JPH0216877B2 - - Google Patents

Info

Publication number
JPH0216877B2
JPH0216877B2 JP57119971A JP11997182A JPH0216877B2 JP H0216877 B2 JPH0216877 B2 JP H0216877B2 JP 57119971 A JP57119971 A JP 57119971A JP 11997182 A JP11997182 A JP 11997182A JP H0216877 B2 JPH0216877 B2 JP H0216877B2
Authority
JP
Japan
Prior art keywords
value
frequency
correction
constant
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119971A
Other languages
Japanese (ja)
Other versions
JPS5910864A (en
Inventor
Michio Hara
Sadao Igarashi
Haruo Suganuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP11997182A priority Critical patent/JPS5910864A/en
Publication of JPS5910864A publication Critical patent/JPS5910864A/en
Publication of JPH0216877B2 publication Critical patent/JPH0216877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/10Means for reducing or compensating for quadrantal, site, or like errors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誤差補正計算機能を設けた無線方向探
知機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a radio direction finder provided with an error correction calculation function.

〔従来の技術〕[Conventional technology]

無線方向探知機はアンテナを設置した場所の周
囲の物体による影響を受け、測定方位に誤差を生
ずる。例えば、船舶等に設置された場合船体が長
方形の導電体であるため、その影響を受け通常2
分円及び4分円等の誤差が発生し、誤差の大きさ
は方向探知機のアンテナの装備位置と船の大きさ
との関係によつて決まる。従来これらの誤差を補
正するため、例えば4分円誤差の場合には直交ル
ープアンテナの何れか一方の出力端子に抵抗等の
素子を挿入し、必要周波数帯毎に切換えて補正を
行つたり、最も簡単な方法では補正用の曲線を作
成し、計算により誤差を修正する方法がとられて
いることは、海文堂昭和53年9月発行「電波航法
計器」第42〜44頁になどにより周知である。
Radio direction finders are affected by objects around the location where the antenna is installed, causing errors in the measured direction. For example, when installed on a ship, etc., the ship's hull is a rectangular conductor, so it is usually affected by the
Errors such as quadrant and quadrant errors occur, and the magnitude of the error is determined by the relationship between the installation position of the direction finder antenna and the size of the ship. Conventionally, in order to correct these errors, for example, in the case of a quadrant error, an element such as a resistor is inserted into one of the output terminals of the orthogonal loop antenna, and the correction is performed by switching for each required frequency band. It is well known that the simplest method is to create a correction curve and correct the error through calculations, such as in Kaibundo's "Radio Navigation Instruments" published in September 1971, pp. 42-44. be.

一方、複雑な関数波を、フーリエ級数に展開し
て得られる各項の周波数の関数値と振幅値とに分
けて記憶しておき、この記憶値を読み出して掛算
処理することにより高次波成分を含んだ信号波形
を得る合成作成手段が実開昭53−56736などによ
り開示されている。
On the other hand, by storing a complex function wave separately into the frequency function value and amplitude value of each term obtained by expanding it into a Fourier series, and reading out these stored values and performing multiplication processing, higher-order wave components can be obtained. A synthesis generating means for obtaining a signal waveform including the above is disclosed in U.S. Patent Publication No. 53-56736.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の補正曲線による補正作業は、無線方向探
知する電波の周波数範囲が広いものでは、誤差補
正のための補正曲線の数が多くなり、曲線も複雑
になるうえに、測定都度、その数多い中から1つ
を選択して使用しなければならず、測定者にとつ
ては非常に面倒な作業になる。
When the frequency range of the radio waves used for wireless direction finding is wide, the correction work using the correction curves described above requires a large number of correction curves for error correction, and the curves become complex. One must be selected and used, which is a very troublesome task for the measurer.

そこで、無線方向探知機内に誤差補正計算機能
を設けたものが提供されれば、測定者にとつて便
利である。
Therefore, it would be convenient for the measurer if a wireless direction finder was provided with an error correction calculation function.

しかし、誤差曲線は単純な正弦波になる場合は
少なく、高次波成分を含んだ関数波になることが
多いので、この誤差値の記憶作業に多大の労力を
とられるという不都合が生ずる。
However, the error curve is rarely a simple sine wave, but is often a function wave containing high-order wave components, resulting in the inconvenience that a great deal of effort is required to store the error values.

したがつて、上記の合成作成手段により上記の
補正曲線を算定することが考えられるが、上記の
手段のみでは、複雑な補正曲線を表し得ないこ
と、また、上記のように広い周波数帯にわたつて
測定するものでは、多数の周波数の補正曲線に対
応する各記憶値をすべて記憶したのでは、装置の
構成が複雑になり、簡単安価に提供し得なくなる
という不都合が生ずることになる。
Therefore, it is conceivable to calculate the above correction curve using the above synthesis method, but it is not possible to express a complex correction curve using only the above method, and it is difficult to calculate the correction curve over a wide frequency band as described above. In the case of a device that measures a large number of frequencies, if all stored values corresponding to correction curves of a large number of frequencies are stored, the structure of the device becomes complicated and cannot be provided easily and inexpensively.

このため、こうした補正のための記憶構成を簡
便化した手段のものの提供が期待されているとい
う課題がある。
For this reason, there is a problem in that it is expected to provide a means for simplifying the storage structure for such correction.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、 広い周波数範囲にわたる電波の到来方位を測定
するとともに、測定した前記到来方位値、つま
り、測定方位値を誤差修正するための補正値によ
り計算処理して得られた補正方位を表示するよう
にした無線方向探知機であつて、 上記の周波数範囲の複数の周波数における各補
正値にもとづいて得られる各周波数ごとの各補正
曲線をフーリエ級数に展開して得られる各項の各
振幅定数と各位相定数とを記憶する定数記憶部
と、 上記の測定方位値が得られている電波の周波数
値により上記の定数記憶部の記憶内容を読み出し
て得られる上記の振幅定数と位相定数とにもとづ
いて上記のフーリエ級数の計算処理を行うことに
より測定方位値に対する補正値を得るフーリエ演
算手段と、 上記の電波周波数値が上記の複数の周波数に無
い周波数であるときは、上記の複数の周波数のう
ちの電波周波数値に近い2つの周波数の記憶周波
数値にもとづいてフーリエ演算部により得られた
各前記補正値を、電波周波数値と上記の近接周波
数値とにもとづいて比例的に算出する計算処理を
行うことにより記憶されていない周波数に対する
補正値を得る無記憶補正値演算手段と を設けることにより、上記の課題を解決し得るよ
うにしたものである。
The present invention measures the direction of arrival of radio waves over a wide frequency range, and displays the measured direction of arrival value, that is, the corrected direction obtained by calculation processing using a correction value for correcting errors in the measured direction value. Each amplitude constant of each term obtained by expanding each correction curve for each frequency obtained based on each correction value at a plurality of frequencies in the above frequency range into a Fourier series. and each phase constant, and the amplitude constant and the phase constant obtained by reading out the stored contents of the constant storage section based on the frequency value of the radio wave from which the measured azimuth value is obtained. A Fourier calculation means for obtaining a correction value for the measured azimuth value by performing the above-mentioned Fourier series calculation process based on the above-mentioned Fourier series calculation processing; Calculation of proportionally calculating each of the correction values obtained by the Fourier calculation unit based on the stored frequency values of two frequencies close to the radio wave frequency value, based on the radio wave frequency value and the above-mentioned adjacent frequency value. The above-mentioned problem can be solved by providing a memoryless correction value calculation means that obtains correction values for frequencies that are not stored by performing processing.

〔実施例〕〔Example〕

以下、図面により、実施例を説明する。 Examples will be described below with reference to the drawings.

第1図において、方向探知用アンテナ部1から
の方位信号は受信機2で増幅され方位検出部3に
よつて測定方位のデジタル値となつて出力され
る。補正値記憶部4は固定記憶回路によつて構成
されている。
In FIG. 1, an azimuth signal from a direction finding antenna section 1 is amplified by a receiver 2 and outputted by an azimuth detection section 3 as a digital value of the measured azimuth. The correction value storage section 4 is constituted by a fixed storage circuit.

一般に方向探知機の誤差曲線ε(θ)は2πを周
期とする方位測定角θの関数であるから、これを
フーリエ級数で表わすと、 ε(θ)=A0+A1sin(θ+α1)+A2sin
(2θ+α2)+……+Aosin(nθ+αo) となる。ここでA0,A1,A2……及びα1,α2,…
…は誤差曲線の形によつて決る定数である。
In general, the error curve ε(θ) of a direction finder is a function of the azimuth measurement angle θ with a period of 2π, so if this is expressed as a Fourier series, ε(θ) = A 0 + A 1 sin (θ + α 1 ) + A 2 sin
(2θ+α 2 )+……+A o sin(nθ+α o ). Here, A 0 , A 1 , A 2 ... and α 1 , α 2 , ...
... is a constant determined by the shape of the error curve.

上式の第一項は固定誤差、第二項は2分円誤差
第三項は4分円誤差以下高次の分円誤差の合成で
あることは知るところである。実際にはこの誤差
曲線から補正曲線を作成し、必要周波数毎に、誤
差曲線の定数の代りに補正曲線としての定数B0
B1,B2,……(本発明において、振幅定数とい
う)及びβ1,β2,……(本発明において、位相定
数という)を、この補正値記憶部4に記憶させて
おく。
It is well known that the first term in the above equation is a fixed error, the second term is a bisecting error, and the third term is a combination of quadrant errors and higher-order quadrant errors. Actually, a correction curve is created from this error curve, and a constant B 0 ,
B 1 , B 2 , . . . (referred to as amplitude constants in the present invention) and β 1 , β 2 , .

今或る周波数で方位測定が行われると、方位検
出部3から方位測定値のデジタル信号が、又受信
機2から測定周波数のデジタル信号が夫々この補
正値記憶部4に加えられ測定周波数と方位測定
角θに対応したアドレスから前記補正値の定数を
取出し、補正部5にて方位測定角θを補正し、正
しい方位角とする。この補正された方位角を指示
部6にて表示する。
When direction measurement is performed at a certain frequency, a digital signal of the direction measurement value from the direction detection section 3 and a digital signal of the measurement frequency from the receiver 2 are respectively added to the correction value storage section 4, and the measurement frequency and direction are added to the correction value storage section 4. The constant of the correction value is extracted from the address corresponding to the measurement angle θ, and the correction unit 5 corrects the azimuth measurement angle θ to make it a correct azimuth. This corrected azimuth is displayed on the indicator 6.

以上の動作により補正曲線の値を復元して補正
が行われるわけであるが、補正値記憶部4に記憶
する内容は、一般には、補正曲線のフーリエ級数
における固定誤差、2分円誤差、4分円誤差及び
記8分円誤差に相当する各振幅定数及び各位相定
数を含めておけば、殆ど誤差成分を補正すること
が可能である。
Correction is performed by restoring the value of the correction curve through the above operations, but the contents stored in the correction value storage unit 4 are generally fixed errors, bisecting errors, By including each amplitude constant and each phase constant corresponding to the quadrant error and the octant circle error, it is possible to correct almost all error components.

また、任意の周波数、つまり、補正曲線の各振
幅定数・各位相定数が記憶されていない周波数に
対する補正値は、第2図に示すように測定周波数
0に対し、最も近い低い周波数1の補正曲線aと
最も近い高い周波数2の補正曲線cとを取り出
し、例えば図に示すように方位測定角30゜に対す
1の補正値が12の補正値が2であつた場
合、01及び2との違いの割合で1及び2から
0を計算して求めるようにしている。周波数1
2があまり離れていなければ比較的正しい0の補
正曲線を得ることができる。第3図はこの実施例
を示したもので、補正値記憶部4によつて呼び出
された1及び2の補正値から0に対する補正値を
演算部7において計算し、補正部5に加えるよう
にしている。
In addition, the correction value for an arbitrary frequency, that is, a frequency for which each amplitude constant and each phase constant of the correction curve is not memorized, can be calculated at the measurement frequency as shown in Figure 2.
0 , take out the correction curve a of the nearest low frequency 1 and the correction curve c of the nearest high frequency 2 , and for example, as shown in the figure, the correction value of 1 for the azimuth measurement angle of 30° is the correction value of 1 , and the correction value of 2. is 2 , then 0 is the percentage difference from 1 and 2 from 1 and 2
I am trying to find it by calculating 0 . frequency 1 and
If 2 are not too far apart, a relatively correct correction curve for 0 can be obtained. FIG. 3 shows this embodiment, in which the correction value for 0 is calculated in the calculation unit 7 from the correction values 1 and 2 called up by the correction value storage unit 4, and added to the correction unit 5. ing.

つまり、演算部7は、測定方位が得られている
電波の周波数が補正記憶部4に記憶した周波数値
にないときは、電波の周波数0に近い記憶されて
いる2つの周波数12による周波数値にもとづ
いて補正記憶部4の記憶内容を読み出して得た補
正値を、電波周波数0と上記の2つの周波数1
2とにもとづいて比例的に算出するようにして、
補正値記憶部4に記憶していない周波数の当該方
位値に対する補正値を計算処理しているものであ
る。
In other words, when the frequency of the radio wave from which the measurement direction is obtained is not among the frequency values stored in the correction storage unit 4, the calculation unit 7 calculates the frequency based on the two stored frequencies 1 and 2 that are close to the radio wave frequency 0 . The correction value obtained by reading out the storage contents of the correction storage unit 4 based on the value is set to the radio wave frequency 0 and the above two frequencies 1 ,
Calculate proportionally based on 2 ,
A correction value for the azimuth value of a frequency that is not stored in the correction value storage section 4 is calculated.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、高次波を含む
複雑な補正曲線による補正値の場合であつても、
補正曲線のある測定周波数に対しては、フーリエ
級数の各項の振幅定数と位相定数を記憶しておく
だけでよく、また、一般には、これらの各定数は
8分円誤差に相当する項までのものを記憶してお
けば殆ど精度よく補正でき、さらに、これらの各
定数が記憶されていない測定周波数に対しては、
比例補完して補正できるため、全周波数にわたつ
て細かく誤差値を記憶させておく必要がなくなる
ので、構成を簡便安価して提供し得るほか、誤差
値を記憶させるための労力を軽減できるなどの特
長がある。
As described above, according to the present invention, even in the case of correction values based on complex correction curves including high-order waves,
For a measurement frequency with a correction curve, it is only necessary to memorize the amplitude and phase constants of each term in the Fourier series, and in general each of these constants is reduced up to the term corresponding to the octant error. If you memorize these constants, you can make corrections with high accuracy.Furthermore, for measurement frequencies for which these constants are not memorized,
Since it can be corrected by proportional interpolation, there is no need to memorize detailed error values across all frequencies, so the configuration can be provided simply and inexpensively, and the labor required to memorize error values can be reduced. It has its features.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例を示し、第1図は基本構成部分の
ブロツク構成図、第2図は一部の動作を説明する
ための線図、第3図は全体構成のブロツク構成図
である。 1……方向探知用アンテナ部、2……受信機、
3……方位検出部、4……補正値記憶部、5……
補正部、6……指示部、7……演算部。
The drawings show an embodiment, and FIG. 1 is a block diagram of the basic components, FIG. 2 is a diagram for explaining a part of the operation, and FIG. 3 is a block diagram of the overall configuration. 1...Direction finding antenna section, 2...Receiver,
3... Orientation detection unit, 4... Correction value storage unit, 5...
Correction section, 6...instruction section, 7... calculation section.

Claims (1)

【特許請求の範囲】 1 広い周波数範囲にわたる電波の到来方位を測
定するとともに、測定した前記到来方位値(以
下、測定方位値という)を誤差修正するための補
正値によ計算処理して得られた補正方位を表示す
るようにした無線方向探知機(以下、装置とい
う)であつて、 a 前記周波数範囲の中の複数の周波数における
各前記補正値にもとづいて得られる各前記周波
数ごとの各補正曲線をフーリエ級数に展開して
得られる各項の各振幅定数と各位相定数とを記
憶する定数記憶部と、 b 前記測定方位値が得られている前記電波の周
波数値(以下、電波周波数値という)により前
記定数記憶部の記憶内容を読み出して得られる
前記振幅定数と前記位相定数とにもとづいて前
記フーリエ級数の計算処理を行うことにより前
記測定方位に対する前記補正値を得るフーリエ
演算手段と、 c 前記電波周波数値が前記複数の周波数に無い
周波数(以下、無記憶周波数という)であると
きは、前記複数の周波数のうちの前記電波周波
数値の近い2つの周波数の周波数値(以下、近
接周波数値という)にもとづいて前記フーリエ
演算部により得られた各前記補正値を、前記電
波周波数値と前記近接周波数値とにもとづいて
比例的に算出する計算処理を行うことにより前
記無記憶周波数に対する前記補正値を得る無記
憶補正値演算手段と を具備することを特徴とする装置。 2 特許請求の範囲第1項記載の装置であつて、 a 前記補正曲線に含まれる固定誤差・2分円誤
差・4分円誤差・8分円誤差に相当する各振幅
定数と各位相定数とを記憶する前記定数記憶部 を具備することを特徴とする装置。
[Claims] 1. Obtained by measuring the direction of arrival of radio waves over a wide frequency range and calculating the measured direction of arrival value (hereinafter referred to as the measured direction value) using a correction value for correcting errors. A radio direction finder (hereinafter referred to as a device) configured to display a corrected direction according to the frequency range, comprising: (a) each correction value for each frequency obtained based on each correction value at a plurality of frequencies within the frequency range; a constant storage unit that stores each amplitude constant and each phase constant of each term obtained by expanding the curve into a Fourier series; b) a frequency value of the radio wave from which the measured azimuth value is obtained (hereinafter referred to as radio wave frequency value); Fourier calculation means for obtaining the correction value for the measurement direction by performing a calculation process on the Fourier series based on the amplitude constant and the phase constant obtained by reading out the storage contents of the constant storage unit; c When the radio wave frequency value is a frequency that is not found in the plurality of frequencies (hereinafter referred to as memoryless frequency), the frequency value of two frequencies close to the radio wave frequency value among the plurality of frequencies (hereinafter referred to as adjacent frequencies) The correction values obtained by the Fourier operation unit based on the values (referred to as values) are calculated proportionally based on the radio wave frequency value and the adjacent frequency value. An apparatus characterized by comprising: memoryless correction value calculation means for obtaining a correction value. 2. The device according to claim 1, wherein: (a) each amplitude constant and each phase constant corresponding to a fixed error, a biquadrant error, a quadrant error, and an octant error included in the correction curve; A device comprising: the constant storage unit that stores the constant storage unit.
JP11997182A 1982-07-12 1982-07-12 Radio azimuth indicating device Granted JPS5910864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11997182A JPS5910864A (en) 1982-07-12 1982-07-12 Radio azimuth indicating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11997182A JPS5910864A (en) 1982-07-12 1982-07-12 Radio azimuth indicating device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11321889A Division JPH02176486A (en) 1989-05-04 1989-05-04 Radio direction finder

Publications (2)

Publication Number Publication Date
JPS5910864A JPS5910864A (en) 1984-01-20
JPH0216877B2 true JPH0216877B2 (en) 1990-04-18

Family

ID=14774725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11997182A Granted JPS5910864A (en) 1982-07-12 1982-07-12 Radio azimuth indicating device

Country Status (1)

Country Link
JP (1) JPS5910864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113382U (en) * 1991-03-22 1992-10-02 黒田精工株式会社 Solenoid for solenoid valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047972A (en) * 1983-08-26 1985-03-15 Koden Electronics Co Ltd Error correcting type azimuth detector
JPS6047971A (en) * 1983-08-26 1985-03-15 Koden Electronics Co Ltd Azimuth correcting type azimuth detector
JPH0335399Y2 (en) * 1985-11-08 1991-07-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616497Y2 (en) * 1976-10-15 1986-02-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113382U (en) * 1991-03-22 1992-10-02 黒田精工株式会社 Solenoid for solenoid valve

Also Published As

Publication number Publication date
JPS5910864A (en) 1984-01-20

Similar Documents

Publication Publication Date Title
JPH04369492A (en) Gps position measurement device
KR940003418B1 (en) Navigation system
WO2016147569A1 (en) Satellite positioning system, electronic instrument, and positioning method
US4179741A (en) Magnetic compasses
JP2009505062A (en) Self-calibration for inertial instrument based on real-time bias estimator
JP2008216062A (en) Mobile-unit attitude measuring apparatus
KR19980042029A (en) Method and apparatus for sculling correction in a strap-down inertial navigation system
JPH0216877B2 (en)
JPH0526680A (en) Gps navigation device
JPH07306056A (en) Apparatus for detecting running distance of vehicle
JP2981025B2 (en) GPS data filtering processor
US4890056A (en) Method and apparatus for error correction of phase measurement signals
JP3022001B2 (en) Flying object guidance control device
US5708438A (en) Angular velocity calculating apparatus for navigation apparatus
JPH02176486A (en) Radio direction finder
JP3192448B2 (en) Tide meter
JPH0666920A (en) Apparatus and method for measuring three-dimensional position
JPH0949737A (en) Navigation signal outputting method
JPH03142389A (en) Position measuring instrument for gps
JPH0457980B2 (en)
JPH11344339A (en) Electromagnetic compass
JPH081026U (en) Wireless direction finder
JPH03243840A (en) Temperature compensation system for piezoelectric vibrator type pressure sensor
JPS6280573A (en) True bearing display type radio bearing measuring instrument
JPS6047971A (en) Azimuth correcting type azimuth detector