JPH0216541B2 - - Google Patents

Info

Publication number
JPH0216541B2
JPH0216541B2 JP13700681A JP13700681A JPH0216541B2 JP H0216541 B2 JPH0216541 B2 JP H0216541B2 JP 13700681 A JP13700681 A JP 13700681A JP 13700681 A JP13700681 A JP 13700681A JP H0216541 B2 JPH0216541 B2 JP H0216541B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
ray tube
cathode ray
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13700681A
Other languages
Japanese (ja)
Other versions
JPS5840752A (en
Inventor
Taketoshi Shimoma
Kumio Fukuda
Toshio Shimaogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13700681A priority Critical patent/JPS5840752A/en
Priority to US06/411,364 priority patent/US4495439A/en
Priority to DE8282107819T priority patent/DE3275332D1/en
Priority to EP82107819A priority patent/EP0073472B1/en
Publication of JPS5840752A publication Critical patent/JPS5840752A/en
Publication of JPH0216541B2 publication Critical patent/JPH0216541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/64Magnetic lenses

Description

【発明の詳細な説明】 本発明は複数の電子ビームを有する磁気集束型
陰極線管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetically focused cathode ray tube device having multiple electron beams.

電子ビームの集束手段としては静電集束方式と
磁気集束方式の両者があるが磁気集束方式の方が
高い解像度が得られる。また磁気集束方式ではフ
オーカス電圧の供給が不要でありこれに付随して
陰極線管の信頼性向上及びコスト低下等の大きな
メリツトがある。特に永久磁石を磁界発生源とす
る方法に於ては集束電力も不要である。第1図は
複数の電子ビームを有する磁気集束型陰極線管の
1例である。1は内部を真空に保つガラス製外囲
器、2は外囲器ネツク、3R,3G,3Bは各々
ヒーター、陰極、第1、第2電極からなる電子銃
構体、4は螢光体スクリーン、5は色選別電極、
6,6′は互いに対向した軟強磁性体磁気ヨーク、
7R,7G,7Bはそれぞれ電子銃構体3R,3
G,3Bより射出した電子ビーム軌道、8は偏向
ヨーク、9は電子ビーム集中装置である。磁界発
生用永久磁石(図示せず)は管内に配置される。
電子銃3R,3G,3Bより射出した電子ビーム
7R,7G,7Bは対向した磁気ヨーク6,6′
間に形成される管軸方向磁界により集束作用を受
けスクリーン4上に最小のビームスポツトを結
ぶ。さらに3電子ビームを集中させるため集中装
置9を用いてサイドビーム7R,7Bをセンター
ビーム7G方向に偏向し3ビーム集中を実施して
いる。しかしかかる電子ビーム集中方式ではスク
リーン4上のビームスポツトが縦長形状となり好
ましくない。
There are both electrostatic focusing methods and magnetic focusing methods as electron beam focusing means, but the magnetic focusing method provides higher resolution. In addition, the magnetic focusing method does not require the supply of a focus voltage, and has associated great advantages such as improved reliability and reduced cost of the cathode ray tube. In particular, in the method using a permanent magnet as the magnetic field generation source, no focusing power is required. FIG. 1 is an example of a magnetically focused cathode ray tube having a plurality of electron beams. 1 is a glass envelope that keeps the inside vacuum; 2 is an envelope neck; 3R, 3G, and 3B are electron gun structures each consisting of a heater, a cathode, and first and second electrodes; 4 is a fluorescent screen; 5 is a color selection electrode;
6 and 6' are soft ferromagnetic magnetic yokes facing each other;
7R, 7G, and 7B are electron gun structures 3R and 3, respectively.
8 is a deflection yoke, and 9 is an electron beam concentrator. A permanent magnet (not shown) for generating a magnetic field is placed within the tube.
The electron beams 7R, 7G, 7B emitted from the electron guns 3R, 3G, 3B are directed to the opposing magnetic yokes 6, 6'.
The smallest beam spot is focused on the screen 4 due to the focusing effect of the magnetic field in the tube axis direction formed between the beams. Furthermore, in order to concentrate the three electron beams, a concentrator 9 is used to deflect the side beams 7R and 7B toward the center beam 7G, thereby implementing three beam concentration. However, in such an electron beam concentration method, the beam spot on the screen 4 becomes vertically elongated, which is not preferable.

本発明は集束磁界を用いて自己集中を行う磁気
集束型陰極線管装置を提供するものである。本発
明の説明を容易ならしめるためさらにくわしく従
来例につき説明する。
The present invention provides a magnetically focused cathode ray tube device that performs self-focusing using a focusing magnetic field. In order to facilitate the explanation of the present invention, a conventional example will be explained in more detail.

第2図はセンタービームの上下に永久磁石を配
置したものである。第2図aはネツク断面形状で
あり21R,21G,21Bは3電子ビーム通過
孔、22は管軸方向に長手方向を有する永久磁石
でありセンタービーム通過孔21Gの上下の所定
の位置に配置される。第2図b,cは第2図aの
Y−Y′及びX−X′断面形状を示すものである。
第2図に於てZ軸は管軸としZ+方向にスクリー
ンがあるとして説明する。永久磁石22はZ-
向端面がN極にZ+方向端面がS極に着磁されて
いる。垂直断面第2図bに於てN極を発した磁力
線は磁気ヨーク23内部を通り相対向する磁気ヨ
ーク23′とのギヤツプ部で漏えいしZ+方向集束
主磁界を形成し磁気ヨーク23′に吸収されS極
にもどる。しかしながら磁界を完全に整形するこ
とは困難であり実際にはN極より発しZ-方向無
限遠方に向う磁界及びZ+無限遠方よりS極に入
る磁界が存在する。同様のことが水平断面につい
ても生ずる。即ち第2図cに於て集束主磁界は磁
気ヨーク23,23′間にZ+方向に形成されるが
磁気ヨーク23端からZ-方向に向う磁界及びZ+
から磁気ヨーク23′に向う磁界が存在する。第
2図dはサイドビーム孔21R軸上の磁界分布の
概略を示すものでBxはビームに偏向効果を与え
る成分である。第3図aは永久磁石31を4個と
しサイドビーム通過孔32B,32R近傍の上下
に配置したものである。この構成は第2図aより
も上述のBx成分即ち偏向磁界成分が減少する。
さらに第3図b,cに示す如く、永久磁石31の
前後に3ビームをとりまく共通ヨーク34を所定
の長さに設定することにより上述の偏向成分は大
幅に減少させることが出来る。以上のように磁気
ヨークの形状、永久磁石の配置等によりほとんど
偏向成分をもたない磁界を形成することが出来
る。
Figure 2 shows permanent magnets placed above and below the center beam. Figure 2a shows a cross-sectional shape of a neck, 21R, 21G, and 21B are three electron beam passing holes, and 22 is a permanent magnet whose longitudinal direction is in the tube axis direction, and is placed at a predetermined position above and below the center beam passing hole 21G. Ru. FIGS. 2b and 2c show cross-sectional shapes taken along Y-Y' and X-X' lines in FIG. 2a.
In FIG. 2, the explanation will be made assuming that the Z axis is the tube axis and that the screen is in the Z + direction. The permanent magnet 22 is magnetized so that the end face in the Z - direction is the N pole and the end face in the Z + direction is the S pole. The magnetic field lines emitted from the north pole in the vertical cross section of FIG. It is absorbed and returns to the S pole. However, it is difficult to completely shape the magnetic field; in reality, there is a magnetic field that originates from the north pole and goes to an infinite distance in the Z - direction, and a magnetic field that enters the south pole from an infinite distance in the Z + direction. The same thing happens for horizontal sections. That is, in FIG. 2c, the focused main magnetic field is formed between the magnetic yokes 23 and 23' in the Z + direction, but the magnetic field from the end of the magnetic yoke 23 in the Z - direction and the Z +
There is a magnetic field directed from the magnetic yoke 23' to the magnetic yoke 23'. FIG. 2d schematically shows the magnetic field distribution on the axis of the side beam hole 21R, and Bx is a component that gives a deflection effect to the beam. In FIG. 3A, four permanent magnets 31 are arranged above and below near the side beam passage holes 32B and 32R. In this configuration, the above-mentioned Bx component, that is, the deflection magnetic field component is reduced compared to FIG. 2a.
Furthermore, as shown in FIGS. 3b and 3c, by setting the common yoke 34 surrounding the three beams before and after the permanent magnet 31 to a predetermined length, the above-mentioned deflection component can be significantly reduced. As described above, it is possible to form a magnetic field with almost no deflection component by changing the shape of the magnetic yoke, the arrangement of the permanent magnets, etc.

本発明は以上述べた如きほとんど偏向磁界成分
を有しない磁気集束装置に於て、さらに3ビーム
集中を実施させるものである。
The present invention further allows three beams to be focused in a magnetic focusing device having almost no deflection magnetic field component as described above.

以下本発明につき詳細に説明する。 The present invention will be explained in detail below.

第4図は本発明の原理図である。電子ビーム4
1R,41G,41Bは前述の如く、ほとんど偏
向成分のない磁気ヨーク42及び43内部を通り
磁気ヨークギヤツプ部44に入射する。磁気ヨー
クギヤツプ部44に於ける主磁界は図示する如く
Z+(スクリーン)方向を向きかつ41R,41B
上ではビーム進行方向に対し所定の角θをもち外
向き磁界成分Bxを含むようにする。当然のこと
ながら電子ビーム41G上ではZ+方向磁界のみ
である。
FIG. 4 is a diagram showing the principle of the present invention. electron beam 4
As described above, the beams 1R, 41G, and 41B pass through the insides of the magnetic yokes 42 and 43, which have almost no deflection components, and enter the magnetic yoke gap portion 44. The main magnetic field in the magnetic yoke gap portion 44 is as shown in the figure.
Direction Z + (screen) and 41R, 41B
In the above example, it is made to have a predetermined angle θ with respect to the beam traveling direction and include an outward magnetic field component Bx. Naturally, there is only a magnetic field in the Z + direction on the electron beam 41G.

この時のビームの受ける力を第4図bに示す。
電子ビームの速度はVzのみであり上述のBxによ
り41RではY-(下)向きに41BではY+(上)
向きに力を受ける。従つて、磁気ヨークギヤツプ
44通過後は電子ビーム41RはY-(下)向き、
電子ビーム41BはY+(上)向きの速度成分を有
することとなる。陰極(ネツク部端)側(Z-
及びスクリーン側(Z+)側に配置するヨーク4
2,42′については非対称形状となす。即ち陰
極側ヨーク42は充分な均一磁界を得るよう充分
なZ方向長さを有しスクリーン側ヨーク42′は
所定の長さとする。このため第4図aB−B′断面
に於ては磁界のシールド、整形が弱くBx成分が
残つている。第4図cはB−B′断面に於けるビ
ームが受ける力の説明図である。
The force applied to the beam at this time is shown in Figure 4b.
The velocity of the electron beam is only Vz, and due to the above Bx, it is Y - (down) in 41R and Y + (up) in 41B.
Receives force in the direction. Therefore, after passing through the magnetic yoke gap 44, the electron beam 41R is directed Y - (downward);
The electron beam 41B has a velocity component in the Y + (upward) direction. Cathode (neck end) side (Z - )
and yoke 4 placed on the screen side (Z + ) side
2 and 42' have an asymmetrical shape. That is, the cathode side yoke 42 has a sufficient length in the Z direction to obtain a sufficiently uniform magnetic field, and the screen side yoke 42' has a predetermined length. Therefore, in the section aB-B' of FIG. 4, the shielding and shaping of the magnetic field is weak and the Bx component remains. FIG. 4c is an explanatory diagram of the force exerted on the beam at the B-B' cross section.

前述する如くこの断面での電子ビーム41Rは
Vz及び−Vyである。一方磁界は−Bz及び−Bx
をもつ。従つてビームの受ける力は、Fx=−(−
VY)×(−Bz)、Fx=−(−Vz)×(−Bx)であり、
X-方向及びY+方向の力を受ける。従つて、電子
ビーム41RはX-方向速度とY+方向速度を得
る。Y+方向速度はA−A′断面で受けたY-方向速
度成分と打ち消し合い全体としてはY方向速度成
分が零でZ-方向速度成分のみが残ることとなる。
逆位置にあるビーム41Bでは同様にX+方向速
度成分を得る。以上の様に両サイドビームはセン
タービーム方向に集中効果を受けることとなる。
As mentioned above, the electron beam 41R at this cross section is
Vz and -Vy. On the other hand, the magnetic fields are −Bz and −Bx
have. Therefore, the force exerted on the beam is Fx=-(-
V Y )×(−Bz), Fx=−(−Vz)×(−Bx),
Receives forces in the X - and Y + directions. Therefore, the electron beam 41R obtains a velocity in the X - direction and a velocity in the Y + direction. The Y + direction velocity cancels out the Y - direction velocity component received at the A-A' cross section, and as a whole, the Y direction velocity component is zero and only the Z - direction velocity component remains.
Similarly, the beam 41B at the opposite position obtains a velocity component in the X + direction. As described above, both side beams receive a concentration effect in the direction of the center beam.

第5図は本発明に係る一実施例の磁気ヨーク部
水平断面図である。51は陰極側に配した3ビー
ム共通磁気ヨーク、52,52′は本発明に係る
相対向する磁気ヨーク、51′はスクリーン側磁
気ヨークである。本発明に係る相対向する磁気ヨ
ーク52,52′は互いに対向する面に3ビーム
独立に円筒部53,54及び53′,54′を有す
る。この円筒部は陰極側磁気ヨーク52では陰
極、制御電極によつて決まる3電子銃の中心軸と
一致しているのに対し、スクリーン側磁気ヨーク
52′では両サイド円筒54′が上記陰極、制御電極
によつて決まる電子銃軸より外側に所定の値の△
xだけ離軸している。
FIG. 5 is a horizontal sectional view of the magnetic yoke portion of one embodiment of the present invention. 51 is a three-beam common magnetic yoke disposed on the cathode side, 52 and 52' are opposing magnetic yokes according to the present invention, and 51' is a screen side magnetic yoke. The opposing magnetic yokes 52, 52' according to the present invention have three independent cylindrical portions 53, 54 and 53', 54' on their opposing surfaces. In the cathode side magnetic yoke 52, this cylindrical part coincides with the central axis of the three electron guns determined by the cathode and control electrodes, whereas in the screen side magnetic yoke 52', both side cylinders 54' are the cathode and control electrodes. A predetermined value of △ is placed outside the electron gun axis determined by the electrode.
It is off-axis by x.

かかる形状の磁気ヨーク52,52′により整
形される磁界は磁気抵抗が最小となるように磁力
線が進むから、スクリーン側磁気ヨーク52′の
離軸方向に磁界は曲げられる。この結果磁気ヨー
ク52,52′間に形成される磁界は、サイド円
筒54,54′部では外向き成分をもつ。当然の
ことながら永久磁石の極性が反転すれば逆とな
る。陰極側磁気ヨーク51はその内部の磁界を充
分均一としビームが実際上ほとんど偏向されない
ものであればよく3ビーム共通の磁気ヨークに限
るわけではない。またスクリーン側磁気ヨーク5
1′はその高さや形状によりスクリーン側漏えい
磁界の偏向成分を所定の値に制御するものであれ
ばよい。
In the magnetic field shaped by the magnetic yokes 52, 52' having such a shape, the lines of magnetic force advance so that the magnetic resistance is minimized, so that the magnetic field is bent in the direction away from the axis of the screen-side magnetic yokes 52'. As a result, the magnetic field formed between the magnetic yokes 52, 52' has an outward component at the side cylinders 54, 54'. Naturally, if the polarity of the permanent magnet is reversed, the opposite will occur. The cathode side magnetic yoke 51 is not limited to a magnetic yoke common to the three beams, as long as the magnetic field therein is sufficiently uniform and the beam is practically not deflected. Also, the screen side magnetic yoke 5
1' may be of any type as long as its height and shape can control the deflection component of the screen-side leakage magnetic field to a predetermined value.

以上のように本発明に適用される磁気ヨークの
3ビームに与える効果は第4図を用いて説明した
通りであり詳細な説明は省略する。尚本発明は前
述の離軸量△xを変えることにより磁界傾角を適
宜変化させることが出来るから3ビーム集中効果
も適宜に設定することが出来その汎用性は広く製
作も容易である。尚円筒部が対向する磁気ヨーク
の内部に形成されている場合であつても同様の効
果があることは言うまでもない。
As described above, the effects of the magnetic yoke applied to the present invention on the three beams are as explained using FIG. 4, and detailed explanation will be omitted. In addition, in the present invention, since the magnetic field inclination angle can be changed appropriately by changing the above-mentioned off-axis amount Δx, the three-beam concentration effect can also be set appropriately, and its versatility is wide and manufacturing is easy. It goes without saying that the same effect can be obtained even when the cylindrical portions are formed inside the opposing magnetic yokes.

以上の様に本発明によれば磁気集束装置自身に
より3ビーム集中が実施され磁気集束方式の利点
を最大限活かし良好で信頼性の高い磁気集束型陰
極線装置が提供できる。
As described above, according to the present invention, three beams are concentrated by the magnetic focusing device itself, and a good and highly reliable magnetic focusing cathode ray device can be provided by maximizing the advantages of the magnetic focusing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気集束型陰極線管装置の一例を示す
概略構成図、第2図a及び第3図aは第1図の永
久磁石配置例を示すネツク断面図、第2図b乃至
d及び第3図b乃至cは同じくネツク側面図及び
磁界分布を説明する為の概略図、第4図a乃至c
は本発明の原理を説明するための側面図及び断面
図、第5図は本発明の一実施例に係る磁気ヨーク
部を示す概略水平断面図である。 41R,41G,41B……電子ビーム、4
2,42′,43,43′……磁気ヨーク、44…
…磁気ヨークギヤツプ部、51,51′……共通
磁気ヨーク、52,52′……相対向磁気ヨーク、
53,53′,54,54′……円筒部。
FIG. 1 is a schematic configuration diagram showing an example of a magnetically focused cathode ray tube device, FIGS. 2a and 3a are cross-sectional views showing an example of the arrangement of permanent magnets in FIG. Figures 3 b to c are side views of the net and schematic diagrams for explaining the magnetic field distribution, and Figures 4 a to c
5 is a side view and a cross-sectional view for explaining the principle of the present invention, and FIG. 5 is a schematic horizontal cross-sectional view showing a magnetic yoke portion according to an embodiment of the present invention. 41R, 41G, 41B...electron beam, 4
2, 42', 43, 43'...Magnetic yoke, 44...
...Magnetic yoke gap part, 51, 51'... Common magnetic yoke, 52, 52'... Opposite magnetic yoke,
53, 53', 54, 54'... Cylindrical portion.

Claims (1)

【特許請求の範囲】 1 硝子製外囲器とこの外囲器ネツク部内に封入
されインライン配列の3個の電子ビームを射出し
制御手段を備えた電子銃と前記外囲器パネル内面
に塗布形成された螢光面及び螢光面近傍に配設し
たシヤドウマスクを主たる要素として構成される
陰極線管であつて前記電子ビームの集束手段とし
て管軸方向磁界発生用永久磁石と磁界整形用磁気
ヨークを備えた磁気集束型陰極線管装置に於て、
互いに対向する前記磁気ヨークは少くとも独立し
た3個の円筒状部分を有し、かつ前記円筒状部分
は前記ネツク部端側の磁気ヨークに於ては陰極、
制御電極により決まる3電子銃軸と一致し、スク
リーン側磁気ヨークでは両サイド円筒の間隔が上
記電子銃軸間の間隔より大なることを特徴とする
磁気集束型陰極線管装置。 2 電子ビームを射出する陰極から一対の相対向
する磁気ヨーク間の領域に於てはサイドビーム軸
上ラジアル磁界成分が極力小さくまた上記一対の
相対向する磁気ヨークとスクリーン間に於てはサ
イドビーム軸上に所定のラジアル磁界成分が形成
されるように磁気ヨークを前後で非対称としたこ
とを特徴とする特許請求の範囲第1項記載の磁気
集束型陰極線管装置。
[Scope of Claims] 1. A glass envelope, an electron gun sealed in the neck portion of the envelope and equipped with control means for emitting and controlling three electron beams arranged in-line, and coating formed on the inner surface of the envelope panel. The cathode ray tube is mainly composed of a fluorescent surface and a shadow mask disposed near the fluorescent surface, and is equipped with a permanent magnet for generating a magnetic field in the tube axis direction and a magnetic yoke for shaping the magnetic field as means for focusing the electron beam. In a magnetically focused cathode ray tube device,
The magnetic yokes facing each other have at least three independent cylindrical parts, and the cylindrical parts are a cathode in the magnetic yoke at the end of the neck part,
A magnetically focused cathode ray tube device, characterized in that the distance between the cylinders on both sides of the screen-side magnetic yoke coincides with the three electron gun axes determined by the control electrodes and is larger than the distance between the electron gun axes. 2 In the area between the pair of opposing magnetic yokes from the cathode that emits the electron beam, the radial magnetic field component on the axis of the side beam is as small as possible, and in the area between the pair of opposing magnetic yokes and the screen, the side beam 2. The magnetically focused cathode ray tube device according to claim 1, wherein the magnetic yoke is asymmetrical in the front and back so that a predetermined radial magnetic field component is formed on the axis.
JP13700681A 1981-09-02 1981-09-02 Magnetic-focusing-type cathode-ray tube Granted JPS5840752A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13700681A JPS5840752A (en) 1981-09-02 1981-09-02 Magnetic-focusing-type cathode-ray tube
US06/411,364 US4495439A (en) 1981-09-02 1982-08-25 Magnetic focusing type cathode ray tube
DE8282107819T DE3275332D1 (en) 1981-09-02 1982-08-25 Magnetic focusing type cathode ray tube
EP82107819A EP0073472B1 (en) 1981-09-02 1982-08-25 Magnetic focusing type cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13700681A JPS5840752A (en) 1981-09-02 1981-09-02 Magnetic-focusing-type cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS5840752A JPS5840752A (en) 1983-03-09
JPH0216541B2 true JPH0216541B2 (en) 1990-04-17

Family

ID=15188597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13700681A Granted JPS5840752A (en) 1981-09-02 1981-09-02 Magnetic-focusing-type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS5840752A (en)

Also Published As

Publication number Publication date
JPS5840752A (en) 1983-03-09

Similar Documents

Publication Publication Date Title
JPH04269429A (en) Electron gun for color cathode ray tube
KR100242924B1 (en) Method of correcting deflection defocusing in a crt, a crt employing same, and an image display system including same crt
EP0073472B1 (en) Magnetic focusing type cathode ray tube
JPH0216541B2 (en)
JPS5840749A (en) Magnetic focussing type cathode-ray tube
JPH0216540B2 (en)
JPH0216543B2 (en)
JPH0319665B2 (en)
JPH0216542B2 (en)
JPS6256623B2 (en)
JPH0533494B2 (en)
KR950006338B1 (en) Color cathode ray tube
KR950000652B1 (en) Dynamic focus electrode structure of electron gun for color cathode-ray tube
JP3348869B2 (en) Color cathode ray tube
JPH0312421B2 (en)
JP3498637B2 (en) Convergence adjustment means
JPH0139623B2 (en)
JPH0158826B2 (en)
JP3759175B2 (en) Electron gun for color cathode ray tube and color cathode ray tube
JPS6048858B2 (en) cathode ray tube electron gun
KR920007179B1 (en) Electron gun for color picture tube
JP2804052B2 (en) Color picture tube equipment
JPH0131257B2 (en)
JPH0680580B2 (en) Inline electron gun
JPS61253748A (en) Electron gun