JPH02168102A - Measuring method of film thickness of semiconductor multilayer thin film - Google Patents

Measuring method of film thickness of semiconductor multilayer thin film

Info

Publication number
JPH02168102A
JPH02168102A JP32202488A JP32202488A JPH02168102A JP H02168102 A JPH02168102 A JP H02168102A JP 32202488 A JP32202488 A JP 32202488A JP 32202488 A JP32202488 A JP 32202488A JP H02168102 A JPH02168102 A JP H02168102A
Authority
JP
Japan
Prior art keywords
layer
thin film
film
spectrum
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32202488A
Other languages
Japanese (ja)
Inventor
Takashi Sakurada
隆 櫻田
Futatsu Shirakawa
白川 二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32202488A priority Critical patent/JPH02168102A/en
Publication of JPH02168102A publication Critical patent/JPH02168102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement of the film thickness of each layer of a semiconductor multilayer thin film by making a monochromatic light of a prescribed long wavelength incident vertically while varying the wavelength continuously and by measuring the spectrum of a transmitted light. CONSTITUTION:A white light being used as a prober, the light incident vertically on a multilayer thin film is reflected in a multiple way by each layer and then emitted as a transmitted light from the back of a crystal. The intensity of this transmitted light is detected as a superposition of an oscillation spectrum corresponding to the film thickness of each layer as shown in a Figure (b) in a transmission area of a semiconductor constituting the thin film. By subjecting this spectrum to Fourier transform in an appropriate range of wavelength, the spectrum at a position proportional to the film thickness of each layer can be known exactly as shown in Figure (c). From the value of this spectrum, the film thicknesses of a plurality of thin films can be determined simultaneously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、〒ト導体基板上に積層した多層へテロエピタ
キシャルウェハの膜厚測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the film thickness of a multilayer heteroepitaxial wafer stacked on a conductor substrate.

(従来の技術) 半導体J!板−にの半導体薄膜の膜厚は、従来次のよう
に測定された。
(Conventional technology) Semiconductor J! The thickness of a semiconductor thin film on a plate has conventionally been measured as follows.

0)半導体薄膜を有する基板をエツチングすることによ
り、異なる材料の境界を現出させ、その段差を段差測定
装置で測定する方法。
0) A method in which a substrate having a semiconductor thin film is etched to reveal boundaries between different materials, and the step difference therebetween is measured using a step measuring device.

■薄膜の表面に対して小さな角度で平面に研磨し、該平
面を顕微鏡で観察することにより薄11々の膜厚を測定
する方法。
(2) A method of measuring the thickness of each thin film by polishing it into a flat surface at a small angle to the surface of the thin film and observing the flat surface with a microscope.

■薄膜の表面に垂直に白色光を入射し、透過光や反射光
のスペクトルに現れる薄膜での多重反射の振動スペクト
ルの極大値と極小値を求め、その波長差から、膜厚を検
出する方法。
■A method in which white light is incident perpendicularly to the surface of a thin film, the maximum and minimum values of the vibration spectrum of multiple reflections in the thin film that appear in the spectra of transmitted light and reflected light are determined, and the film thickness is detected from the wavelength difference. .

(特公昭62−223609号公報、特公昭62−16
5103号公報) (発明が解決しようとする課WJ) l−記■及び■の測定法は、エツチングや角度研磨を行
うので、測定に使用したウェハには素子を形成すること
ができない。また、■の測定法は、非破壊測定法である
が、多層膜では各層の膜厚を求めることはできない。
(Special Publication No. 62-223609, Special Publication No. 62-16
Publication No. 5103) (Problem to be Solved by the Invention WJ) In the measurement methods (1) and (2), etching and angle polishing are performed, so no elements can be formed on the wafer used for measurement. Furthermore, although the measurement method (2) is a non-destructive measurement method, it is not possible to determine the thickness of each layer in a multilayer film.

本発明は、上記の欠点を解消し、非破壊測定法により半
導体多層薄膜の各層の膜厚を正確に測定する方法を提供
しようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide a method for accurately measuring the thickness of each layer of a semiconductor multilayer thin film by a non-destructive measurement method.

(課題を解決するための手段) 本発明は、屈折率の異なる半導体薄層をJλ板−りに多
数積層した半導体多層薄膜に、半導体のエネルギーギャ
ップに相当する波長より長波長の単色光を、波長を連続
的に変化させながら垂直に入射させ、透過光のスペクト
ルを測定し、これをフーリエ変換することにより、各薄
層に対応した振動スペクトルに分離して、該スペクトル
基づいて各薄層の膜厚を検出することを特徴とする半導
体多層薄膜の膜厚測定方法である。
(Means for Solving the Problems) The present invention provides monochromatic light with a wavelength longer than the wavelength corresponding to the energy gap of the semiconductor, to be applied to a semiconductor multilayer thin film in which a large number of semiconductor thin layers with different refractive indexes are laminated in a Jλ plate. The transmitted light is incident perpendicularly while changing the wavelength continuously, the transmitted light is measured, and by Fourier transform, it is separated into vibrational spectra corresponding to each thin layer, and based on this spectrum, each thin layer is determined. This is a method for measuring the thickness of a semiconductor multilayer thin film, which is characterized by detecting the film thickness.

(作用) 第1図は本発明の膜厚測定法の測定原理を模式的に示し
た説明図である。ブローμとして白色光を用いて、多層
薄膜に市直に入射する光は、第1図(a)のように、各
層で多・[反射した後、透過光として結晶の後方より出
射する。この透過光の強度は、薄膜を構成する゛111
00透過領域において、各層の膜厚に対応した振動スペ
クトルの重ね合わせとして(b)図のように検出される
。こりスペクトルを適当な波長範囲においてフーリエ変
換を行えば、(c)図に示すように、各層の膜厚に比例
した位置でのスペクトルを正確に把握することができる
。このモ?(から複数の薄膜の膜厚を同時に求めること
ができる。
(Function) FIG. 1 is an explanatory diagram schematically showing the measurement principle of the film thickness measurement method of the present invention. Using white light as the blow μ, the light directly incident on the multilayer thin film is reflected by each layer and then exits from the rear of the crystal as transmitted light, as shown in FIG. 1(a). The intensity of this transmitted light is 111 which forms the thin film.
In the 00 transmission region, it is detected as a superposition of vibration spectra corresponding to the film thickness of each layer as shown in Fig. 3(b). By performing Fourier transform on the stiffness spectrum in an appropriate wavelength range, it is possible to accurately grasp the spectrum at a position proportional to the film thickness of each layer, as shown in Figure (c). This mo? (The thicknesses of multiple thin films can be determined simultaneously from

多層膜1漠に入射する光は、各層の境界面で−r’I’
、反射し、残りの成分が透過するため、最終的な透過光
は各層の境界面における多r[反射を4底に入れる必要
がある。まず、t1111層膜に1に直に入射する光は
、第2〆1に示すように光軸は1本であるが、わかり易
(するために光軸をずらして第3図に示した。2つの境
界面を′「及びUとし、その境界面における透過係数を
t及びU、反射係数をk及びQ、逆の而における反射係
数をk及びQとすると、L、 u。
The light incident on a multilayer film is -r'I' at the interface between each layer.
, is reflected, and the remaining components are transmitted, so the final transmitted light must be multiplied by 4 r [reflection at the interface of each layer]. First, the light that directly enters the t1111 layer film has one optical axis, as shown in Figure 2.1, but the optical axis is shifted and shown in Figure 3 to make it easier to understand.2 Let the two boundary surfaces be '' and U, let the transmission coefficients at the boundary surfaces be t and U, the reflection coefficients k and Q, and the reflection coefficients at the opposite angle be k and Q, then L, u.

t、には結晶中の屈折率nを用いて次のように書ける。t can be written as follows using the refractive index n in the crystal.

なお、各Eは第3図に示す方向の電界ベクトルで、添字
は異なる層を区別するものである。
Note that each E is an electric field vector in the direction shown in FIG. 3, and the subscripts distinguish different layers.

ここで、Er+n1llはE r+ 11に比べ、境界
面T。
Here, Er+n1ll is the boundary surface T compared to E r+ 11.

Uでそれぞれ1回ずつ余分に反射しており、しかも E r1+、−+=Q、KEr、ne tlO鴫   
  (5)また、入射光E、と第1透過光E 、、。と
の関係式は次のように示される。
There is one extra reflection each at U, and E r1+, -+ = Q, KEr, net tlO.
(5) Also, the incident light E, and the first transmitted light E, . The relational expression with is shown as follows.

lシ r、  t、:  tu rシ 、      
                      (6)
ところで、透過光ErはE t* jn”o、 l、 
、 、 al)の和であるから、求める透過光は と、17ける。
lshi r, t,: turshi,
(6)
By the way, the transmitted light Er is E t* jn”o, l,
, , al), the required transmitted light is 17 times.

次に、結晶基板に2層の薄層を積層した多層膜に光を人
QJさせる場合について第4図に沿って述べる。先に述
べた41層膜を透過した光がそのまま第2層11の膜(
r)に入射すると考えればよいので、新たな入射光とし
て式(7)の結果を用いて同様な考察を行えばよい。透
過係数及び反射係数としてu、 Q、 kの代わりにX
Next, the case of transmitting light to a multilayer film in which two thin layers are laminated on a crystal substrate will be described with reference to FIG. 4. The light that has passed through the 41-layer film mentioned above directly passes through the second layer 11 film (
r), the same consideration can be made using the result of equation (7) as a new incident light. X instead of u, Q, k as transmission and reflection coefficients
.

m、Qを用いると、透過光1> 、は となる。これらの¥/ep反射光の重ね合わせとして与
えられた透過光は、基板Sを透過して後方でその強1(
が測定されるので、基板における吸収係数をαとすると
、測定にかかる透過光強度としては電界ベクトルの2乗
をとり、1’: l a m t l  −e −” 
” l E m l ’よりと表される。
When m and Q are used, transmitted light 1>, is obtained. The transmitted light given as a superposition of these ¥/ep reflected lights transmits through the substrate S and its intensity 1 (
is measured, so if the absorption coefficient in the substrate is α, the transmitted light intensity for measurement is the square of the electric field vector, and 1': l a m t l −e −”
It is expressed as "l E m l '.

従って、このフーリエ変換を行えば、A、!3を定数と
して 1、(I+仁111NII”)=^l t 6 (u−
2Ld、+) ’ 1δ(m42に、d、)j4^II
δ(i+−2に、dr) ”δ(u+2に、d、)l 
’B2jδ(ω)これより、各層における波数1、k、
が事前に分かっていれば膜厚dq、d、を求めることが
できる。
Therefore, if we perform this Fourier transform, A,! 1 with 3 as a constant, (I + 111 NII”) = ^l t 6 (u-
2Ld, +) ' 1δ (m42, d,)j4^II
δ(to i+-2, dr) ``δ(to u+2, d,)l
'B2jδ(ω) From this, the wave number 1, k, in each layer is
If is known in advance, the film thicknesses dq and d can be determined.

(発明の効果) 本発明は、」−記の構成を採用することにより、半導体
基板」二に積層した多層へテロエピタキシャルウェハの
膜厚を非破壊で簡便に、しかも、正確に測定することが
できるので、膜厚検査や膜厚制御に有効に利用すること
ができる。
(Effects of the Invention) The present invention makes it possible to non-destructively, easily and accurately measure the film thickness of a multilayer heteroepitaxial wafer stacked on a semiconductor substrate by employing the configuration described in ``-''. Therefore, it can be effectively used for film thickness inspection and film thickness control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定原理を模式的に示した説明図、(
a)図は膜厚を求める薄膜の断面図、(b)図はq層及
びr層の振動スペクトルの重ね合わせで表されることを
示した説明図、(c)図は(b)図のスペクトルをフー
リエ変換した図、第2図は薄膜における多重反射の原理
を模式的に示した説明図、第3図は入射光の光軸をずら
して多重反射を表した説明図、第4図は「層での多重反
射を光軸をずらして示した2層薄膜結晶の断面図である
FIG. 1 is an explanatory diagram schematically showing the measurement principle of the present invention, (
(a) Figure is a cross-sectional view of the thin film for which the film thickness is to be determined, (b) Figure is an explanatory diagram showing that it is expressed by the superposition of the vibration spectra of the q layer and r layer, (c) Figure is the same as that of (b). Figure 2 is an explanatory diagram schematically showing the principle of multiple reflection in a thin film. Figure 3 is an explanatory diagram showing multiple reflection by shifting the optical axis of incident light. Figure 4 is a diagram showing the Fourier transform of the spectrum. 1 is a cross-sectional view of a two-layer thin film crystal showing multiple reflections in the layers with the optical axis shifted.

Claims (1)

【特許請求の範囲】 屈折率の異なる半導体薄層を基板上に多数 積層した半導体多層薄膜に、半導体のエネルギーギャッ
プに相当する波長より長波長の単色光を、波長を連続的
に変化させながら垂直に入射させ、透過光のスペクトル
を測定し、これをフーリエ変換することにより、各薄層
に対応した振動スペクトルに分離して、該スペクトル基
づいて各薄層の膜厚を検出することを特徴とする半導体
多層薄膜の膜厚測定方法。
[Claims] Monochromatic light with a wavelength longer than the wavelength corresponding to the energy gap of the semiconductor is applied perpendicularly to a semiconductor multilayer thin film made by laminating a large number of semiconductor thin layers with different refractive indexes on a substrate while continuously changing the wavelength. The spectra of the transmitted light are measured, and this is Fourier transformed to separate vibrational spectra corresponding to each thin layer, and the film thickness of each thin layer is detected based on the spectra. A method for measuring the thickness of semiconductor multilayer thin films.
JP32202488A 1988-12-22 1988-12-22 Measuring method of film thickness of semiconductor multilayer thin film Pending JPH02168102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32202488A JPH02168102A (en) 1988-12-22 1988-12-22 Measuring method of film thickness of semiconductor multilayer thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32202488A JPH02168102A (en) 1988-12-22 1988-12-22 Measuring method of film thickness of semiconductor multilayer thin film

Publications (1)

Publication Number Publication Date
JPH02168102A true JPH02168102A (en) 1990-06-28

Family

ID=18139069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32202488A Pending JPH02168102A (en) 1988-12-22 1988-12-22 Measuring method of film thickness of semiconductor multilayer thin film

Country Status (1)

Country Link
JP (1) JPH02168102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510958A (en) * 2000-08-08 2004-04-08 ザイゴ コーポレーション Frequency conversion phase shift interferometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510958A (en) * 2000-08-08 2004-04-08 ザイゴ コーポレーション Frequency conversion phase shift interferometry

Similar Documents

Publication Publication Date Title
Tompkins et al. Spectroscopic ellipsometry: practical application to thin film characterization
EP0231264B1 (en) Method and apparatus for nondestructively determining the characteristics of a multilayer thin film structure
US5889592A (en) Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films
JP2005510699A (en) Method and apparatus for measuring the stress of a semiconductor wafer
US5999267A (en) Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films
CN104870933A (en) Method for measuring thickness variations in a layer of a multilayer semiconductor structure
US20080246951A1 (en) Method and system for using reflectometry below deep ultra-violet (DUV) wavelengths for measuring properties of diffracting or scattering structures on substrate work-pieces
US10113861B2 (en) Optical system and methods for the determination of stress in a substrate
US8537363B2 (en) Picosecond ultrasonic system incorporating an optical cavity
CN1405550A (en) Apparatus and method for measuring equivalent refraction power of optical film and physical thickness
Peters et al. Integrated optics based on silicon oxynitride thin films deposited on silicon substrates for sensor applications
US6393915B1 (en) Method and device for simultaneously measuring multiple properties of multilayer films
US8976360B2 (en) Surface plasmon sensor and method of measuring refractive index
EP1817542B9 (en) Measuring elastic modulus of dielectric thin films using an optical metrology system
JPH02168102A (en) Measuring method of film thickness of semiconductor multilayer thin film
US6731386B2 (en) Measurement technique for ultra-thin oxides
CN109856114B (en) Method for determining number of layers of graphene prepared by chemical vapor deposition method
de Bruijn et al. Thickness and dielectric constant determination of thin dielectric layers
JPH0726816B2 (en) Simultaneous measurement of transparent thin film thickness and sound velocity
Shepard et al. Measurement of internal stress in glass articles
US8280693B2 (en) Nondestructive analysis for periodic structure
US20220317025A1 (en) Opto-acoustic measurement of a transparent film stack
CN114236666B (en) Manufacturing method of glued light guide, performance testing system and electronic equipment
US7010196B2 (en) Method of forming laser induced grating pattern
RU2148814C1 (en) Method and device for detection of optical parameters of conducting samples