は同一機能を有する
ものであり説明を省略する。
FIG. 1 shows the overall structure of an induction melting furnace 1. In FIG. 1, the same reference numerals as in FIG. 5 have the same structure or the same function, and the explanation thereof will be omitted.

予め別の所で製作される成形体2(成形体2の最内層が
焼結完了したものが内張耐火部材となる)は第2図およ
び第3図の如き形状のものからなる。すなわち成形体2
は上下開放の中空円筒体からなり、外径は同一直径のも
のがらなり内周はd工>d、の如き下方に向って先細る
テーバ状に形成され、最下方には更にテーバ状の大きい
傾斜面が形成される。この成形体2は前記した如く截頭
円錐体く多角錐体でも適用される)状の中子とこれを囲
む外枠から形成する。またその肉厚tは筒長りの長さに
もよるが、本実施例では20[mm3:lないし60[
mm]のものが採用される。第1図に示す如く、底面中
間層4を形成した後、成形体2を炉内中心に垂直に装入
し、この側面まわりに前記した如くバックアップ材を入
れスタンピングし、バックアップ層3を形成する。以下
、前記した如き温度条件に従って焼結、乾燥を行い誘導
熔解炉を完成させる。
The molded body 2 (the innermost layer of the molded body 2 which has been sintered becomes the inner refractory member) manufactured in advance at a different location has a shape as shown in FIGS. 2 and 3. That is, the molded body 2
consists of a hollow cylindrical body with an open top and bottom, the outer diameter is the same diameter, and the inner periphery is formed into a tapered shape that tapers downward such that d > d, and there is an even larger tapered shape at the bottom. An inclined surface is formed. As described above, this molded body 2 is formed from a core shaped like a truncated cone or polygonal pyramid, and an outer frame surrounding the core. In addition, the wall thickness t depends on the length of the cylinder, but in this example it is 20 [mm3:l to 60 [mm3:l].
mm] is adopted. As shown in FIG. 1, after forming the bottom intermediate layer 4, the molded body 2 is charged vertically into the center of the furnace, and a backup material is placed around the sides thereof as described above and stamped to form the backup layer 3. . Thereafter, sintering and drying are performed according to the temperature conditions described above to complete the induction melting furnace.

複数の焼結層は第4図に示す如く、最内面側に形成され
るレンガ状の焼結層20aと、焼結が十分行われていな
い中間焼結層20bと、末焼結層20cとからなり、バ
ックアップ層3も完全な末焼結層となる。以下、実際行
われたいくつかの実施例を次に具体的に説明する。
As shown in FIG. 4, the plurality of sintered layers include a brick-shaped sintered layer 20a formed on the innermost surface side, an intermediate sintered layer 20b that has not been sufficiently sintered, and a final sintered layer 20c. The backup layer 3 also becomes a completely unsintered layer. Hereinafter, some actual examples will be described in detail.

(実施例1) スタンプ材としてはスピネル質(SP30)を使用する
。この化学成分としてはMgOニア6[%]以上、 A
l2O,: 21 [%]以下、 Sin、 :1.5
[%コ以下、CaO:0.06 [%]以下である8粒
度構成(メツシュ)としては4ないし8のものが26.
8 [%]、8ないし35のものが31.0 [%]、
35ないし100のものが14.9 [%1.100以
下が27.3 E%]となっている。以上の化学成分お
よび粒度構成の不定形耐火物を乾式状態で十分に混合し
た後に、塩基性バインダ10[%]温溶液5.5E%]
添加し、モルタルミキサにて十分に混合する。これを前
記した如き成形体用の枠型に1回当りの使用型15kg
づつ取り入れ、順次ニューマテックランマにより均一の
一体形の成形体2(第2図)を成形する。成形体2の寸
法としては外径580[mm]、内径約520 [mm
]、高さ1020[+a+ilのものである。成形体2
がつき上ったらこれを中子および外枠から取り外し、成
形体2をそのままの状態で24時間ないし48時間常温
状態で乾燥し、 次に、乾燥炉で100[℃]ないし1
50[℃]で24時間乾燥し、更に200[℃]ないし
350[℃]で12時間ないし24時間乾燥し水分を完
全に除去する。
(Example 1) Spinel (SP30) is used as the stamp material. The chemical components include MgOnia 6% or more, A
l2O,: 21 [%] or less, Sin,: 1.5
[%] or less, CaO: 0.06 [%] or less 8 particle size structure (mesh) is 4 to 8 is 26.
8 [%], 8 to 35 31.0 [%],
35 to 100 is 14.9 [% 1.100 or less is 27.3 E%]. After thoroughly mixing the monolithic refractories with the above chemical composition and particle size structure in a dry state, a basic binder of 10 [%] and a warm solution of 5.5 E%]
Add and mix thoroughly with a mortar mixer. This is applied to a frame mold for a molded article as described above, with a mold size of 15 kg per use.
A uniform integral molded body 2 (FIG. 2) is formed one by one using a pneumatic rammer. The dimensions of the molded body 2 are an outer diameter of 580 [mm] and an inner diameter of approximately 520 [mm].
], height 1020 [+a+il. Molded body 2
Once it has risen, it is removed from the core and outer frame, and the molded body 2 is dried as it is at room temperature for 24 to 48 hours, and then dried in a drying oven at 100 [°C] to 100°C.
Dry at 50 [°C] for 24 hours, and further dry at 200 [°C] to 350 [°C] for 12 to 24 hours to completely remove moisture.

次に、第1図に示す如く、コイル5およびコイルセメン
ト層の出来上っている炉の底面中間層4を作る。すなわ
ち前記5P30を15kg計量しこれを底面−面に均一
に敷設し1表面をならしながら順次表面力キャブリを行
ないながら材料を投入し、ボッシュ式バイブレータマシ
ンにより均一にし、120[mm]程度の厚みになるま
でスタンピングする 次に、前記の如くして製造した成形体2を炉内の中心位
置にセットする0次にバックアップ層3を作る工程に入
るが、本実施例ではバックアップ材として5P30を用
いた。すなわちコイルセメント層6と成形体2間の間隙
部に5P30のスタンプ材を投入し、鉄製のスタンピン
グ用捧で均一に叩き込む。上方より約30[m鳳コない
し50[+sm]まで叩き込みが行われたら成形体2の
内面をボッシュ式バイブレータマシンによりスタンプす
る。最後に5P30のスタンプ材に水ガラス3号対水を
1:1の比率で混合したものを5[%]ないし6[%]
添加し混合し、炉頂部7のスタンプを行ないながら施工
する。次に65[℃]ないし100[”c]程度で数時
間保温し、炉頂部7を完全に乾燥する。
Next, as shown in FIG. 1, the bottom intermediate layer 4 of the furnace having the coil 5 and the coil cement layer is prepared. That is, we weighed 15 kg of the 5P30 mentioned above, spread it uniformly on the bottom surface and the surface, and while smoothing one surface, we sequentially performed surface force calibration while adding the material, and evened it with a Bosch type vibrator machine to a thickness of about 120 [mm]. Next, the molded body 2 manufactured as described above is set at the center position in the furnace.The next step is to create a backup layer 3. In this example, 5P30 is used as the backup material. there was. That is, a 5P30 stamping material is put into the gap between the coil cement layer 6 and the molded body 2, and is evenly hammered in with an iron stamping rod. After hammering is performed from above to approximately 30 [m] to 50 [+sm], the inner surface of the molded body 2 is stamped using a Bosch type vibrator machine. Finally, add 5[%] to 6[%] of 5P30 stamp material mixed with water glass No. 3 and water at a ratio of 1:1.
Add and mix, and perform construction while stamping the furnace top 7. Next, the temperature is kept at about 65 [° C.] to 100 [”c] for several hours to completely dry the furnace top 7.

底面中間層4上の成形体2の底面側に円盤状ステンレス
板又は長方形ステンレス板を敷き、その上に熔解用のス
テンレス細片を十分につめ込む、熔解しだしたら成形体
2の上部まで熔温か到達するまで順次ステンレス細片を
追加投入する。
Place a disc-shaped stainless steel plate or a rectangular stainless steel plate on the bottom side of the molded body 2 on the bottom intermediate layer 4, and pack enough stainless steel strips for melting on it. Add stainless steel strips one by one until the temperature is reached.

昇温速度は1時間当り150[℃]で行ない1000[
℃]で約1時間保持した後、1時間当り250[℃]で
1650[℃]まで昇温し。
The temperature increase rate was 150[℃] per hour and 1000[℃].
℃] for about 1 hour, and then raised the temperature to 1650[℃] at 250[℃] per hour.

ここで1時間保持して焼結を完了する。The sintering is then held for 1 hour to complete the sintering.

以上により30[mmlの肉厚(1)を有する成形品2
には最内面側のレンガ状の焼結層20aが約10 [m
m] 、中間焼結層20bが約120[+wm]、焼結
層20cが8[■]影形成れた複数(3層)の焼結層が
第4図の如く形成される。またバックアップ層3は完全
な末焼結層で、10 [+n+]程度の金属棒で突くと
簡単に中心部まで突き刺さるような状態に形成される。
As a result of the above, molded product 2 having a wall thickness (1) of 30 mml
The brick-shaped sintered layer 20a on the innermost side is about 10 [m
m], the intermediate sintered layer 20b is about 120 [+wm], and the sintered layer 20c is about 8 [■]. A plurality of sintered layers (three layers) are formed as shown in FIG. The backup layer 3 is a completely unsintered layer, and is formed in such a state that it can be easily penetrated to the center by a metal rod of about 10 [+n+].

以上の如くして製造した金属溶解炉1は従来品と同様の
使用条件で使用し、また同一の補修法により補修を行な
った結果、使用回数も増加すると共に、補修によって従
来品は熔解客員が減少したが本実施例のものは容量の減
少が認められなかった。すなわち電気効率が向上し、金
属の熔解量も多くなることが実証された。
The metal melting furnace 1 manufactured as described above is used under the same conditions as the conventional product and repaired using the same repair method. However, in this example, no decrease in capacity was observed. In other words, it has been demonstrated that electrical efficiency is improved and the amount of metal melted is also increased.

(実施例2) スタンプ材としては電融アルミナ質(AR98)を使用
する。この化学成分としては Al2O,:97.5[
%]以上、SiO,:0.5 [%]以下。
(Example 2) Fused alumina (AR98) is used as the stamp material. This chemical component is Al2O, :97.5[
%] or more, SiO: 0.5 [%] or less.

Fe2O3:0.1 [%] 以下テアリ、 粒度41
成(メツシュ)としては4ないし8のものが26.8[
%]、8ないし35のものが31.0 [%]、35か
ら100までのものが4.9[%]、100以下のもの
が27.3 [%]となっている。
Fe2O3: 0.1 [%] Below, the particle size is 41
The number 4 to 8 is 26.8[
%], 31.0 [%] for those between 8 and 35, 4.9 [%] for those between 35 and 100, and 27.3 [%] for those below 100.

成形品2の製造方法としてはバインダとして酸性バイン
ダを用いた以外は前記実施例1と同様であり、施工方法
も同様である。
The method for manufacturing the molded article 2 was the same as in Example 1 except that an acidic binder was used as the binder, and the construction method was also the same.

本実施例では高周波真空熔解炉のため、焼結方法として
は他金属成分の混入を防止するためカーボン電極を成形
体2内部にセットし、これを加熱し、1時間100[℃
]の昇温速度で1000[℃]まで約10時間加熱し、 1000[℃]で2時間保温した後、  1時間200
[℃]で1550[℃]まで昇温し、ここで2時間保持
した。焼結完了後、前記カーボン電極を取り出す、成形
体2(正しくには内張耐火部材)は前記したと同様な3
層の焼結層と未焼結な1層のバックアップ層3から形成
されていた0以上の構造の高周波真空熔解炉により金属
アルミニウム50[%]、バナジウム50[%]比率の
金属を熔解した所、不純物の混入は全く認められなかっ
た。なおこの場合の成形体2の形状は外径690[m+
i]、内径610[l1ll]、高さ1130[mml
であった。
Since this example uses a high-frequency vacuum melting furnace, the sintering method is to set a carbon electrode inside the molded body 2 and heat it at 100[°C] for 1 hour.
] Heated to 1000 [℃] for about 10 hours at a temperature increase rate of 1000 [℃], kept warm for 2 hours, and then
The temperature was raised to 1550 [°C] and held there for 2 hours. After the completion of sintering, the carbon electrode is taken out, and the molded body 2 (correctly, the lining fireproof member) is prepared in the same manner as described above.
A place where metal with a ratio of 50% aluminum and 50% vanadium was melted using a high frequency vacuum melting furnace with a structure of 0 or more, which was formed from a sintered layer and an unsintered backup layer 3. No contamination of impurities was observed. In addition, the shape of the molded body 2 in this case has an outer diameter of 690 [m+
i], inner diameter 610 [l1ll], height 1130 [mml]
Met.

(実施例3) スタンプ材としては電融マグネシャ質 (MR−IOI
B)を使用する。この化学成分としてはMgO:95.
5 [%] 、 AL、0.:2.5 [%]、SiO
,:0.7 [%]、CaO:1.1[%]であり、粒
度構成(メツシュ)としては4ないし8のものが27[
%]8ないし35のものが30.5[%]35ないし1
00のものが15.5 [%]100以下のものが27
.0 [%]となってい机 バックアップ材としては5P30を使用し、化学成分お
よび粒度構成は実施例1と同様である。
(Example 3) As the stamp material, electrofused magnesia (MR-IOI
Use B). This chemical component is MgO: 95.
5 [%], AL, 0. :2.5 [%], SiO
, : 0.7 [%], CaO: 1.1 [%], and the particle size structure (mesh) of 4 to 8 is 27 [%].
%] 8 to 35 is 30.5 [%] 35 to 1
00 is 15.5 [%] 100 or less is 27
.. 0 [%], 5P30 was used as the desk backup material, and the chemical composition and particle size structure were the same as in Example 1.

施工法および焼結温度も実施例1と同様である。The construction method and sintering temperature are also the same as in Example 1.

成形体2の形状としては外径584[m+m]、内径4
80[mml、高さ760[mm]のものが使用され、
熔解金属としては鋳綱を用いた。使用温度は1630[
℃]ないし1700[℃]であった。
The shape of the molded body 2 has an outer diameter of 584 [m+m] and an inner diameter of 4.
80 [mml, height 760 [mm] is used,
Cast steel was used as the molten metal. The operating temperature is 1630 [
[°C] to 1700 [°C].

内張耐火部材の焼結層は実施例1および実施例2と同様
に複数層のものからなり、バックアップ層3は焼結され
ていなかった。使用回数としては従来のものが50回に
対し98回使用できることが実証された。
The sintered layer of the lining fireproof member consisted of a plurality of layers as in Examples 1 and 2, and the backup layer 3 was not sintered. It has been demonstrated that the product can be used 98 times, compared to 50 times for the conventional product.

[本発明の効果] 本発明によれば次の如き優れた効果が上げられる。[Effects of the present invention] According to the present invention, the following excellent effects can be achieved.

(1)実施例1および実施例2で説明した如く、熔解金
属内には不純物が全く混入しない結果が得られた。
(1) As explained in Examples 1 and 2, results were obtained in which no impurities were mixed into the molten metal.

(2)成形体を別に製造しバックアップ層と成形体を分
離するため乾燥および焼結時間を短縮することが出来る
(2) Drying and sintering time can be shortened because the molded body is manufactured separately and the backup layer and the molded body are separated.

(3)使用、回数が増加し1例えば実施例3に見る如く
、約2倍の増加が見られる。
(3) The number of times of use increases; for example, as seen in Example 3, an increase of about two times is observed.

体構造を示す軸断面図である。FIG. 2 is an axial cross-sectional view showing the body structure.

■、1a・・・誘導熔解炉、2・・・成形体(内張耐火
部材)、3・・・バックアップ層。
(2) 1a...Induction melting furnace, 2... Molded body (inner refractory member), 3... Backup layer.

4・・・底面中間層、5・・・コイル、6・・・コイル
セメント層、7・・・炉頂部、8・・・外枠体、9・・
・金属製シリンダ。
4... Bottom intermediate layer, 5... Coil, 6... Coil cement layer, 7... Furnace top, 8... Outer frame body, 9...
・Metal cylinder.

(4)補修によって熔解容量の変化が見られず、電気効
率を向上することが出来る。
(4) No change in melting capacity is observed after repair, and electrical efficiency can be improved.

(5)バックアップ材を成形体と異なる安価の材質のも
のから作ることにより、コストダウンを図ることが出来
る。
(5) By making the backup material from an inexpensive material different from that of the molded body, costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1)外側より耐力構造層と耐火断熱層および電気誘導水
冷コイルを内蔵し、上部に開放部を有する炉体の内面側
に、内張耐火部材の層を有する誘導熔解炉において、前
記内張耐火部材が焼結程度の異なる複数の焼結層を形成
するものから成ることを特徴とする誘導熔解炉の内張耐
火部材。 2)特許請求の範囲第1項に記載の上部に開放部を有す
る炉体の内径よりも小なる外径を有する外枠内に20[
mm]ないし60[mm]を隔てて囲繞され、下方に先
細りの截頭錐体の中子(ナカゴ)と前記外枠とからなる
内張耐火部材成形用型枠中にSK28番以上の耐火物ス
タンプ材をバインダと共に均一に混合せしめて型詰め成
形し、脱型して、100[℃]以上400[℃]以下の
温度で乾燥した成形体を、前記上部に開放部を有する炉
体の該開放部より嵌入し、中心位置決めして、前記炉体
と前記成形体間をバックアップ材で密に充填した後、前
記成形体内を時間当り100[℃]より300[℃]の
速度で昇温し、900[℃]ないし1100[℃]で約
30[分]ないし1.5[時間]保持し、次いで時間当
り200[℃]ないし 300[℃]の速度で昇温し、更に1500[℃]ない
し1700[℃]で約30[分]ないし1.5[時間]
保持することにより、前記成形体が焼結程度の異なる複
数の層に形成されることを特徴とする内張耐火部材を用
いる誘導熔解炉の築炉施工方法。
[Scope of Claims] 1) An induction melting furnace that has a load-bearing structure layer, a fireproof insulation layer, and an electric induction water cooling coil built in from the outside, and has a layer of lining refractory material on the inner surface of the furnace body that has an open part at the top. A refractory lining member for an induction melting furnace, characterized in that the refractory lining member forms a plurality of sintered layers having different degrees of sintering. 2) A 20 [
A refractory of SK28 or higher is placed in a mold for forming an inner refractory member, which is surrounded by a truncated conical core tapering downward and the outer frame, separated by a distance of 60 mm] to 60 mm. The stamp material is uniformly mixed with a binder, packed into a mold, demolded, and dried at a temperature of 100 [°C] or more and 400 [°C] or less. After inserting from the open part, positioning the center, and densely filling the space between the furnace body and the molded body with backup material, the temperature inside the molded body is raised at a rate of 100 [°C] to 300 [°C] per hour. , maintained at 900 [°C] to 1100 [°C] for about 30 [minutes] to 1.5 [hours], then raised the temperature at a rate of 200 [°C] to 300 [°C] per hour, and further to 1500 [°C]. Approximately 30 [minutes] to 1.5 [hours] at 1700 [℃]
A method for constructing an induction melting furnace using a lining refractory member, characterized in that by holding the molded body, the molded body is formed into a plurality of layers having different degrees of sintering.
JP32372888A 1988-12-23 1988-12-23 Lining refractory member for induction melting furnace and furnace construction using same Granted JPH02169986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32372888A JPH02169986A (en) 1988-12-23 1988-12-23 Lining refractory member for induction melting furnace and furnace construction using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32372888A JPH02169986A (en) 1988-12-23 1988-12-23 Lining refractory member for induction melting furnace and furnace construction using same

Publications (2)

Publication Number Publication Date
JPH02169986A true JPH02169986A (en) 1990-06-29
JPH0340319B2 JPH0340319B2 (en) 1991-06-18

Family

ID=18157945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32372888A Granted JPH02169986A (en) 1988-12-23 1988-12-23 Lining refractory member for induction melting furnace and furnace construction using same

Country Status (1)

Country Link
JP (1) JPH02169986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273062A (en) * 1993-03-17 1994-09-30 Tokyo Yogyo Co Ltd Induction furnace
JP2011519317A (en) * 2008-04-04 2011-07-07 エルメリン リミテッド Furnace lining material
CN103791718B (en) * 2012-10-29 2017-03-15 东莞东阳光科研发有限公司 A kind of vacuum induction melting furnace graphite crucible knotting fixing meanss

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273062A (en) * 1993-03-17 1994-09-30 Tokyo Yogyo Co Ltd Induction furnace
JP2011519317A (en) * 2008-04-04 2011-07-07 エルメリン リミテッド Furnace lining material
CN103791718B (en) * 2012-10-29 2017-03-15 东莞东阳光科研发有限公司 A kind of vacuum induction melting furnace graphite crucible knotting fixing meanss

Also Published As

Publication number Publication date
JPH0340319B2 (en) 1991-06-18

Similar Documents

Publication Publication Date Title
US3492383A (en) Process of manufacturing a crack resistant multi-layer furnace lining
CN110595211A (en) Furnace building process for ramming mass plastic material
US3836613A (en) Method of making liner in an induction melting furnace
JPH02169986A (en) Lining refractory member for induction melting furnace and furnace construction using same
EP0364008B2 (en) Heating devices
JP5544790B2 (en) Refractory construction method
JP2779605B2 (en) Construction method of induction furnace lining refractories
KR102273124B1 (en) Construction method of refractory for lining of induction melting furnace and refractory for lining of induction melting furnace constructed by the same
US3914527A (en) Lining for zinc pot induction heater
JPH086230Y2 (en) Crucible induction furnace for melting cast iron and special steel
CN115231916B (en) Magnesia-alumina spinel forming crucible and manufacturing method thereof
JP4783489B2 (en) Silver sintered body manufacturing method and simple furnace
JPH01131083A (en) Sintered hollow material of ceramic
CN210012766U (en) Anti-spalling silica brick
JPH10279357A (en) Lining material for induction furnace
JPS60226438A (en) Forming refractory composition
JPH11211360A (en) Induction furnace with multilayer-lined structure wherein shaped material coated with low melting-point ceramics material is allocated at outer layer of lining material
JPH11201652A (en) Induction furnace lined with shaped material coated with coating material
JPS61173074A (en) Improved channel induction apparatus for channel induction furnace and manufacture thereof
JPH02309189A (en) Induction heating device
JPH11201654A (en) Induction furnace lined with glazed shaped material
JPH04200856A (en) Monolithic refractory block
JPH06277811A (en) Refractory sleeve used for induction heating type tundish and its working method
JPH11211361A (en) Induction furnace with multilayer-lined structure where glazing shaped material is arranged at outer layer of lining material
CN113563092A (en) Hollow sphere ceramic fiber brick and preparation method thereof