JPH0216961B2 - - Google Patents

Info

Publication number
JPH0216961B2
JPH0216961B2 JP23253882A JP23253882A JPH0216961B2 JP H0216961 B2 JPH0216961 B2 JP H0216961B2 JP 23253882 A JP23253882 A JP 23253882A JP 23253882 A JP23253882 A JP 23253882A JP H0216961 B2 JPH0216961 B2 JP H0216961B2
Authority
JP
Japan
Prior art keywords
conductor
refractories
measurement
amount
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23253882A
Other languages
Japanese (ja)
Other versions
JPS59125003A (en
Inventor
Takeji Egashira
Arata Ogasawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23253882A priority Critical patent/JPS59125003A/en
Publication of JPS59125003A publication Critical patent/JPS59125003A/en
Publication of JPH0216961B2 publication Critical patent/JPH0216961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐火物の溶損量を計測する方法に関
するものである。 製鉄における耐火物レンガのコストは、全コス
トの1/3にもなつており、この耐火物のコストを
低下することが大きな課題である。このために
は、使用中における耐火物の溶損状況を正確に計
測し、限界的使用とともに、この解析による新し
い耐火物の開発が望まれている。 現状の耐火物の溶損量の判定は、実際上依然と
して人間の目視判断又は単なる推定にたよつてい
るために、その精度は不安定で、きわめて誤差の
大きいものであつた。 耐火物溶損量の計測方法として種々の方法が提
案されている。例えば、日本鉄鋼協会第69回熱経
済技術部会(昭和56年11月19〜20日)における
「転炉炉底の多点測定による浸触測定」がある。
また一方、レーザを炉頂部より照射して距離を計
測する方法等が考えられる。しかしながら、これ
らは高価につき、操作性も悪いという欠点があ
り、十分に実用化がなされていない。 本発明は電気パルスの伝播時間計測法を利用し
て、耐火物の溶損量を計測する方法に関するもの
である。 電気パルスの伝播時間計測法として、T.D.R.
(Time Refractmetry)法があり、これは2本の
電気的導体間のインピーダンス変化点を計測する
方法である。 これは一般に、電気ケープルの絶縁不良箇所検
出法として実用化されている。この方法を第1図
を参照して説明すると、電気ケーブル1の導体2
と導体3とを、電気パルスの伝播時間計測器4に
接続して、電気パルス5を導体に印加すると、パ
ルスは導体を伝播して行き、2本の導体間の異常
部位、例えば絶縁不良部6、でインピーダンス変
化が最大となるために、電気パルスがそこで反射
する。この計測波形を第2図に示す。このパルス
発生から反射パルス検出までの時間を計測してケ
ーブルの異常部位を検出する。 この方法を耐火物の溶損計測法に適用する場合
には、耐火物内に電気的導体を埋込む。溶鋼等に
よつて耐火物レンガと共にこの導体が溶損する。
この導体の長さを電気パルスの伝播時間差法で計
測することによつて、耐火物の溶損量を計測する
ことが可能である。 しかし、耐火物レンガは、溶鋼(温度1650〜
1750℃)にさらされ、電気的導体も高温度に加熱
される。従がつて、この高温度においても、2本
の導体間のインピーダンスが一定に保持され、し
かも溶損される先端部におけるインピーダンスの
変化が大きい構造の検出棒が望ましい。 また、高温度において、電気パルスの伝播速度
は変化し、更に、導体自体も熱膨張するために、
計測誤差が発生する。したがつてこの温度補正の
方法が必要である。 本発明は、以上の問題点を解決し、高温度にお
いても、高精度で耐火物の溶損量を計測する方法
を提供することを目的とするものである。 以下実施例に基づいて具体的に説明する。 第3図は、耐火物レンガ内に埋込み、電気パル
スの伝播時間を計測するための本発明の一実施例
の計測素子の構造を示すものである。 7は、SUSの如き耐熱材料で作つた保護パイ
プであり、この内部には、電気パルスの導体とし
て、コンスタンタン線2本8,8′を挿入し、2
線間のインピーダンスを一定に保持するために碍
子9(アルミナ系)によつて線間距離を一定に保
持する。この碍子9の中に一定間隔で、碍子9と
材質の異なる碍子10,10′(ハイアルミナ系)
のパイプ7を、碍子9,10との間には、マグネ
シアの粉末11を充填して完全に固定した構造と
している。この計測素子を耐火物レンガ内に挿入
し、一端から電気パルスを印加し、この導体の長
さを電気パルス伝播時間として計測する。この計
測波形を第4図に、第3図と対比して図示する。
電気的インピーダンス変化点10,10′で明確
な波形の変化点12,12′が得られている。 また計測素子の先端部は、2本の導体8,8′
が電気的にシヨートしているために、電気パルス
の反射はなく、反射率が0となる。 耐火物レンガは高温度にさらされるために、高
温度における計測精度を調査した結果を第5図に
示す。横軸を温度(℃)とし、縦軸に、常温で電
気パルス伝播時間から求めた長さと各温度での計
測長さとの差を示している。長さの差は、温度に
よつて異なり、約1000℃において約30mm長く計測
される。これは、電気パルスの伝播速度と導体の
熱膨長によるものと考えられる。このために第4
図に示したインピーダンス変化点距離の時間差に
よつて補正する。すなわち、 l/t1=l0/t0;l0=t0・l/t1によつて補正す
る。ここでlは既知長さ、t1は既知長さl内のパ
ルス伝播時間、l0は基準点から電気導体先端まで
の距離内のパルス伝播時間である。 実際は、電気パルス伝播の計測波形による記録
紙上の目盛比によつて簡単に求めることができ
る。 この方法によつて、1200℃の雰囲気内におい
て、実長さと本発明方法による計測長さとの差を
求めた。この結果を第6図に示す。これによれ
ば、±3.0mmの精度で計測できることが分つた。 次に実機適用例について説明する。この例では
対象設備は溶鋼鍋であり、計測素子の埋込み位置
は第7図に示すスラグラインである。13は鉄皮
であり、これに5mmφの穴を開け、この穴より耐
火物レンガ14内に計測素子15,15′を埋込
み、この計測素子の長さを前述した方法にて、一
定期間、一定間隔で計測した。この結果は、第8
図に示すように、鍋の使用回数と共に溶損してい
ることが判る。溶損量が限界点に達した時点にお
いて、この鍋の修理を行ない、この時の残存レン
ガ厚みと計測値の対応を調査した。その結果を第
1表に示す。
The present invention relates to a method for measuring the amount of erosion of refractories. The cost of refractory bricks in steel manufacturing accounts for 1/3 of the total cost, and reducing the cost of these refractories is a major challenge. To this end, it is desirable to accurately measure the corrosion and loss of refractories during use, limit their use, and develop new refractories based on this analysis. In practice, the current determination of the amount of erosion of refractories still relies on human visual judgment or mere estimation, resulting in unstable accuracy and extremely large errors. Various methods have been proposed to measure the amount of corrosion loss of refractories. For example, there is ``Infiltration measurement by multi-point measurement of the bottom of a converter'' at the 69th Thermal Economics Technical Subcommittee Meeting of the Japan Iron and Steel Institute (November 19-20, 1981).
On the other hand, a method may be considered in which the distance is measured by irradiating a laser from the top of the furnace. However, these have the drawbacks of being expensive and having poor operability, and have not been fully put into practical use. The present invention relates to a method of measuring the amount of erosion of a refractory material using an electric pulse propagation time measurement method. TDR is a method for measuring the propagation time of electrical pulses.
There is a time refractmetry method, which measures the point of impedance change between two electrical conductors. This is generally put into practical use as a method for detecting insulation defects in electrical cables. This method will be explained with reference to FIG.
When the conductor 3 and the conductor 3 are connected to an electric pulse propagation time measuring device 4 and an electric pulse 5 is applied to the conductor, the pulse propagates through the conductor and detects an abnormality between the two conductors, such as an insulation defect. 6, the impedance change is maximum, so the electrical pulse is reflected there. This measured waveform is shown in FIG. The time from the generation of this pulse to the detection of the reflected pulse is measured to detect an abnormal part of the cable. When this method is applied to a method for measuring erosion of refractories, an electrical conductor is embedded within the refractories. This conductor, along with the refractory bricks, is eroded by molten steel and the like.
By measuring the length of this conductor using the electric pulse propagation time difference method, it is possible to measure the amount of erosion of the refractory. However, refractory bricks are made from molten steel (temperature 1650 ~
1750°C), electrical conductors are also heated to high temperatures. Therefore, it is desirable to have a detection rod with a structure in which the impedance between the two conductors is maintained constant even at such high temperatures, and the impedance changes greatly at the tip that is melted. In addition, at high temperatures, the propagation speed of electric pulses changes, and the conductor itself also expands thermally, so
Measurement errors occur. Therefore, a method of temperature correction is needed. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a method for measuring the amount of erosion of refractories with high accuracy even at high temperatures. Hereinafter, a detailed explanation will be given based on an example. FIG. 3 shows the structure of a measuring element according to an embodiment of the present invention, which is embedded in a refractory brick and is used to measure the propagation time of an electric pulse. 7 is a protective pipe made of a heat-resistant material such as SUS, and two constantan wires 8 and 8' are inserted into it as conductors for electric pulses.
In order to keep the impedance between the lines constant, the distance between the lines is kept constant by an insulator 9 (alumina type). Inside this insulator 9, insulators 10 and 10' (high alumina type) made of a different material from the insulator 9 are placed at regular intervals.
The pipe 7 is completely fixed by filling magnesia powder 11 between it and the insulators 9 and 10. This measuring element is inserted into a refractory brick, an electric pulse is applied from one end, and the length of this conductor is measured as the electric pulse propagation time. This measured waveform is illustrated in FIG. 4 in comparison with FIG. 3.
Clear waveform change points 12 and 12' are obtained at electrical impedance change points 10 and 10'. In addition, the tip of the measuring element has two conductors 8, 8'
Since it is electrically shot, there is no reflection of the electric pulse, and the reflectance becomes 0. Since refractory bricks are exposed to high temperatures, Figure 5 shows the results of an investigation into measurement accuracy at high temperatures. The horizontal axis represents temperature (° C.), and the vertical axis represents the difference between the length determined from the electric pulse propagation time at room temperature and the measured length at each temperature. The difference in length varies depending on the temperature, and is approximately 30 mm longer at approximately 1000°C. This is thought to be due to the propagation speed of the electric pulse and the thermal expansion of the conductor. For this reason, the fourth
Corrected by the time difference between the impedance change point distances shown in the figure. That is, it is corrected by l/t 1 =l 0 /t 0 ;l 0 =t 0 ·l/t 1 . where l is the known length, t 1 is the pulse propagation time within the known length l, and l 0 is the pulse propagation time within the distance from the reference point to the tip of the electrical conductor. In fact, it can be easily determined by the scale ratio on the recording paper based on the measured waveform of electric pulse propagation. By this method, the difference between the actual length and the length measured by the method of the present invention was determined in an atmosphere at 1200°C. The results are shown in FIG. According to this, it was found that measurement could be performed with an accuracy of ±3.0 mm. Next, an example of actual machine application will be explained. In this example, the target equipment is a molten steel ladle, and the embedding position of the measuring element is the slag line shown in FIG. Reference numeral 13 is an iron skin, a hole of 5 mmφ is made in this, and measuring elements 15, 15' are embedded into the refractory brick 14 through this hole, and the length of this measuring element is fixed for a certain period of time using the method described above. Measured at intervals. This result is the 8th
As shown in the figure, it can be seen that the pot deteriorates as the number of times it is used increases. When the amount of erosion reached the critical point, the pot was repaired and the relationship between the remaining brick thickness and the measured values was investigated. The results are shown in Table 1.

【表】【table】

【表】 このように本発明によれば、耐火物の溶損量を
±3.0mm以内で計測できる技術が確立され、耐火
物の正確な残存厚計測とそれにともなうコスト低
減に大きく寄与したものである。 なお、上記の実施例では、電気導体として、コ
ンスタンタン線を用いたが、その他、タングステ
ン線なども同様に用いることもできる。又、線間
インピーダンス変化の手段として、碍子の材質を
変えた例を示したが、導線の間隔をその部分だけ
変化させてもよい。更に、用途では、上記の外、
底吹きノズルの溶損量管理等およびその他に同様
に用いることができる。
[Table] As described above, according to the present invention, a technology that can measure the amount of erosion of refractories within ±3.0 mm has been established, which has greatly contributed to accurate measurement of the remaining thickness of refractories and associated cost reduction. be. In the above embodiment, a constantan wire was used as the electric conductor, but a tungsten wire or the like may also be used in the same manner. Furthermore, although an example has been shown in which the material of the insulator is changed as a means for changing the inter-line impedance, the spacing between the conducting wires may be changed only in that portion. Furthermore, in addition to the above,
It can be similarly used for controlling the amount of erosion of bottom blowing nozzles, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気パルスの伝播時間計測法で用いら
れる装置の概要を示す断面図、第2図はこれにお
ける計測データを示すグラフである。 第3図は本発明を一態様で実施する装置構造を
示す側面図、第4図はそれによつて得られた計測
データを示すグラフ、第5図は第3図に示す導体
8,8′の温度と伸びの関係を示すグラフ、第6
図は計測結果のうちの精度を示すグラフ、第7図
は第3図に示す装置を溶鋼鍋に装着した状態を示
す断面図、第8図は第7図に示す態様での計測結
果を示すグラフである。 7:保護パイプ、8,8′:電気導体、9,1
0,10′:碍子、15,15′:計測素子。
FIG. 1 is a sectional view showing an outline of a device used in the electric pulse propagation time measurement method, and FIG. 2 is a graph showing measurement data in this device. FIG. 3 is a side view showing the structure of a device implementing one embodiment of the present invention, FIG. 4 is a graph showing measurement data obtained thereby, and FIG. Graph showing the relationship between temperature and elongation, No. 6
The figure is a graph showing the accuracy of the measurement results, Figure 7 is a sectional view showing the device shown in Figure 3 attached to a molten steel ladle, and Figure 8 shows the measurement results in the manner shown in Figure 7. It is a graph. 7: Protective pipe, 8, 8': Electric conductor, 9, 1
0, 10': insulator, 15, 15': measurement element.

Claims (1)

【特許請求の範囲】[Claims] 1 2本の電気導体の長さ方向に線間インピーダ
ンス変化点を2箇所以上設けた計測素子を耐火物
内に埋設し、電気パルスが上記電気導体を伝播し
先端で反射してくるまでの時間を計測し、線間イ
ンピーダンス変化点間の距離とこの間のパルスの
伝播時間を基準として上記計測時間を補正して上
記電気導体の長さを求め、これにより耐火物の溶
損量を知ることを特徴とする耐火物溶損量計測方
法。
1. A measurement element with two or more line-to-line impedance change points in the length direction of two electrical conductors is embedded in a refractory, and the time it takes for an electrical pulse to propagate through the electrical conductors and be reflected at the tip. The length of the electrical conductor is determined by correcting the measurement time based on the distance between the line impedance change points and the pulse propagation time between these points, and from this, the amount of erosion of the refractory can be determined. Characteristic method for measuring the amount of corrosion of refractories.
JP23253882A 1982-12-29 1982-12-29 Method for measuring erosion rate of refractories Granted JPS59125003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23253882A JPS59125003A (en) 1982-12-29 1982-12-29 Method for measuring erosion rate of refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23253882A JPS59125003A (en) 1982-12-29 1982-12-29 Method for measuring erosion rate of refractories

Publications (2)

Publication Number Publication Date
JPS59125003A JPS59125003A (en) 1984-07-19
JPH0216961B2 true JPH0216961B2 (en) 1990-04-19

Family

ID=16940893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23253882A Granted JPS59125003A (en) 1982-12-29 1982-12-29 Method for measuring erosion rate of refractories

Country Status (1)

Country Link
JP (1) JPS59125003A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170608A (en) * 1985-01-25 1986-08-01 Nippon Kokan Kk <Nkk> Method for measuring erosion quantity of refractories
JPH067068B2 (en) * 1985-07-22 1994-01-26 清水建設株式会社 Color tone logging device and logging method using the same
JP2732685B2 (en) * 1989-10-31 1998-03-30 株式会社東芝 Detecting method of refrigerant penetration in compressor
FR3000207B1 (en) * 2012-12-20 2015-07-17 Soletanche Freyssinet METHOD AND SYSTEM FOR MONITORING A CIVIL ENGINEERING WORK
JP7455364B2 (en) * 2020-03-02 2024-03-26 Eseコンサルティング合同会社 Foreign part detection device

Also Published As

Publication number Publication date
JPS59125003A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
US6139180A (en) Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
US4843234A (en) Consumable electrode length monitor based on optical time domain reflectometry
JPH11316106A (en) Method and device for continuous measurement of abrasion amount of metallurgic container wall
US4442706A (en) Probe and a system for detecting wear of refractory wall
US4269397A (en) Method for measuring the thickness of a refractory in a metallurgical apparatus
EP1831660A2 (en) Thermocouple assembly and method of use
JPH0216961B2 (en)
US5131759A (en) Temperature probe
US4893895A (en) An improved encased high temperature optical fiber
JPH01299423A (en) Protective-tube type meter for continuous temperature measurement
JP2883447B2 (en) Method and apparatus for adjusting position of tip of electric furnace electrode
JP2013015488A (en) Thermo couple
JP2755813B2 (en) Refractory repair time judgment device
JP7321638B2 (en) Moisture sensor and sensor for vapor pressure measuring device
JPS5930399Y2 (en) Refractory wall erosion detection sensor
JPH0323540Y2 (en)
JP3369926B2 (en) Auto start method for continuous casting
EP0065583B1 (en) Method and device for measuring the thickness of a refractory in a metallurgical apparatus
JPS6314809A (en) Temperature measuring method for bottom of blast furnace
KR100269225B1 (en) Apparatus for measuring fatigue crack growth rate of metal
JPS594040Y2 (en) Tuyere for blast furnace
JP4173966B2 (en) Cable sensor length measuring device
JPH0339701Y2 (en)
JPS62132185A (en) Length measurement of cable sensor
JPS6261642B2 (en)