JPH02169946A - Defrosting detector - Google Patents

Defrosting detector

Info

Publication number
JPH02169946A
JPH02169946A JP63324933A JP32493388A JPH02169946A JP H02169946 A JPH02169946 A JP H02169946A JP 63324933 A JP63324933 A JP 63324933A JP 32493388 A JP32493388 A JP 32493388A JP H02169946 A JPH02169946 A JP H02169946A
Authority
JP
Japan
Prior art keywords
temperature
dew condensation
circuit
detection
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63324933A
Other languages
Japanese (ja)
Inventor
Takao Hoshi
隆夫 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63324933A priority Critical patent/JPH02169946A/en
Publication of JPH02169946A publication Critical patent/JPH02169946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly accurately detect frosting by providing power supply means for heating a resistance material, condensation detector means mounted on a condensation detector element, and judgement means for judging the presence of frosting. CONSTITUTION:A control section 15 drives a power supply circuit 10 to heat a resistance material 6, for gradually raising the temperature of a sensor itself. Herein, if the surface of a capacitor section 5 is frosted, the temperature of the capacitor section 5 is raised through heat transmission from the resistor material 6 to melt the frost on the surface when the temperature exceeds a dew point temperature. Hereby, electrostatic capacitance of the capacitor section 5 is rapidly changed and an oscillation frequency of an RC oscillator circuit 13 is also rapidly changed which is detected by a condensation detector circuit 18. The control section 15 stores the temperature of the resistance material 6 upon the detection. A comparator circuit 17 compares evaporation temperature TE and dew point temperature TRA both stored in the memory section 16, and the control section 15 judges frosting to be done when judgement results by 'TE' and 'TRA' measured successively are accumulated to predetermined times within a predetermined time interval.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、例えば空気調和装置の蒸発器の着霜を検知
する除霜検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a defrost detection device for detecting frost formation on an evaporator of an air conditioner, for example.

(従来の技術) ヒートポンプ式の空気調和装置では、低外気温の暖房運
転時、蒸発器となる室外側熱交換器に霜が付くことがあ
る。着霜は、暖房能力を低下させる。このため、従来よ
り、着霜が生じたら、暖房サイクルとは逆のサイクルで
構成される除霜サイクルに切換えて、室外側熱交換器に
付いた霜を溶かすようにしている。
(Prior Art) In a heat pump air conditioner, frost may form on the outdoor heat exchanger, which serves as an evaporator, during heating operation at low outside temperatures. Frost formation reduces heating capacity. For this reason, conventionally, when frost has formed, the defrost cycle is switched to the defrost cycle, which is the opposite cycle of the heating cycle, to melt the frost on the outdoor heat exchanger.

ところで、こうした暖房運転から除霜運転への切換えに
は・、室外側熱交換器に、付着する霜を除霜検知装置で
検知することにより行なわれている。
By the way, such switching from heating operation to defrosting operation is performed by detecting frost adhering to the outdoor heat exchanger with a defrosting detection device.

従来、このような除霜検知装置には、霜による蒸発温度
の降下を検知し、ある一定の温度以下となったときに着
霜と判定するもの、霜の付着によって起きる振動数の変
化7重さの変化など、物理的な変化量を測定して着霜と
判定するものなどがある。
Conventionally, such defrost detection devices detect the drop in evaporation temperature due to frost and determine that frost has formed when the temperature falls below a certain level, and those that detect the sevenfold change in vibration frequency caused by frost adhesion. There are methods that determine frost formation by measuring the amount of physical change, such as a change in temperature.

(発明が解決しようとする課題) ところが、前者の蒸発温度の降下による判定は、霜がな
くても低外気温時では、その気温の影響を受けて着霜と
判定することがある。このため、正確性に難点がある。
(Problems to be Solved by the Invention) However, in the former determination based on a drop in evaporation temperature, even if there is no frost, when the outside temperature is low, it may be determined that frost has formed due to the influence of the outside temperature. For this reason, there is a problem with accuracy.

また後者の物理量によるものは、装置か複雑であるうえ
、検知精度が望めない問題をもっている。
In addition, the latter method based on physical quantities requires a complicated device and has the problem that detection accuracy cannot be expected.

この発明はこのような事情に着目してなされたもので、
第1の目的は広範囲の条件下で、正確、かつ高い検知精
度で着霜を検知することができる、構成が簡単な除霜検
知装置を提供することにある。
This invention was made with attention to these circumstances,
The first objective is to provide a defrost detection device with a simple configuration that can detect frost formation accurately and with high detection accuracy under a wide range of conditions.

また第2の目的は、その最も優れた検知結果を得ること
ができる除霜検知装置を提供することにある。
A second object is to provide a defrost detection device that can obtain the most excellent detection results.

[発明の構成コ (問題点を解決するための手段) 上記第1の目的を達成するために請求項1は、周囲の温
度および自己温度に対し電気抵抗変化に依存性のある抵
抗材と結露検知素子とを接合してなるセンサ体と、前記
抵抗材の出力から周囲の温度を検知する温度検知手段と
、前記抵抗材を通電から加熱する通電手段と、この加熱
により生じる結露検知素子、Lの霜の結露を該結露検知
素子の出力から検知する結露検知手段と、この結露した
温度を検知する結露温度検知手段と、この結露した温度
と前記周囲の温度とを比較して着霜の有無を判断する判
定手段とから除霜検知装置を構成する。
[Configuration of the Invention (Means for Solving the Problems)] In order to achieve the above first object, claim 1 provides a resistive material whose electrical resistance changes are dependent on ambient temperature and self-temperature, and a dew condensation material. A sensor body formed by joining a detection element, a temperature detection means for detecting the ambient temperature from the output of the resistor material, an energizing means for heating the resistor material by energizing it, and a dew condensation detection element generated by this heating, L a dew condensation detection means for detecting condensation of frost from the output of the dew condensation detection element; a condensation temperature detection means for detecting the temperature of the condensation; and a condensation temperature detection means for detecting the temperature of the condensation; A defrosting detection device is constituted by a determination means for determining.

上記第2の目的を達成するために請求項2は、蒸発器の
部品に、結露検知素子側を蒸発器の通風路の上流側に露
出させてセンサ体を設ける。
In order to achieve the second object, a sensor body is provided in a component of the evaporator with the dew condensation detection element side exposed on the upstream side of the ventilation path of the evaporator.

(作 用) 請求項1に記載の除霜検知装置によると、温度検知手段
から周囲の温度が出力されていく。また結露検知素子の
加熱作用を受けて、結露温度検知手段からは、結露検知
素子に付着した霜が溶けるときの温度が出力されていく
。つまり、温度検知手段からは蒸発温度が得られ、結露
温度検知手段からは露点温度が得られていく。そして、
これら蒸発温度と露点温度とを比較して、着霜であるか
否かを判定していく。それ故、外乱に関わらずに正確、
かつ精度良く、着霜を検知することができる。しかも、
構成も簡単である。
(Function) According to the defrosting detection device according to claim 1, the ambient temperature is outputted from the temperature detection means. Further, under the heating action of the dew condensation detection element, the temperature at which the frost adhering to the dew condensation detection element melts is outputted from the dew temperature detection means. That is, the evaporation temperature is obtained from the temperature detection means, and the dew point temperature is obtained from the condensation temperature detection means. and,
These evaporation temperatures and dew point temperatures are compared to determine whether or not frost has formed. Therefore, accurate regardless of disturbance,
Moreover, frost formation can be detected with high accuracy. Moreover,
The configuration is also simple.

請求項2に記載の除霜検知装置によると、蒸発器の温度
が抵抗材で検知され、同時に蒸発器を通過するまえの空
気にさらされる結露検知素子で露点温度を検知するので
、着霜検知に必要な情報を良好な条件下で一度に得るこ
とができる。
According to the defrost detection device according to the second aspect, the temperature of the evaporator is detected by the resistive material, and at the same time, the dew point temperature is detected by the dew condensation detection element exposed to the air before passing through the evaporator, so that frost formation can be detected. You can obtain the information you need all at once under good conditions.

(実施例) 以下、この発明を第1図ないし第5図に示す一実施例に
もとづいて説明する。第3図中1は例えばヒートポンプ
式空気調和装置を構成する室外側熱交換器(暖房時に蒸
発器となる)である。室外側熱交換器】は、並行に設け
た多数枚のフィン2に熱交換バイブ3を蛇行状に貫通さ
せた構造となっている。そして、この室外側熱交換器1
の側方に露出する、例えば熱交換バイブ3のU字部骨3
aの先端にセンサ体4が設置されている。
(Example) The present invention will be described below based on an example shown in FIGS. 1 to 5. Reference numeral 1 in FIG. 3 is an outdoor heat exchanger (which becomes an evaporator during heating) that constitutes a heat pump type air conditioner, for example. The outdoor heat exchanger has a structure in which heat exchange vibes 3 are passed through a large number of parallel fins 2 in a meandering manner. And this outdoor heat exchanger 1
For example, the U-shaped bone 3 of the heat exchange vibe 3 is exposed on the side of the
A sensor body 4 is installed at the tip of a.

センサ体4は、例えば第2図に示すように薄い円板状の
コンデンサ部5(結露検知素子に相当)と、周囲の温度
ならびに自己温度に対し電気抵抗変化に依存性のある円
板状の抵抗材6とを、図示しない接合剤などで、電気的
に絶縁、ならびに良好な伝熱性を保つように密着して構
成される。そして、このセンサ体4は、コンデンサ部5
が室外側熱交換器1の通風路1aの上流側に位置するよ
うにして、抵抗材6側をU字部骨3aの先端に密着させ
て固定されている。つまり、センサ体4はコンデンサ部
5の表面が室外側熱交換器1を通過する前の空気にさら
すようにして取付られる。なお、抵抗材6は熱抵抗をご
く小さくした小なる接触面で取付られているものである
For example, as shown in FIG. 2, the sensor body 4 includes a thin disc-shaped capacitor part 5 (corresponding to a dew condensation detection element) and a disc-shaped capacitor part 5 whose electrical resistance changes depend on the surrounding temperature and its own temperature. The resistive material 6 is closely bonded to the resistive material 6 using a bonding agent (not shown) or the like so as to maintain electrical insulation and good heat conductivity. This sensor body 4 has a capacitor section 5.
is located on the upstream side of the ventilation passage 1a of the outdoor heat exchanger 1, and the resistive material 6 side is fixed in close contact with the tip of the U-shaped rib 3a. That is, the sensor body 4 is attached so that the surface of the condenser part 5 is exposed to the air before passing through the outdoor heat exchanger 1. Note that the resistance material 6 is attached with a small contact surface that has extremely low thermal resistance.

そして、こうした抵抗材6およびコンデンサ部゛部5の
リード線7,7、リード線8,8に、第1図に示される
ような検知系が接続されている。
A detection system as shown in FIG. 1 is connected to the resistive material 6 and the lead wires 7, 7 and 8 of the capacitor section 5.

すなわち、9は抵抗材用電気回路部(以下、単に電気回
路部と称す)である。二の電気回路部9には、通電回路
10(通電手段に相当)および抵抗測定回路11(温度
検知手段に相当)が内蔵されている。そして、この電気
回路部9がリード線7,7に接続され、通電により抵抗
材6を加熱させたり、抵抗材6の抵抗測定から周囲温度
、自己温度を測定したりできるようにしている。
That is, 9 is an electric circuit section for resistive material (hereinafter simply referred to as an electric circuit section). The second electric circuit section 9 includes a current supply circuit 10 (corresponding to current supply means) and a resistance measuring circuit 11 (corresponding to temperature detection means). The electric circuit section 9 is connected to the lead wires 7, 7, so that the resistive material 6 can be heated by electricity supply, and the ambient temperature and self-temperature can be measured by measuring the resistance of the resistive material 6.

またリード線8,8には発振回路12が接続されている
。これにて、コンデンサ部5を構成部品としたCR形発
振回路13を構成している。すなわち、CR形発振回路
13は、コンデンサ部5に着霜が生じて静電容量が変化
すると、発振周波数が変化するようになっている。そし
て、この発振回路12はf / v変換回路14(発振
周波数をそれに応じた電圧に変換するもの)を介して制
御部15(マイクロコンピュータおよびその周辺回路よ
りなる)に、上記電気回路部9と共に接続されている。
Further, an oscillation circuit 12 is connected to the lead wires 8,8. This constitutes a CR type oscillation circuit 13 in which the capacitor section 5 is a component. That is, in the CR type oscillation circuit 13, when frost forms on the capacitor portion 5 and the capacitance changes, the oscillation frequency changes. This oscillation circuit 12 is then connected to the control section 15 (consisting of a microcomputer and its peripheral circuits) through an f/v conversion circuit 14 (which converts the oscillation frequency into a voltage corresponding to the oscillation frequency), together with the electric circuit section 9. It is connected.

上記制御部】5は、記憶部16.比較回路17(判定手
段に相当)、結露検知回路18(結露検知手段に相当)
、温度検知回路19(露点温度検知手段に相当)、演算
回路20を内蔵して構成されている。この制御部15は
、例えば測定した抵抗材6の抵抗を温度に換算して記憶
する工程と、抵抗材6を加熱する工程とを交互に行なう
ようにしている。そして、制御部15は、上記加熱中、
霜の溶解によるRCC光発振回路13周波数の変化を検
知しくコンデンサ部5に着霜が有った場合)、その変化
時の抵抗材6の抵抗を温度に換算して記憶部16に記憶
するようにしている。さらに制御部15は、記憶された
各温度を比較して、熱交換器の表面温度に比べ空気露点
温度が高い温度で有る場合、着霜が起きる条件としてこ
れを判定するようにしている。なお、例えば繰返し行な
われる判定が、ある時間内で、一定の回数まで積算され
たら除霜が必要と判断して、ヒートポンプ式冷凍サイク
ル21の四方弁などを除霜側に切換えるようにしている
The above control unit]5 is a storage unit 16. Comparison circuit 17 (corresponding to determination means), dew condensation detection circuit 18 (corresponding to dew condensation detection means)
, a temperature detection circuit 19 (corresponding to dew point temperature detection means), and an arithmetic circuit 20. The control unit 15 alternately performs, for example, a step of converting the measured resistance of the resistive material 6 into a temperature and storing it, and a step of heating the resistive material 6. Then, the control unit 15 controls, during the heating,
In order to detect a change in the frequency of the RCC optical oscillation circuit 13 due to melting of frost (if there is frost on the capacitor section 5), the resistance of the resistor material 6 at the time of the change is converted into temperature and stored in the storage section 16. I have to. Further, the control unit 15 compares the stored temperatures, and if the air dew point temperature is higher than the surface temperature of the heat exchanger, it determines this as a condition for frost formation. For example, if the repeated determinations are accumulated a certain number of times within a certain period of time, it is determined that defrosting is necessary, and the four-way valve of the heat pump refrigeration cycle 21 is switched to the defrosting side.

つぎに、このように構成された除霜検知装置の作用につ
いて説明する。
Next, the operation of the defrosting detection device configured as described above will be explained.

空気調和装置を暖房運転すると、外気温時など、蒸発器
となる室外側熱交換器1に着霜が生じることがある。
When the air conditioner is operated for heating, frost may form on the outdoor heat exchanger 1, which serves as an evaporator, when the outside temperature is high.

一般に、こうした室外側熱交換器1の着霜は、熱交換器
の表面温度と、空気(外気)の露点lH度との差で表わ
すことができる。すなわち、第4図中Aのように熱交換
器の表面温度と路間−となる蒸発温度T9に対して、T
RAのように空気露点温度が高い場合(TE <TRA
 )は、熱交換器の表面に結露(Δx)L、それが凍結
して霜となる。
Generally, such frost formation on the outdoor heat exchanger 1 can be expressed by the difference between the surface temperature of the heat exchanger and the dew point of the air (outside air). That is, for the evaporation temperature T9, which is between the surface temperature of the heat exchanger and the path as shown in A in FIG.
When the air dew point temperature is high like RA (TE < TRA
) is the condensation (Δx)L on the surface of the heat exchanger, which freezes and becomes frost.

また逆のBの場合(TE>TnA)は、結露せず、霜は
付かない。
In the opposite case B (TE>TnA), no condensation occurs and no frost forms.

つまり、空気の露点温度と蒸発温度とを検出することに
より、着霜の判定ができる。こうした温度差を用いて、
この発明は着霜を判定している。
That is, frost formation can be determined by detecting the dew point temperature and evaporation temperature of the air. Using these temperature differences,
This invention determines frost formation.

すなわち、まず、制御部15の指令により、抵抗材6の
抵抗を抵抗測定回路11で測定する。これにより、室外
側熱交換器1と同一な温度となっている抵抗材6の温度
が測定されていく。そして、制御部15の演算回路20
で、この抵抗を温度に換算して蒸発温度TEとし、この
温度を記憶部16に記憶させていく。
That is, first, the resistance of the resistive material 6 is measured by the resistance measuring circuit 11 according to a command from the control section 15 . As a result, the temperature of the resistance material 6, which is at the same temperature as the outdoor heat exchanger 1, is measured. Then, the arithmetic circuit 20 of the control section 15
Then, this resistance is converted into a temperature, which is set as the evaporation temperature TE, and this temperature is stored in the storage section 16.

つぎに、制御部15は通電回路10を駆動し、抵抗材6
を加熱して、センザ体自体の温度を次第に上げていく。
Next, the control unit 15 drives the energizing circuit 10 to control the resistance material 6.
The temperature of the sensor body itself is gradually raised.

この通電と共にRCC光発振回路13駆動していく。さ
らに、それと同時にf / v変換回路14を通して出
力されるRCC光発振回路13発振周波数を結露検知回
路18で受けていく。
Along with this energization, the RCC optical oscillation circuit 13 is driven. Furthermore, at the same time, the oscillation frequency of the RCC optical oscillation circuit 13 outputted through the f/v conversion circuit 14 is received by the dew condensation detection circuit 18.

ここで、コンデンサ部5の表面に霜が付いていれば、抵
抗材6からの伝熱でコンデンサ部5の温度が上昇し、露
点温度を越えるときに表面の霜が溶けていく。すると、
コンデンサ部5の静電容量が急激に変化していく。これ
により、RCC光発振回路13発振周波数は急激に変化
していく。この変化が結露検知回路18で検知されてい
く。つまり、結露が生じたことが検知される。そして、
制御部15は、この検知時の抵抗材6の温度を記憶部〕
6に記憶していく。すなわち、抵抗測定回路11から出
力される抵抗材6の抵抗値を温度に換算して、記憶部1
6に露点温度TRAとして記憶していく。
Here, if frost forms on the surface of the capacitor section 5, the temperature of the capacitor section 5 increases due to heat transfer from the resistive material 6, and when the temperature exceeds the dew point temperature, the frost on the surface melts. Then,
The capacitance of the capacitor section 5 changes rapidly. As a result, the oscillation frequency of the RCC optical oscillation circuit 13 changes rapidly. This change is detected by the dew condensation detection circuit 18. In other words, it is detected that dew condensation has occurred. and,
The control unit 15 stores the temperature of the resistive material 6 at the time of this detection.]
I will remember it in 6. That is, the resistance value of the resistance material 6 outputted from the resistance measurement circuit 11 is converted into temperature, and the resistance value is stored in the storage unit 1.
6 as the dew point temperature TRA.

そして、記憶部16に記憶された蒸発温度TEと露点温
度TRAとを比較回路17で比較していく。ここで、上
記のようにrTg <TRA Jの関係が成り立てば、
着霜する条件と見なして、着霜と判定する。
Then, the comparison circuit 17 compares the evaporation temperature TE stored in the storage section 16 and the dew point temperature TRA. Here, if the relationship rTg <TRA J holds as above, then
This is regarded as a condition for frost formation and is determined to be frost formation.

こうした判定工程が繰返し行なわれ、刻々測定される「
TE」とrTRAJとによる判定結果が、所定時間内に
おけて一定回数に積算されたとき、除霜が必要であると
判断して除霜運転に切換えていく。むろん、「TE」と
rTi A Jとを測定後は、a電が中止され、センサ
体4は熱交換バイブ3からの伝熱を受けて蒸発温度TE
まで冷却される。
This judgment process is repeated and measurements are made every moment.
When the determination results from ``TE'' and rTRAJ are integrated a certain number of times within a predetermined time, it is determined that defrosting is necessary and the operation is switched to defrosting. Of course, after measuring "TE" and rTi A J, the a current is stopped and the sensor body 4 receives heat from the heat exchanger vibrator 3 and reaches the evaporation temperature TE.
cooled down to.

なお、「TE>TRB」なる関係となるときは、コンデ
ンサ1ffi5の温度を上げていってもRCC光発振回
路13発振周波数の変化はないが、例えば空気調和装置
においては、機器の能力等により、着霜を生じる範囲が
第5図の空気線図に表わされるので、この上昇温度限界
温度をTRB(例えば+5℃)とし、TRBまでに発振
周波数の変化がなければ、着霜しないとみなして、除霜
を行なゎないようにしてもよい。
Note that when the relationship is "TE>TRB", the oscillation frequency of the RCC optical oscillation circuit 13 does not change even if the temperature of the capacitor 1ffi5 is increased, but for example in an air conditioner, depending on the capacity of the equipment, etc. Since the range in which frost formation occurs is shown in the psychrometric chart in Figure 5, this rising temperature limit temperature is set as TRB (for example, +5°C), and if there is no change in the oscillation frequency by TRB, it is assumed that frost does not form. Defrosting may not be performed.

このように、蒸発温度と露点温度とを比較して着霜のを
無を検知するものであるから、従来のように気温が低く
なったような場合などの外乱に関わらず、広範囲の条件
下で正確、かつ精度のよい検知結果を得ることができる
。しかも、振動数の変化1重さの変化など物理量を検知
するのではなく、蒸発温度と露点温度を検知して比較す
るだけなので、装置の構成も簡単ですむ。特に、1つの
センサ体4で蒸発温度と露点温度との双方を検知する構
造なので、部品点数が少なくすむ。
In this way, since it detects the presence or absence of frost by comparing the evaporation temperature and dew point temperature, it can be used under a wide range of conditions, regardless of external disturbances such as when the temperature drops as in the past. Accurate and accurate detection results can be obtained. Moreover, the device configuration is simple because the system only detects and compares evaporation temperature and dew point temperature, rather than detecting physical quantities such as changes in vibration frequency and weight. In particular, since the structure is such that one sensor body 4 detects both the evaporation temperature and the dew point temperature, the number of parts can be reduced.

またコンデンサ部5側を通風路1aの上流側に露出させ
て、室外側熱交換器1にセンサ体4を取付ける構造は、
蒸発器温度を抵抗材6がら検知し、室外側熱交換器1を
通過する前の空気にさらされるコンデンサ部5で露点温
度を検知するので、着霜検知に必要な情報を良好な条件
下で一度に得ることができる。それ故、優れた検知結果
を得ることができる。
Moreover, the structure in which the sensor body 4 is attached to the outdoor heat exchanger 1 with the condenser part 5 side exposed to the upstream side of the ventilation passage 1a is as follows.
The evaporator temperature is detected through the resistance material 6, and the dew point temperature is detected at the condenser section 5 exposed to the air before passing through the outdoor heat exchanger 1, so the information necessary for frost detection can be obtained under good conditions. can be obtained at once. Therefore, excellent detection results can be obtained.

なお、上記除霜運転に入った後の除霜終了の判定は、抵
抗材6の抵抗変化を温度に換算し、例えばこの温度が「
+5℃コなどの水の融点を越えるか否かで判定すればよ
い。
The end of defrosting after starting the defrosting operation is determined by converting the resistance change of the resistance material 6 into temperature, and for example, if this temperature is "
The determination can be made based on whether the temperature exceeds the melting point of water, such as +5°C.

[発明の効果コ 以上説明したようにこの請求項1に記載の発明によれば
、温度検知手段および結露温度検知手段から得られる蒸
発温度と露点温度との比較がら、外乱に関わらず、着霜
を検知することができる。
[Effects of the Invention] As explained above, according to the invention according to claim 1, it is possible to detect frost formation regardless of external disturbances by comparing the evaporation temperature and dew point temperature obtained from the temperature detection means and the dew temperature detection means. can be detected.

それ故、広範囲の条件下で、正確、かつ精度のよい検知
結果を得ることができる。しがち、蒸発温度と露点温度
を検知して比較するだけなので、装置の構成も簡単です
む。加えて、1つのセンサ体で蒸発温度と露点温度との
双方を検知するので、部品点数が少なくすむ。
Therefore, accurate and precise detection results can be obtained under a wide range of conditions. The configuration of the device is simple, as it only involves detecting and comparing the evaporation temperature and dew point temperature. In addition, since one sensor body detects both the evaporation temperature and the dew point temperature, the number of parts can be reduced.

また請求項2に記載の発明によれば、蒸発器の温度を抵
抗材から検知し、蒸発器を通過する前の空気にさらされ
る結露検知素子で露点温度を検知するので、着霜検知に
必要な情報を良好な条件下で一度に得ることができ、最
も優れた検知結果を得ることができる。
Further, according to the invention described in claim 2, the temperature of the evaporator is detected from the resistive material, and the dew point temperature is detected by the dew condensation detection element exposed to the air before passing through the evaporator, which is necessary for frost detection. information can be obtained all at once under good conditions, and the best detection results can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はこの発明の一実施例を示し、第1
図は除霜検知装置の構成を示すブロック図、第2図はセ
ンサ体の斜視図、第3図はそのセンサ体の蒸発器に対す
る据付構造を示す斜視図、第4図は蒸発温度と空気露点
温度との関係を示す線図、第5図は除霜検知装置を適用
した空気調和装置の着霜を生じる範囲を示す線図である
。 1・・・室外側熱交換器(蒸発器)、4・・・センサ体
、5・・・コンデンサ部(結露検知素子)、6・・・抵
抗材、10・・・通電回路(通電手段)、11・・・抵
抗測定回路(温度検知手段’)  13.18・・・R
C形発振回路、結露検知回路(結露検知手段)17・・
・比較回路(判定手段)、19・・・温度検知回路(露
点温度検知手段)。 出願人代理人 弁理士 鈴江武彦 第3図 第4図 第5図
1 to 5 show one embodiment of the present invention.
The figure is a block diagram showing the configuration of the defrost detection device, Figure 2 is a perspective view of the sensor body, Figure 3 is a perspective view showing the installation structure of the sensor body on the evaporator, and Figure 4 is the evaporation temperature and air dew point. A diagram showing the relationship with temperature, FIG. 5 is a diagram showing the range where frost formation occurs in an air conditioner to which a defrost detection device is applied. DESCRIPTION OF SYMBOLS 1... Outdoor heat exchanger (evaporator), 4... Sensor body, 5... Capacitor part (dew condensation detection element), 6... Resistance material, 10... Current-carrying circuit (current-carrying means) , 11... Resistance measurement circuit (temperature detection means') 13.18...R
C-type oscillation circuit, dew condensation detection circuit (dew condensation detection means) 17...
Comparison circuit (determination means), 19... Temperature detection circuit (dew point temperature detection means). Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、周囲の温度および自己温度に対し電気 抵抗変化に依存性のある抵抗材と結露検知素子とを接合
してなるセンサ体と、前記抵抗材の出力から周囲の温度
を検知する温度検知手段と、前記抵抗材を通電から加熱
する通電手段と、この加熱により生じる結露検知素子上
の露の結露を該結露検知素子の出力から検知する結露検
知手段と、この結露した温度を検知する結露温度検知手
段と、この結露した温度と前記周囲の温度とを比較して
着霜の有無を判断する判定手段とを具備したことを特徴
する除霜検知装置。 2、蒸発器の構成部品に、結露検知素子側 を蒸発器の通風路の上流側に露出させてセンサ体を設け
たことを特徴する請求項1に記載の除霜検知装置。
[Claims] 1. A sensor body formed by joining a dew condensation detection element to a resistive material whose electrical resistance changes depend on ambient temperature and self-temperature, and detecting the ambient temperature from the output of the resistive material. a temperature detection means for detecting, an energization means for heating the resistive material by energizing it, a dew condensation detection means for detecting dew condensation on the dew condensation detection element caused by this heating from an output of the dew condensation detection element, and a temperature of the condensation. What is claimed is: 1. A defrosting detection device comprising: a dew condensation temperature detection means for detecting dew condensation temperature; and a determination means for comparing the dew condensation temperature with the ambient temperature to determine the presence or absence of frost formation. 2. The defrosting detection device according to claim 1, wherein the sensor body is provided on a component of the evaporator with the dew condensation detection element side exposed on the upstream side of the ventilation path of the evaporator.
JP63324933A 1988-12-23 1988-12-23 Defrosting detector Pending JPH02169946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63324933A JPH02169946A (en) 1988-12-23 1988-12-23 Defrosting detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324933A JPH02169946A (en) 1988-12-23 1988-12-23 Defrosting detector

Publications (1)

Publication Number Publication Date
JPH02169946A true JPH02169946A (en) 1990-06-29

Family

ID=18171236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324933A Pending JPH02169946A (en) 1988-12-23 1988-12-23 Defrosting detector

Country Status (1)

Country Link
JP (1) JPH02169946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
JP2012181013A (en) * 2012-06-20 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device and refrigerator using the same, cryogenic apparatus, and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
JP2012181013A (en) * 2012-06-20 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device and refrigerator using the same, cryogenic apparatus, and air conditioner

Similar Documents

Publication Publication Date Title
US6467282B1 (en) Frost sensor for use in defrost controls for refrigeration
US4916912A (en) Heat pump with adaptive frost determination function
EP0364237A2 (en) Heat pump with single exterior temperature sensor
JP3553657B2 (en) How to measure relative humidity
EP1434036B1 (en) Thermal flow sensor and method for correcting its output signal
JP2767965B2 (en) Power conversion device and inverter device
US7473868B2 (en) Fail safe HVAC temperature and medium presence sensor
EP1647813A2 (en) Thermal mass flow sensor for unsteady flow
US4564834A (en) Thermal liquid level detector
US7740402B2 (en) Fluid detector
US4221125A (en) Apparatus and method for detecting the presence of a substance on a liquid surface
US5522232A (en) Frost detecting device
US6443003B1 (en) Thermoelectric air flow sensor
JPS60235044A (en) Measuring device for detecting liquid component in refrigerant
US5568977A (en) Process and device to detect a risk of water condensation on a surface being in contact with a wet air volume
JPH02169946A (en) Defrosting detector
JPH0797113B2 (en) Wind direction and wind speed measurement method and device
EP0733898B1 (en) Early detection of a risk of water condensation
JPH09264655A (en) Frosting freezing sensor and detecting method for frosting freezing
Klems et al. Large‐area, high‐sensitivity heat‐flow sensor
JPH09178328A (en) Frosting detecting device
JPH0611471A (en) Gas sensor
JPH02115678A (en) Frosting and dew-condensing detector
JPS593311Y2 (en) air conditioner
US20210378058A1 (en) Heat trace characterization and control method and system