JPH02169636A - Production of antistatic resin molding - Google Patents

Production of antistatic resin molding

Info

Publication number
JPH02169636A
JPH02169636A JP32511088A JP32511088A JPH02169636A JP H02169636 A JPH02169636 A JP H02169636A JP 32511088 A JP32511088 A JP 32511088A JP 32511088 A JP32511088 A JP 32511088A JP H02169636 A JPH02169636 A JP H02169636A
Authority
JP
Japan
Prior art keywords
resin molded
antistatic
heat
molded product
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32511088A
Other languages
Japanese (ja)
Inventor
Satoshi Yadojima
悟志 宿島
Isato Morinaga
森永 勇人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32511088A priority Critical patent/JPH02169636A/en
Publication of JPH02169636A publication Critical patent/JPH02169636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain an antistatic resin molding having improved (retentivity of) antistatic effect without detriment to its properties, etc., by irradiating the surface of a heatresistant resin molding with ion beams in a specified dose to impart conductivity to the surface. CONSTITUTION:The title molding is obtained by irradiating the surface of a heat-resistant resin molding (e.g. polyimide film) molded desirably from a heat-resistant resin material having aromatic or heterocyclic rings in the molecule with ion beams of an acceleration voltage of 0.2-50MeV, desirably 0.2-3MeV in a dose of 1X10<14>-1X10<18>cm<-2> desirably 1X10<15>-1X10<16>cm<-2> to impart conductivity thereto.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は給紙用ローラなどの帯電防止が必要な部材に使
用される帯電防止樹脂成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an antistatic resin molded product used for members such as paper feed rollers that require antistatic properties.

〈従来の技術と発明が解決しようとする問題点〉各種の
樹脂成形品は軽くて機械的性質や加工性にすぐれている
という利点を有する反面、静電気を帯びやすいために、
静電気の蓄積により成形加工時の生産性が低下したり、
あるいは静電気のスパークによる雑音の発生、可燃物へ
の引火といった、種々の静電気障害がひき起こされると
いう欠点があった。
<Problems to be solved by conventional technology and the invention> Various resin molded products have the advantage of being lightweight and have excellent mechanical properties and workability, but on the other hand, they are easily charged with static electricity.
Productivity during molding may decrease due to the accumulation of static electricity,
Another disadvantage is that various static electricity problems are caused, such as generation of noise due to static electricity sparks and ignition of combustible materials.

このため、従来より種々の帯電防止方法が提案されてお
り、例えば導電性物質を導入したり、帯電防止剤を樹脂
成形品の素材に練り込んだりするなどの方法が提案され
ている(■大成社、昭和59年1月30日発行の「プラ
スチック配合剤−基礎と応用」265〜27B頁を参照
)。前記導電性物質を導入する方法は、金属粉、カーボ
ン等の導電性物質の微細粒子をプラスチックなどに多量
に配合して導電性を付与するものである。また、帯電防
止剤を樹脂成形品の素゛材に練り込む方法は、第1級ア
ミン塩(商品名セテタミン)などのカチオン系活性剤、
硫酸化油(ロート油等)などのアニオン系活性剤、商品
名アミボールDなどの両性活性剤を樹脂に練り込み成形
加工して帯電防止効果を与えるものである。
For this reason, various antistatic methods have been proposed in the past, such as introducing conductive substances or kneading antistatic agents into the material of resin molded products (Taisei (See pages 265-27B of ``Plastic Compounds - Basics and Applications'', published by Co., Ltd., January 30, 1980). The method for introducing a conductive substance is to add a large amount of fine particles of a conductive substance such as metal powder or carbon to a plastic or the like to impart conductivity. In addition, the method of kneading the antistatic agent into the raw material of the resin molded product is to use a cationic activator such as a primary amine salt (trade name: Cetetamine),
An anionic activator such as sulfated oil (funnel oil, etc.) or an amphoteric activator such as Amibol D (trade name) is kneaded into a resin and molded to provide an antistatic effect.

しかしながら、これらの方法はいずれも樹脂成形品の内
部に異種物質を混入させる方法であるために、成形品の
機械的強度を低下させたり、成形加工が困難になるなど
の問題があった。
However, since all of these methods involve mixing different substances into the resin molded product, there are problems such as lowering the mechanical strength of the molded product and making molding difficult.

一方、帯電防止剤を樹脂成形品の表面に塗布する方法も
あるが、帯電防止効果の持続時間が短いという問題があ
った。
On the other hand, there is a method of applying an antistatic agent to the surface of a resin molded product, but there is a problem that the antistatic effect lasts only a short time.

このような従来の問題を排除し、樹脂成形品の表面に導
電性を付与して帯電防止を図るために、熱可塑性樹脂成
形品の表面にイオンビームを照射(注入)することが特
開昭62−74833号公報に開示されている。しかし
ながら、この公報には、熱可塑性樹脂成形品にイオンを
照射するにあたってのイオンのエネルギ量や照射量につ
いては何らの開示もなされていない。これは、同公報で
は、塩化ビニル系樹脂、ポリエチレン等の熱可塑性樹脂
成形品を対象としているために、このものに導電性を付
与するに足るイオンビームを照射すると、このイオンの
エネルギで成形品の温度が上昇し、変形、劣化等が生じ
ることから、具体的なエネルギ量や照射量を開示できな
かったものと考えられる。換言すれば、樹脂の熱劣化の
問題が解消されない限りイオンビームの照射による樹脂
成形品の導電化は達成できないといえる。
In order to eliminate these conventional problems and to impart conductivity to the surface of a resin molded product to prevent static electricity, Japanese Patent Application Laid-Open No. 2002-2013 (Sho) proposed that the surface of a thermoplastic resin molded product be irradiated (injected) with an ion beam. It is disclosed in Japanese Patent No. 62-74833. However, this publication does not disclose anything about the energy amount or irradiation amount of ions when irradiating a thermoplastic resin molded article with ions. This is because the publication targets thermoplastic resin molded products such as vinyl chloride resin and polyethylene, so if this material is irradiated with an ion beam sufficient to impart conductivity, the energy of these ions will be used to mold the molded product. It is thought that the specific amount of energy and irradiation amount could not be disclosed because the temperature of the device would rise, causing deformation, deterioration, etc. In other words, it can be said that unless the problem of thermal deterioration of the resin is resolved, it will not be possible to make the resin molded product conductive by ion beam irradiation.

〈発明の目的〉 本発明は、イオンビームの照射によって、樹脂成形品の
物性等を低下させることなく、すぐれた帯電防止効果を
長期間にわたって発揮する帯電防止樹脂成形品の製造方
法を提供することを目的とする。
<Objective of the Invention> The present invention provides a method for producing an antistatic resin molded article that exhibits excellent antistatic effects over a long period of time without degrading the physical properties of the resin molded article by irradiation with an ion beam. With the goal.

く問題点を解決するための手段および作用〉本発明の帯
電防止樹脂成形品の製造方法は、耐熱性樹脂成形品の表
面に0.2〜50 MeVのイオンビームをlXl0I
4〜1×1018cm−2の照射量で照射して導電性を
付与するものである。
Means and operation for solving the problems> The method for producing an antistatic resin molded product of the present invention includes applying an ion beam of 0.2 to 50 MeV to the surface of a heat-resistant resin molded product.
Conductivity is imparted by irradiation with a dose of 4 to 1×10 18 cm −2 .

このように高エネルギのイオンビームを照射することに
よって耐熱性樹脂成形品の表面に導電性が付与されるの
は、樹脂が炭化されたり、ドーピングにより樹脂が部分
酸化・還元されるためであると推測される。
The reason why conductivity is imparted to the surface of heat-resistant resin molded products by irradiation with high-energy ion beams is that the resin is carbonized or partially oxidized and reduced by doping. Guessed.

このとき、本発明では樹脂成形品として耐熱性のものを
使用したため、高いエネルギでイオンビームを照射し温
度が上昇したとしても、容易に熱劣化をひき起こすこと
がない。従って、樹脂成形品の物性等を低下させること
なく、表面に高い導電性を付与することができ、すぐれ
た帯電防止効果が得られる。しかも、本発明ではその帯
電防止効果を長期間にわたって持続させることができる
At this time, in the present invention, since a heat-resistant resin molded product is used, even if the temperature rises due to ion beam irradiation with high energy, thermal deterioration does not easily occur. Therefore, high conductivity can be imparted to the surface without degrading the physical properties of the resin molded article, and an excellent antistatic effect can be obtained. Moreover, in the present invention, the antistatic effect can be maintained for a long period of time.

本発明において使用される前記耐熱性樹脂成形品は、イ
オンビームの照射時に発生する約150〜300℃の温
度に耐えうる耐熱性を有するものであるかぎり特に材質
が制限されるものではないが、分子中に芳香族環または
複素環を有するものを使用するのが高い導電性を付与す
るうえで好ましい。
The material of the heat-resistant resin molded product used in the present invention is not particularly limited as long as it has heat resistance that can withstand temperatures of about 150 to 300°C generated during ion beam irradiation, but It is preferable to use a compound having an aromatic ring or a heterocycle in its molecule in order to impart high conductivity.

このような耐熱性樹脂としては、例えばポリイミド、ボ
リアリレート、ポリエーテルエーテルケトン(PEEK
)、ポリエーテルイミド、ポリエーテルスルホン、メラ
ミン樹脂、フェノール樹脂などがあげられる。
Examples of such heat-resistant resins include polyimide, polyarylate, and polyetheretherketone (PEEK).
), polyetherimide, polyether sulfone, melamine resin, phenol resin, etc.

この耐熱性樹脂成形品に導電性を付与するために照射す
るイオンビームは加速電圧が0.2〜50Mev、好ま
しくは0 、 2〜3 MeVで、照射量がI×101
4〜lX1018cm″″2、好ましくはlX1015
〜1×10旧cm−2であるのが適当である。イオンビ
ームの加速電圧および照射量が前記範囲内であるときに
、樹脂成形品の表面に帯電現象が生じない最適な導電性
を付与することができるのであって、加速電圧および照
射量のいずれもが前記範囲よりも小なるときは、導電性
が充分でなく帯電現象が生じるおそれがある。一方、加
速電圧および照射量のいずれもが前記範囲よりも大なる
ときは、樹脂成形品の表面が過度に劣化し表面の物性が
低下するため好ましくない。
The ion beam irradiated to impart conductivity to this heat-resistant resin molded product has an accelerating voltage of 0.2 to 50 MeV, preferably 0.2 to 3 MeV, and an irradiation dose of I×101
4~1X1018cm''2, preferably 1X1015
~1×10 old cm −2 is suitable. When the accelerating voltage and irradiation amount of the ion beam are within the above range, it is possible to impart optimal conductivity to the surface of the resin molded product without causing a charging phenomenon. When is smaller than the above range, the conductivity may not be sufficient and a charging phenomenon may occur. On the other hand, when both the accelerating voltage and the irradiation amount are larger than the above ranges, the surface of the resin molded article deteriorates excessively and the physical properties of the surface deteriorate, which is not preferable.

本発明において照射するイオン種は特に制限されないが
、イオン種゛の質量が大きく、かつ照射量と照射エネル
ギとが大きいほど(すなわちA II 。
Although the ion species to be irradiated in the present invention is not particularly limited, the larger the mass of the ion species and the larger the irradiation amount and irradiation energy (ie, A II ).

Niなどのイオン種を0.5MeV以上でかつlX10
”cab−2以上の照射量で照射したとき)、表面の導
電性が向上し絶縁性が小さくなる傾向にある。一方、イ
オン種の質量が小さく、かつ照射エネルギが大きいほど
(すなわちHe、Bなどのイオン種を0,2〜50 M
eVのエネルギで照射したとき)、表面に形成される導
電層の厚さは大きくなる傾向にあるが、この厚さはせい
ぜい数μmであるので、実質的な影響はない。
Ion species such as Ni at 0.5 MeV or higher and lX10
When irradiated with a dose of ``cab-2 or higher'', the surface conductivity tends to improve and the insulation becomes smaller.On the other hand, the smaller the mass of the ion species and the larger the irradiation energy (i.e. He, B ionic species such as 0.2 to 50 M
When the conductive layer is irradiated with an energy of eV), the thickness of the conductive layer formed on the surface tends to increase, but since this thickness is several μm at most, there is no substantial effect.

また、イオンビームの照射時間は適宜決定することがで
きる。
Further, the ion beam irradiation time can be determined as appropriate.

イオンビームの照射装置としては、通常のイオン注入装
置が使用可能である。
A normal ion implantation device can be used as the ion beam irradiation device.

なお、耐熱性樹脂成形品の形状は、イオンビームを均一
に照射できるものである限り、限定されるものではなく
、フィルムやシート類をはじめ各種の成形加工品(例え
ばロールなど)が適用可能である。
The shape of the heat-resistant resin molded product is not limited as long as it can be uniformly irradiated with the ion beam, and various molded products such as films and sheets (such as rolls) can be used. be.

〈実施例〉 以下、実施例に基づき本発明をより詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 第1図に示すイオン照射装置を使用して、厚さ50μm
のポリイミドフィルムの表面にI McVのN2+イオ
ンを5X1015co−2照射した。照射時間が約40
分間で、フィルムの表面は約150℃に加熱された。
Example 1 Using the ion irradiation device shown in Figure 1, a 50 μm thick
The surface of the polyimide film was irradiated with 5×10 15 co−2 of I McV N 2+ ions. Irradiation time is approximately 40
In minutes, the surface of the film was heated to about 150°C.

第1図に示すイオン照射装置は、イオン源(1)、ビー
ム引き出し部(2)、イオンビーム加速部(3)、質量
分離器(4)、イオンビーム走査部(5)およびイオン
照射室(6)からなり、イオン照射室(6)内に装着し
たフィルム(7)にイオン源(1)から引き出したイオ
ンビーム(8)を照射するようにしている。
The ion irradiation apparatus shown in FIG. 6), and the ion beam (8) extracted from the ion source (1) is irradiated onto a film (7) mounted in the ion irradiation chamber (6).

実施例2 厚さ20μmのボリアリレートフィルムの表面にI M
cVのAr+イオンを1×10150ffl″−2で照
射した。その他は実施例1と同様にして処理した。
Example 2 IM on the surface of a 20 μm thick polyarylate film
Ar+ ions of cV were irradiated at 1 x 10150 ffl''-2.Other treatment was carried out in the same manner as in Example 1.

実施例3 厚さ100pのボーリエーテルエーテルケトン(PEE
K)フィルムに500 keVのN1+イオンを3X1
0’cl″″2で照射した。その他は実施例1と同様に
して処理した。
Example 3 Borietheretherketone (PEE) with a thickness of 100p
K) 3X1 500 keV N1+ ions on the film
Irradiation was performed at 0'cl''2. The rest was treated in the same manner as in Example 1.

実施例4 厚さlff1mのメラミン樹脂成形品に2 MeVのH
e+イオンをlX1016cm−2で照射した。その他
は実施例1と同様にして処理した。
Example 4 H of 2 MeV was applied to a melamine resin molded product with a thickness lff1m.
The e+ ions were irradiated at 1×10 16 cm −2 . The rest was treated in the same manner as in Example 1.

実施例5 厚さ10μmのポリエーテルイミドフィルムにIMeV
のB+イオンをlX1015cm−2で照射した。
Example 5 IMeV applied to a 10 μm thick polyetherimide film
B+ ions were irradiated at 1×10 15 cm −2 .

その他は実施例1と同様にして処理した。The rest was treated in the same manner as in Example 1.

評価試験 これらの実施例1〜5において使用した各フィルムおよ
び成形品の表面抵抗値を、イオンビームの照射前および
照射後についてそれぞれ測定した。
Evaluation Test The surface resistance values of each film and molded article used in Examples 1 to 5 were measured before and after ion beam irradiation.

その結果を次表に示す。なお、表面抵抗とは、物体の表
面にIC11平方の正方形を考えたとき、その対応する
両辺間に流れる電流から算出した電気抵抗値をいう。こ
の表面抵抗値は物体の帯電性を知る指標となるものであ
って、一般に表面抵抗値が10幻Ω以下なら帯電現象は
認められないといわれている(前述の「プラスチック配
合剤−基礎と応用」263頁を参照)。
The results are shown in the table below. Note that the surface resistance refers to the electrical resistance value calculated from the current flowing between the corresponding sides of a square IC11 on the surface of the object. This surface resistance value serves as an index to know the charging property of an object, and it is generally said that if the surface resistance value is less than 10 phantom ohms, no charging phenomenon will be observed. (See page 263).

表から、フィルムに前記条件でイオンビームを照射する
ことにより、いずれも表面抵抗が10幻Ω以下になり、
帯電防止が行われていることがわかる。
From the table, it can be seen that by irradiating the film with the ion beam under the above conditions, the surface resistance becomes 10 phantom Ω or less,
It can be seen that static electricity is prevented.

〈発明の効果〉 本発明によれば、以下の効果がある。<Effect of the invention> According to the present invention, there are the following effects.

(1)耐熱性樹脂成形品の表面にイオンビームを0.2
〜50MeV で゛かつ1×10A〜1×10T8e1
1”−2の照射量で照射して導電性を付与することによ
り、高い帯電防止効果が得られる。
(1) Ion beam is applied to the surface of the heat-resistant resin molded product by 0.2
〜50MeV and 1×10A〜1×10T8e1
A high antistatic effect can be obtained by imparting conductivity by irradiating with a dose of 1''-2.

(2)従来のように帯電防止剤や導電性物質を内部に混
入させるものではないので、樹脂成形品の強度が低下す
るなどの問題を生じさせることがない。また、イオンビ
ームを照射する樹脂成形品は耐熱性であるので、イオン
ビーム照射時の発熱によって樹脂成形品が熱劣化するの
が防止される。
(2) Unlike conventional methods, antistatic agents and conductive substances are not mixed inside, so problems such as a decrease in the strength of the resin molded product do not occur. Furthermore, since the resin molded product to which the ion beam is irradiated is heat resistant, thermal deterioration of the resin molded product due to heat generated during ion beam irradiation is prevented.

(3)  従来のように帯電防止剤を表面に塗布するだ
けの処理法に比べて、帯電防止効果の持続時間がはるか
に長くなる。
(3) The antistatic effect lasts much longer than the conventional treatment method that simply applies an antistatic agent to the surface.

(4)  イオンビームを照射するだけであるから、処
理が簡単であり、それゆえ実用的価値が大きい。
(4) Since only ion beam irradiation is required, processing is simple and therefore of great practical value.

従って、本発明によって得られる帯電防止樹脂成形品は
、帯電防止を必要とする種々の分野で使用するのに最適
である。
Therefore, the antistatic resin molded article obtained by the present invention is optimal for use in various fields requiring antistatic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用したイオン照射装置の概
略を示す説明図である。 (7)・・・フィルム、
FIG. 1 is an explanatory diagram schematically showing an ion irradiation device used in an example of the present invention. (7)...Film,

Claims (1)

【特許請求の範囲】 1、耐熱性樹脂成形品の表面に0.2〜 50MeVのイオンビームを1×10^1^4〜1×1
0^1^8cm^−^2の照射量で照射して導電性を付
与することを特徴とする帯電防 止樹脂成形品の製造方法。 2、前記耐熱性樹脂成形品が、分子中に芳 香族環または複素環を有する耐熱性樹脂 材料から形成されたものである請求項第 1項記載の帯電防止樹脂成形品の製造方 法。
[Claims] 1. An ion beam of 0.2 to 50 MeV is applied to the surface of a heat-resistant resin molded product at 1×10^1^4 to 1×1.
A method for manufacturing an antistatic resin molded article, characterized in that it is irradiated with a dose of 0^1^8 cm^-^2 to impart conductivity. 2. The method for producing an antistatic resin molded article according to claim 1, wherein the heat-resistant resin molded article is formed from a heat-resistant resin material having an aromatic ring or a heterocycle in the molecule.
JP32511088A 1988-12-22 1988-12-22 Production of antistatic resin molding Pending JPH02169636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32511088A JPH02169636A (en) 1988-12-22 1988-12-22 Production of antistatic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32511088A JPH02169636A (en) 1988-12-22 1988-12-22 Production of antistatic resin molding

Publications (1)

Publication Number Publication Date
JPH02169636A true JPH02169636A (en) 1990-06-29

Family

ID=18173225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32511088A Pending JPH02169636A (en) 1988-12-22 1988-12-22 Production of antistatic resin molding

Country Status (1)

Country Link
JP (1) JPH02169636A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991129A (en) * 1982-11-17 1984-05-25 Toyota Central Res & Dev Lab Inc Polymer article having conductive layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5991129A (en) * 1982-11-17 1984-05-25 Toyota Central Res & Dev Lab Inc Polymer article having conductive layer

Similar Documents

Publication Publication Date Title
Stelescu et al. Vulcanization of ethylene‐propylene–terpolymer‐based rubber mixtures by radiation processing
DE3242229A1 (en) METHOD FOR IMPROVING THE ANTISTATIC CHARACTERISTICS OF PLASTIC MOLDED PARTS
JPH0315664B2 (en)
Iuliano et al. The effects of electron beam radiation on material properties and degradation of commercial PBAT/PLA blend
Song et al. Effects on surface and physicochemical properties of dielectric barrier discharge plasma‐treated whey protein concentrate/wheat cross‐linked starch composite film
Kruželák et al. Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite
DE2925802C2 (en)
JPH02169636A (en) Production of antistatic resin molding
Dananjaya et al. A comparative study on mica waste‐filled natural rubber foam composites made out of creamed and centrifuged latex
Prestes et al. Plasma Treatment to Improve the Surface Properties of Recycled Post‐Consumer PVC
KR100500040B1 (en) An ionization method of surfice of high molecular materials for electromagnetic wave protection and surface hardened and antistatic
Chmielewski Radiation crosslinking for the cable, rubber and healthcare products industry
Ibrahim et al. Thermal and mechanical properties of gamma-irradiated prevulcanized natural rubber latex/low nitrosamines latex blends
Datta et al. Influence of electron beam radiation on mechanical and thermal properties of styrene‐butadiene‐styrene block copolymer
Pourshooshtar et al. Formation of 3D networks in polylactic acid by adjusting the cross-linking agent content with respect to processing variables: a simple approach
Seo et al. Nonwetting process for achieving surface functionalization of chemically stable poly (tetrafluoroethylene)
KR20170011175A (en) Polymer with high hardness by irradiating ion beam and manufacturing method thereof
Zhao et al. Preparation and properties of polytetrafluorethylene filled ethylene–propylene–diene monomer composites
Ihara et al. Fundamental study on fiber-reinforced epoxy composites using glass fabric treated by low-temperature ammonia plasma
Zhou et al. Enhanced Ozone Aging Resistance of Natural Rubber with 2‐Mercaptobenzothiazole as the Constant‐Viscosity Agent
JPH0649244A (en) Surface-modified fluororesin molding and its production
Ateia Study of thermal currents in irradiated LDPE/NBR conductive blends
Anggaravidya et al. Synthesis of ETP‐MMA and Lead Tetroxide Composites as Material for X‐Ray Radiation Shielding Door
Korol' et al. Percolative multiphonon mechanism of electrical conductivity in ion-implanted polymeric films
Bandzierz et al. Comparison Between Peroxide and Radiation Crosslinking of Nitrile Rubber