JPH02166782A - Input coupling structure for hollow waveguide - Google Patents
Input coupling structure for hollow waveguideInfo
- Publication number
- JPH02166782A JPH02166782A JP63320480A JP32048088A JPH02166782A JP H02166782 A JPH02166782 A JP H02166782A JP 63320480 A JP63320480 A JP 63320480A JP 32048088 A JP32048088 A JP 32048088A JP H02166782 A JPH02166782 A JP H02166782A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- hollow waveguide
- iris
- hollow
- carbon dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010168 coupling process Methods 0.000 title claims description 17
- 230000008878 coupling Effects 0.000 title claims description 16
- 238000005859 coupling reaction Methods 0.000 title claims description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 14
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 14
- 230000005284 excitation Effects 0.000 claims description 28
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000020169 heat generation Effects 0.000 abstract description 12
- 230000010355 oscillation Effects 0.000 abstract description 2
- 210000000554 iris Anatomy 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000005383 fluoride glass Substances 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/0315—Waveguide lasers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、大なカレーザ出力光を中空導波路に入射させ
るための中空導波路の入力結合部構造に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow waveguide input coupling structure for inputting a large amount of laser output light into the hollow waveguide.
[従来の技術]
高効率で大出力の得られる炭酸ガスレーザは、金属の溶
接、切断、熱処理のレーザ加工用として既に工業分野に
導入されている。しかし、これらの産業用レーザ加工機
では、レーザ発振器からの出力光を加工対象物まで導く
方法として、反射鏡レンズを組み合わせたビーム空間伝
送方式を採用していたため、複雑かつ精密な制御機構を
必要とし、装置が大型、高価格なものとなり、また保守
も容易なものではなかった。[Prior Art] Carbon dioxide lasers, which are highly efficient and have a large output, have already been introduced into the industrial field for laser processing such as welding, cutting, and heat treating metals. However, these industrial laser processing machines use a beam space transmission method that combines a reflector lens to guide the output light from the laser oscillator to the workpiece, which requires a complex and precise control mechanism. As a result, the equipment was large and expensive, and maintenance was not easy.
大電力のレーザ光を伝送できる導波路が実現できれば、
これらの不便さが解消されるため、その実用化が待たれ
て久しい、これまで、その候補としては、カルコゲナイ
ドやフッ化物ガラスあるいは金属ハロゲン化物やKH2
−5等を材料とした赤外ファイバ及び開平形状の矩形金
属中空導波路や、あるいは誘電体を内装した円形金属中
空導波路が挙げられ、検討されてきたが、工業加工用に
は金属中空導波路タイプ、特に誘電体内装金属空中導波
路が最も有望視されている。If we can create a waveguide that can transmit high-power laser light,
Its practical application has been long awaited in order to eliminate these inconveniences.So far, the candidates have been chalcogenide, fluoride glass, metal halide, and KH2.
Infrared fibers made of materials such as -5, rectangular metal hollow waveguides with a square root shape, or circular metal hollow waveguides with a dielectric inside have been considered, but hollow metal waveguides are not suitable for industrial processing. Waveguide types, especially dielectric-incorporated metal aerial waveguides, seem to be the most promising.
[発明が解決しようとする課題]
しかし、これらの中空導波路においても、100Wを超
えるレーザ光を伝送するには、導波路自体の伝送損失に
よる発熱及び入力結合部の結合損失による熱が原因で生
じる温度上昇を防止するため、その冷却が必要となる。[Problems to be Solved by the Invention] However, even in these hollow waveguides, in order to transmit laser light exceeding 100 W, heat generation due to transmission loss in the waveguide itself and heat due to coupling loss at the input coupling portion is required. Its cooling is necessary to prevent the temperature rise that occurs.
特に、入力結合部の結合損失は伝送損失に比較すると極
めて大きく、この入力結合部の冷却能力が導波路の電力
伝送容量を決めると言っても過言ではない。In particular, the coupling loss of the input coupling section is extremely large compared to the transmission loss, and it is no exaggeration to say that the cooling capacity of the input coupling section determines the power transmission capacity of the waveguide.
この結合損失は、導波路に入射するレーザ発振器からの
出力光の強度及び位相分布と、中空導波路内を伝搬する
固有モードの強度及び位相分布の不整合によって決まる
量である。軸流型の炭酸ガスレーザ出力光は、ガウス型
のビームに近いため、中空導波路との結合も比較的容易
である。しかし、にW以上の出力を得る炭酸ガスレーザ
は、放電。This coupling loss is an amount determined by the mismatch between the intensity and phase distribution of the output light from the laser oscillator that enters the waveguide and the intensity and phase distribution of the eigenmode propagating within the hollow waveguide. Since the output light of an axial carbon dioxide laser is close to a Gaussian beam, it is relatively easy to couple with a hollow waveguide. However, a carbon dioxide laser that obtains an output of more than W discharges.
ガス流1光軸の3軸が各々直交するが、又はガス流と放
電の2軸が一致し光軸と直交する直交型の構造が殆どで
あり、このレーザの出力光は、軸流型に比べるとガウス
型ビームとの差が大きくなる。The three axes of the optical axis of the gas flow are orthogonal to each other, or the two axes of the gas flow and the discharge coincide and are orthogonal to the optical axis.The output light of this laser is of the axial flow type. When compared, the difference with a Gaussian beam becomes larger.
従って、中空導波路との結合損失も大きくなり、入力結
合の発熱、そして温度上昇も大となり、電力容量が制限
される。Therefore, coupling loss with the hollow waveguide increases, heat generation due to input coupling and temperature rise also increase, and power capacity is limited.
レーザ出力光を中空導波路に効率よく入射させるために
提案され、検討されてきた方法を第2図〜第4図に示し
、各々について詳述する。Methods that have been proposed and studied for efficiently inputting laser output light into a hollow waveguide are shown in FIGS. 2 to 4, and each will be described in detail.
第2図の例では、レーザ出力光1をレンズ2により集束
し、中空導波rI!43に入射させている。この場合、
レンズ2の焦点距離は導波路入射端でのビームのスポッ
トサイズ2ω。と導波路内径2aoの比ω。/ a o
の値が0.4〜0.6となるように選ぶ。ス、導波路入
射端とレンズ間の距離はレンズの焦点距離にほぼ等しく
、更に導波路入射端での入射ビームの等位相面は平面で
あるのが望ましい。この方法は、入射ビームがガウス型
のビームであるとき、高い結合効率が得られるが、ガウ
ス型の分布と異なる直交型等の場合、損失が大きくなり
、導波路入射端に発熱が集中する欠点がある。In the example shown in FIG. 2, the laser output light 1 is focused by the lens 2, and the hollow waveguide rI! 43. in this case,
The focal length of lens 2 is the beam spot size 2ω at the input end of the waveguide. and the ratio ω of the waveguide inner diameter 2ao. / ao
The value of is selected to be between 0.4 and 0.6. It is desirable that the distance between the waveguide input end and the lens be approximately equal to the focal length of the lens, and that the equiphase front of the incident beam at the waveguide input end be a plane. This method can obtain high coupling efficiency when the incident beam is a Gaussian beam, but if the incident beam is of an orthogonal type that differs from the Gaussian distribution, the loss increases and heat generation is concentrated at the input end of the waveguide. There is.
第3図の例では、レンズ2と中空導波路3の間に、励振
用導波路4を介在させ、第2図の例で導波路入射端付近
の発熱の原因となる中空導波路3の高次モードを、励振
用導波路4によって吸収するものである。励振用導波路
4には、中空導波路3より内径のやや小さい高損失の金
属管が用いられる。この場合、発熱は励振用導波路4に
集中するため、この励振用導波路4を効率よく冷却すれ
ば電力容量を増大することができるが、励振用導波1@
4は中空導波路3の低損失モードに対しても大きな損失
を与えることになるため、全体としての効率が悪いもの
になる。In the example of FIG. 3, an excitation waveguide 4 is interposed between the lens 2 and the hollow waveguide 3, and the height of the hollow waveguide 3, which causes heat generation near the input end of the waveguide in the example of FIG. The next mode is absorbed by the excitation waveguide 4. As the excitation waveguide 4, a high-loss metal tube having an inner diameter slightly smaller than that of the hollow waveguide 3 is used. In this case, heat generation is concentrated in the excitation waveguide 4, so if the excitation waveguide 4 is efficiently cooled, the power capacity can be increased, but the excitation waveguide 1@
4 causes a large loss even to the low loss mode of the hollow waveguide 3, resulting in poor efficiency as a whole.
第4図の例は、入射端付近の導波路内径を緩やかに変化
させたテーパー付中空導波路5を使用したものである。The example shown in FIG. 4 uses a tapered hollow waveguide 5 in which the inner diameter of the waveguide near the input end is gradually changed.
励振効率を最大にするにはレンズ通過後の光ビームのビ
ームウェスト、即ちスポットサイズが最小値となる部分
の位置に、導波路入射端がくるようにする。入射ビーム
に対してテーパーが最適状態であれば、高い結合効率が
期待できる。しかし、テーパーが不適当な場合や、テー
パー内面に凹凸があった場合には、逆に高次モードを多
く発生させる場合が多く、これが発熱の原因となり、電
力容量を制限する。In order to maximize the excitation efficiency, the waveguide input end should be located at the beam waist of the light beam after passing through the lens, that is, the part where the spot size is the minimum value. If the taper is optimal for the incident beam, high coupling efficiency can be expected. However, if the taper is inappropriate or if there are irregularities on the inner surface of the taper, many higher-order modes are generated, which causes heat generation and limits the power capacity.
本発明の目的は、前記した従来技術の欠点を解消し、電
力容量を大rlに増大さぜることの可能な炭酸ガスレー
ザ光m中空導波路の入力結合部を得ることにある。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an input coupling section for a hollow waveguide for carbon dioxide laser light, which can greatly increase the power capacity.
[課題を解決するための手段]
本発明は、上記目的を達成するため、大電力の炭酸ガス
レーザ光をレーザ照射部まで導くためのレーザ光伝送装
置において、レーザを中空導波路内に入射させる集束用
レンズと前記中空導波路の間に、アイリス型の励振用導
波路を設けて、中空導波路の入力結合部を構成する。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a laser beam transmission device for guiding a high-power carbon dioxide laser beam to a laser irradiation section. An iris-type excitation waveguide is provided between the optical lens and the hollow waveguide to constitute an input coupling portion of the hollow waveguide.
この場合、前記アイリス型の励振用導波路の開口径2a
は、中空導波路入射端からの距離Zに応じて変化し、中
空導波路内径2a0とするとa2=a02{1十[λz
/ yr r ’ a o2] )但し、λはレーザ
光の波長。In this case, the opening diameter 2a of the iris-type excitation waveguide
changes depending on the distance Z from the input end of the hollow waveguide, and when the inner diameter of the hollow waveguide is 2a0, a2=a02{10[λz
/yr r' ao2]) However, λ is the wavelength of the laser beam.
rの範囲は概0.4〜0.6
であることが好ましい、更に、前記アイリス型の励振用
導波路の開口間距離dは、開口のフレネル数N=a’
/λdの値が5以上になるように設定するのが好ましい
6
[作用]
アイリス型の励振用導波路を介して中空導波路内にレー
ザビームを入射させることにより、入射ビームの振幅分
布の逆相骨だけが効率よく除去され、レーザビームがガ
ウス型分布に変換される。The range of r is preferably approximately 0.4 to 0.6. Furthermore, the distance d between the apertures of the iris-type excitation waveguide is determined by the Fresnel number of the apertures N=a'
It is preferable to set the value of /λd to be 5 or more.6 [Operation] By injecting a laser beam into a hollow waveguide via an iris-type excitation waveguide, the amplitude distribution of the incident beam is reversed. Only the interfacial bone is efficiently removed and the laser beam is converted to a Gaussian distribution.
従って、中空導波路入射端での発熱の原因となる高次モ
ードの発生量は、小さいものとなる。Therefore, the amount of higher-order modes that cause heat generation at the input end of the hollow waveguide is small.
また、そのアイリスの開口内径2aを上記の式に従って
変えることによって、小さな損失でビーム成形が行われ
る。Furthermore, by changing the aperture inner diameter 2a of the iris according to the above formula, beam shaping can be performed with small loss.
更に、アイリスの開口間距離dを上記値に設定すること
によって、アイリス型の励振用導波路内での発熱が分散
されて、電力容量の増大が図られる。Further, by setting the distance d between the openings of the iris to the above value, heat generation within the iris-type excitation waveguide is dispersed, and the power capacity is increased.
[実施例] 本発明の実施例を第1図に基づき説明する。[Example] An embodiment of the present invention will be described based on FIG.
炭酸ガスレーザからのレーザ出力光1は、レンズ2によ
って集束され、アイリス型励振用導波路6を介して、中
空導波路3に入射する。Laser output light 1 from a carbon dioxide laser is focused by a lens 2 and enters a hollow waveguide 3 via an iris-type excitation waveguide 6 .
横方向に軸ずれがなくガウスビームを入射した時の円形
の中空導波路に励振されるH E 1mモードの励振効
率は、一般に円形の中空導波路のHE + −モードの
うち最も低損失なモードはHE ロモードであり、この
モードはω。/ao=0.6のとき最大効率で励振され
る。従って出射ビームをガウス分布にしたい時、或いは
充分長い導波路でHE、。The excitation efficiency of the H E 1m mode excited in a circular hollow waveguide when a Gaussian beam is incident with no axis deviation in the lateral direction is generally the mode with the lowest loss among the HE + - modes of the circular hollow waveguide. is HE lo mode, and this mode is ω. When /ao=0.6, it is excited with maximum efficiency. Therefore, when you want the output beam to have a Gaussian distribution, or when using a sufficiently long waveguide, HE.
モード以外のモードは減衰してしまうような導波路では
、ωo/ao :o、eを満足するように入射すればよ
い、しかしながら大電力伝送を目的とした導波路のよう
に、比較的短尺な導波路或いは高次モードでも低損失で
ある導波路では、ω。/ a o = 0.6よりも小
さいビーム径で入射させた方が中空領域外にはみ出すパ
ワーが少なくなるので、全パワーの伝送容量が大きくな
る。In a waveguide where modes other than the mode are attenuated, it is sufficient to make the input so as to satisfy ωo/ao: o, e. In a waveguide or a waveguide with low loss even in higher-order modes, ω. When the beam diameter is smaller than /a o = 0.6, the power that protrudes outside the hollow region is reduced, so the total power transmission capacity is increased.
そこで、レンズ2の焦点距離は、中空導波路3入射端で
のビームのスポットサイズ2ω0と中空導波路内径2a
oの比ω。/ a oの値が、概0.4〜0.6となる
ように選ぶ。また、第2図の実施例と同様に、中空導波
路入射端とレンズ2間の距離は、レンズ2の焦点距離に
ほぼ等しく運ぶ。更に、励振効率を最大にするにはレン
ズ通過後の光ビームのビームウェスト、即ちスポットサ
イズ2ω。Therefore, the focal length of the lens 2 is determined by the spot size 2ω0 of the beam at the incident end of the hollow waveguide 3 and the inner diameter 2a of the hollow waveguide.
The ratio ω of o. The value of /ao is selected to be approximately 0.4 to 0.6. Further, as in the embodiment of FIG. 2, the distance between the hollow waveguide entrance end and the lens 2 is approximately equal to the focal length of the lens 2. Furthermore, to maximize the excitation efficiency, the beam waist of the light beam after passing through the lens, that is, the spot size is 2ω.
が最小値となる部分の位置に、中空導波路3の入射端が
くるようにする。The input end of the hollow waveguide 3 is placed at the position where the minimum value is reached.
そして、アイリス型励振用導波路6内の円形の開ロアの
内径2aは、中空導波路3入射端からの距離をZとする
と、
a 2 =ao2 (1± [λ z/ π r’a
O” コ )の関係を満たすように選ぶ。Then, the inner diameter 2a of the circular open lower portion in the iris-type excitation waveguide 6 is expressed as a 2 = ao2 (1± [λ z/ π r'a
Select so that the following relationship is satisfied.
ここに、λは炭酸ガスレーザ光の発振波長であり、rは
0.4〜0.6の範囲の値とする。Here, λ is the oscillation wavelength of the carbon dioxide laser beam, and r is a value in the range of 0.4 to 0.6.
さらに、アイリス型励振用導波路6内の隣り合うアイリ
スの開ロア間の距離をdとするとき、dの値は、開ロア
のフレネル数N=a2/(λd)の値が5以上となるよ
うにする。Further, when the distance between the open lowers of adjacent irises in the iris type excitation waveguide 6 is d, the value of d is such that the value of the Fresnel number N=a2/(λd) of the open lowers is 5 or more. do it like this.
上記構成のアイリス型励振用導波路6は、入射ビームの
振幅分布の逆相骨のみを効率よく除去し、ガウス型のビ
ーム分布に変換する作用をする。従って、中空導波路入
射端での発熱の原因となる高次モードの発生量は、小さ
いものとなる。The iris-type excitation waveguide 6 configured as described above functions to efficiently remove only the antiphase bone of the amplitude distribution of the incident beam and convert it into a Gaussian-type beam distribution. Therefore, the amount of higher-order modes that cause heat generation at the input end of the hollow waveguide is small.
またアイリスの開ロアの内径を上記の式に従って変える
ことによって、小さな損失でビーム成形が行われる。さ
らに、アイリスの隣り合う開ロア間の距離をdとすると
き、dの値は、開ロアのフレネル数N=a2/(λd)
の値が5以上となるようにする。アイリスの開口間1?
[dを上記値に設定することによって、アイリス型励振
用導波路6内での発熱が分散されて、電力容量の増大が
図られる。Also, by changing the inner diameter of the open lower portion of the iris according to the above formula, beam shaping can be performed with small losses. Furthermore, when the distance between adjacent open lowers of the iris is d, the value of d is the Fresnel number of the open lowers N=a2/(λd)
The value of is set to be 5 or more. Iris opening distance 1?
[By setting d to the above value, heat generation within the iris-type excitation waveguide 6 is dispersed, and the power capacity is increased.
上記第1図の実施例では、1枚のレンズ2による集束例
を示しているが、複数のレンズを使用することもあり得
る。また、アイリス型励振用導波路6を中空導波路3の
出射端に使用して、導波路出射光の集束性を良くするこ
とも可能である。Although the embodiment shown in FIG. 1 shows an example of focusing using one lens 2, a plurality of lenses may be used. It is also possible to use the iris-type excitation waveguide 6 at the output end of the hollow waveguide 3 to improve the convergence of the light emitted from the waveguide.
[発明の効果]
以上述べたように、本発明によれば、炭酸ガスレーザの
レーザ出力ビームがガウス型の分布と異なる場合でも、
少ない損失で中空導波路内にレーザビームを入射させ、
かつ入射端付近での発熱量を小さくすることができる。[Effects of the Invention] As described above, according to the present invention, even when the laser output beam of the carbon dioxide laser differs from the Gaussian distribution,
Inject a laser beam into a hollow waveguide with low loss,
Moreover, the amount of heat generated near the incident end can be reduced.
更に、発熱はアイリス型励振用導波路全体に分布するた
め、その冷却が容易であり、電力容量の大きな増大が期
待できる。Furthermore, since heat generation is distributed throughout the iris-type excitation waveguide, it is easy to cool it, and a large increase in power capacity can be expected.
第1図は本発明のアイリス型励振用導波路を使用した例
を示す断面図、第2図は炭酸ガスレーザ光をレンズによ
って集束し中空導波路内に入射させる最も基本的な結合
方法を示す断面図、第3図はモードフィルタとしての励
振用導波路を使用した例を示す断面図、第4図はテーパ
ー付中空導波路を使用した例を示す断面図である。
図中、1は炭酸ガスレーザ出力光、2はレンズ、3は中
空導波路、4は励振用導波路、5はテーパー付中空導波
路、6はアイリス型励振用導波路を示す。Fig. 1 is a cross-sectional view showing an example of using the iris-type excitation waveguide of the present invention, and Fig. 2 is a cross-sectional view showing the most basic coupling method in which carbon dioxide laser light is focused by a lens and made to enter the hollow waveguide. FIG. 3 is a sectional view showing an example in which an excitation waveguide is used as a mode filter, and FIG. 4 is a sectional view showing an example in which a tapered hollow waveguide is used. In the figure, 1 is a carbon dioxide laser output light, 2 is a lens, 3 is a hollow waveguide, 4 is an excitation waveguide, 5 is a tapered hollow waveguide, and 6 is an iris type excitation waveguide.
Claims (1)
ためのレーザ光伝送装置において、レーザを中空導波路
内に入射させる集束用レンズと前記中空導波路の間に、
アイリス型の励振用導波路を設けたことを特徴とする中
空導波路の入力結合部構造。 2、前記アイリス型の励振用導波路の開口径2aは、中
空導波路入射端からの距離zに応じて変化し、中空導波
路内径2a_0とするとa^2=a_0^2{1+[λ
z/πr^2a_0^2]}但し、λはレーザ光の波長
、 rの範囲は概0.4〜0.6 であることを特徴とする請求項1記載の中空導波路の入
力結合部構造。 3、前記アイリス型の励振用導波路の開口間距離dは、
開口のフレネル数N=a^2/λdの値が5以上になる
ように設定されていることを特徴とする請求項1又は2
記載の中空導波路の入力結合部構造。[Claims] 1. In a laser beam transmission device for guiding a high-power carbon dioxide laser beam to a laser irradiation section, between a focusing lens that makes the laser beam enter a hollow waveguide and the hollow waveguide,
An input coupling structure of a hollow waveguide characterized by having an iris-type excitation waveguide. 2. The aperture diameter 2a of the iris-type excitation waveguide changes depending on the distance z from the entrance end of the hollow waveguide, and if the inner diameter of the hollow waveguide 2a_0 is a^2=a_0^2{1+[λ
z/πr^2a_0^2]} where λ is the wavelength of the laser beam, and r has a range of approximately 0.4 to 0.6. . 3. The distance d between the openings of the iris-type excitation waveguide is:
Claim 1 or 2, characterized in that the Fresnel number N=a^2/λd of the aperture is set to be 5 or more.
Input coupling part structure of the hollow waveguide described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63320480A JPH02166782A (en) | 1988-12-21 | 1988-12-21 | Input coupling structure for hollow waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63320480A JPH02166782A (en) | 1988-12-21 | 1988-12-21 | Input coupling structure for hollow waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02166782A true JPH02166782A (en) | 1990-06-27 |
Family
ID=18121915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63320480A Pending JPH02166782A (en) | 1988-12-21 | 1988-12-21 | Input coupling structure for hollow waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02166782A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04298087A (en) * | 1991-03-27 | 1992-10-21 | Matsushita Electric Ind Co Ltd | Gas laser device |
JPH06505211A (en) * | 1991-02-22 | 1994-06-16 | プルップ・エスコフォット・アクティーゼルスカブ | laser imagesetter |
JP2006135308A (en) * | 2004-10-04 | 2006-05-25 | Semiconductor Energy Lab Co Ltd | Beam homogenizer, laser irradiation apparatus, and manufacturing method for semiconductor device |
KR100826591B1 (en) * | 2006-12-29 | 2008-04-30 | 한국기초과학지원연구원 | Apparatus for compensation of center axle alignment of cylindrical waveguide in a laser beam moving apparatus and method thereof |
EP2285523A2 (en) * | 2008-05-15 | 2011-02-23 | Lockheed Martin Corporation | Hollow core waveguide for laser generation of ultrasonic waves |
US8326102B2 (en) | 2004-10-04 | 2012-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device |
-
1988
- 1988-12-21 JP JP63320480A patent/JPH02166782A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06505211A (en) * | 1991-02-22 | 1994-06-16 | プルップ・エスコフォット・アクティーゼルスカブ | laser imagesetter |
JPH04298087A (en) * | 1991-03-27 | 1992-10-21 | Matsushita Electric Ind Co Ltd | Gas laser device |
JP2006135308A (en) * | 2004-10-04 | 2006-05-25 | Semiconductor Energy Lab Co Ltd | Beam homogenizer, laser irradiation apparatus, and manufacturing method for semiconductor device |
US8326102B2 (en) | 2004-10-04 | 2012-12-04 | Semiconductor Energy Laboratory Co., Ltd. | Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device |
US8670641B2 (en) | 2004-10-04 | 2014-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Beam homogenizer, laser irradiation apparatus, and method for manufacturing semiconductor device |
KR100826591B1 (en) * | 2006-12-29 | 2008-04-30 | 한국기초과학지원연구원 | Apparatus for compensation of center axle alignment of cylindrical waveguide in a laser beam moving apparatus and method thereof |
EP2285523A2 (en) * | 2008-05-15 | 2011-02-23 | Lockheed Martin Corporation | Hollow core waveguide for laser generation of ultrasonic waves |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4818062A (en) | Optical system with bright light output | |
US4820010A (en) | Bright output optical system with tapered bundle | |
US4763975A (en) | Optical system with bright light output | |
USRE33722E (en) | Optical system with bright light output | |
Chen et al. | Optimization of fiber-coupled laser-diode end-pumped lasers: influence of pump-beam quality | |
US9083140B2 (en) | High-power CW fiber-laser | |
JPH06142963A (en) | Method for rapid penetration of laser beam through partially reflective metal | |
CN107398645A (en) | A kind of laser welding system and method | |
WO2020189716A1 (en) | Laser machining apparatus, laser machining method, and method for manufacturing secondary cell | |
JPH02166782A (en) | Input coupling structure for hollow waveguide | |
Miao et al. | Broadband Petal‐Like Raman Laser | |
US7907341B2 (en) | Laser processing method and laser processing apparatus | |
CN100452572C (en) | Medium infrared high-power laser light source based on erbium-ytterbium co-doped double-clad fiber | |
Stachowiak et al. | High-power pump combiners for Tm-doped fibre lasers | |
US5889808A (en) | Photoexcitation solid laser amplifier photoexcitation solid laser unit and solid laser excitation method | |
JP2006516810A (en) | Side pump fiber laser | |
US4596016A (en) | Single mode carbon dioxide gas laser oscillator having high output power | |
Lee et al. | 45W 2 μm nanosecond pulse delivery using antiresonant hollow-core fiber | |
JPH0563264A (en) | Semiconductor laser end pumped solid-state laser device | |
JPS63210904A (en) | Laser beam incidence optical system | |
JPH0466288A (en) | Laser beam machine | |
Reali | The mode-locked unstable resonator YAG laser | |
JPH031104A (en) | Laser light transmission device for processing machine | |
JPH0651237A (en) | Laser beam transmission device | |
Griebner et al. | Laser with guided pump and free-propagating resonator mode using diffusion-bonded rectangular channel waveguides |