JPH02165118A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPH02165118A
JPH02165118A JP32106588A JP32106588A JPH02165118A JP H02165118 A JPH02165118 A JP H02165118A JP 32106588 A JP32106588 A JP 32106588A JP 32106588 A JP32106588 A JP 32106588A JP H02165118 A JPH02165118 A JP H02165118A
Authority
JP
Japan
Prior art keywords
polarity
voltage
light
tft
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32106588A
Other languages
Japanese (ja)
Inventor
Shoichiro Nakayama
中山 正一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32106588A priority Critical patent/JPH02165118A/en
Publication of JPH02165118A publication Critical patent/JPH02165118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To evade an undesirable influence caused by irradiating with light by inverting the polarity in a prescribed period against the potential of a counter electrode, and also, applying a video signal in which the maximum value of each polarity is different by its polarity to a picture element electrode through a thin film transistor. CONSTITUTION:The polarity is inverted in a prescribed period agains the potential Vc of a counter electrode, and also, a video signal in which the maximum value of each polarity is different by its polarity is applied to a picture element electrode through a thin film transistor (TFT). Accordingly, by reducing an absolute value of a negative polarity voltage of a video signal for driving an AC of a TFT of an active matrix, namely, a drain voltage Vd in the case of negative, an undesirable influence to the TFT against a light beam can be made extremely small. Also, by checking up the influence of an initial characteristic against a light beam of the TFT, a voltage value of the drain voltage Vd which takes the irradiation with light into consideration can be determined. In such a way, it is entirely unnecessary to change a material of the TFT, the structure and the process, and the light counter-measure can be realized without necessitating a conventional structural light countermeasure means.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、絶縁基板上に複数の表示画素をマトリクス配
置して該表示画素に夫々薄膜トランジスタ(以下TPT
と称する)を結合してなる画素電極基板に対向電極を備
えた対向電極基板を対向させ、両基板間に液晶物質を充
填したアクティブマトリクス型液晶表示装置の駆動方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Application Field The present invention is directed to a plurality of display pixels arranged in a matrix on an insulating substrate, and each display pixel is equipped with a thin film transistor (hereinafter referred to as TPT).
The present invention relates to a method for driving an active matrix liquid crystal display device in which a pixel electrode substrate formed by bonding a pixel electrode substrate with a counter electrode substrate and a counter electrode substrate provided with a counter electrode are opposed to each other, and a liquid crystal material is filled between the two substrates.

(ロ)従来の技術 近年、TFTアレイを用いたアクティブマトリクス型液
晶表示装置は、テレビ用の表示器としての用途に開発が
進められ実用化に至っている。
(B) Prior Art In recent years, active matrix liquid crystal display devices using TFT arrays have been developed and put into practical use as displays for televisions.

このような液晶表示装置は電圧印加による液晶特性劣化
に起因する表示品質の低下を防止するために、印加され
る映像信号の極性を1フイールド毎に反転する交流駆動
が採用されているし特公昭61−18755号]。
In order to prevent deterioration in display quality due to deterioration of liquid crystal characteristics due to voltage application, such liquid crystal display devices employ AC drive in which the polarity of the applied video signal is reversed for each field. No. 61-18755].

史に、このような交流駆動に於て、TPTのゲート・ソ
ース間にある容量成分によって交流の映像信号にレベル
低下が生じるの考慮して、第4図に示すように、対向電
極電位Vcより一定電圧レベル高い映像信号Vdを画素
電極に印加することの提案がなされている[特開昭61
−116392号]。斯る駆動方法では、第4図から明
らかな様に、対向電極レベルより高いドレイン基準電圧
を持つ映像信号Vdの最大値は、極性が正、負のいずれ
においても同一の振幅となっている。
Historically, in such AC driving, in consideration of the fact that the level of the AC video signal decreases due to the capacitance component between the gate and source of the TPT, as shown in Figure 4, the potential of the counter electrode is lower than Vc. It has been proposed to apply a video signal Vd with a constant high voltage level to the pixel electrode [JP-A-61
-116392]. In such a driving method, as is clear from FIG. 4, the maximum value of the video signal Vd having a drain reference voltage higher than the counter electrode level has the same amplitude whether the polarity is positive or negative.

しかしながら、このような従来の駆動方法は、TPTが
、常に、安定したスイッチング動作を行う乙のとの考え
の上に成り立つものであり、テレビ用の液晶表示装置に
利用するTPTは、その使用]二、バックライトや、外
光等による光照射を受けるために、以下の如き不都合を
生じる。
However, such conventional driving methods are based on the idea that the TPT always performs stable switching operations, and the TPT used in liquid crystal display devices for televisions is based on the idea that the TPT always performs stable switching operation. Second, the following inconveniences occur because the device is exposed to light irradiation from a backlight, external light, etc.

即ち、TPTの活性層はアモルファスの如き非結晶半導
体膜であるため、光照射によりフォト・キャリアが発生
し、OFF電流の増加が生じて、ソース・ドレイン間電
流がオーミック電流から非オーミツク電流に変化する不
都合があった。
That is, since the active layer of TPT is a non-crystalline semiconductor film such as amorphous, photocarriers are generated by light irradiation, the OFF current increases, and the source-drain current changes from an ohmic current to a non-ohmic current. There was an inconvenience.

従来、光対策としては、TPTの半導体の膜厚を薄くす
ることや、半導体の光感度を小さくするために、光学的
なバンドギャップが大きい半導体材料を選んでTPTを
構成する試みがなされた。
Conventionally, as measures against light, attempts have been made to reduce the thickness of the semiconductor of the TPT and to select a semiconductor material with a large optical band gap to construct the TPT in order to reduce the photosensitivity of the semiconductor.

また、構造的な光対策としては、TPTのチャネルの上
部に遮光膜を形成するのが一般的である。
Furthermore, as a structural measure against light, it is common to form a light-shielding film over the channel of the TPT.

(ハ)発明が解決しようとする課題 アクティブマトリクス型液晶表示装置のTPTの光対策
としての上述のような半導体の薄膜化やワイド・バンド
ギャップ化は、TFT自体の特性を端本的に犠牲にする
ものであり、根本的な解決にはならない。また、TPT
に遮光膜を設ける構造は1.プロセスを複雑にし、液晶
表示装置の歩留まりの低下を引き起こす。
(c) Problems to be Solved by the Invention The thinning and widening of the semiconductor film and widening of the bandgap as described above as a countermeasure against light in the TPT of an active matrix liquid crystal display device essentially sacrifices the characteristics of the TFT itself. However, it is not a fundamental solution. Also, TPT
The structure in which a light shielding film is provided is 1. This complicates the process and causes a decrease in the yield of liquid crystal display devices.

本発明は、以上に鑑みなされたもので、所定の条件を満
たす駆動条件を提供することにより、従来の構造的な光
対策手段を必要としないで、光対策を実現できる駆動方
法を提供するものである。
The present invention has been made in view of the above, and provides a driving method that can realize light countermeasures without requiring conventional structural light countermeasure means by providing drive conditions that satisfy predetermined conditions. It is.

(ニ)課題を解決するための手段 本発明の液晶表示装置の駆動方法は、TPTを備えたア
クティブマトリクス型液晶表示装置の駆動方法であって
、対向電極の電位に対して所定周期で極性反転すると共
に各極性の最大値をその極性によって異ならしめた映像
信号をTPTを介して画Xi極に印加するものである。
(d) Means for Solving the Problems The method for driving a liquid crystal display device of the present invention is a method for driving an active matrix type liquid crystal display device equipped with a TPT, in which polarity is reversed at a predetermined period with respect to the potential of a counter electrode. At the same time, a video signal in which the maximum value of each polarity differs depending on the polarity is applied to the image Xi pole via the TPT.

(ホ)作用 本発明によれば、極性の最大値をその極性によって異な
らしめた映像信号を用いることにより、TPTの半導体
への光入射に原因するソース・ドレイン間を流のメカニ
ズムがオーミック電流から非オーミツク電流に変化する
のを防止でき、光照射による悪影響を回避することがで
きる。
(e) Effect According to the present invention, by using a video signal whose maximum polarity differs depending on the polarity, the mechanism of flow between the source and drain caused by light incident on the TPT semiconductor can be prevented from ohmic current. It is possible to prevent the current from changing to a non-ohmic current, and avoid the adverse effects of light irradiation.

(へ)実施例 本出願人は非結晶半導体からなるTPTの光照射による
悪影響を調べるためにTPTの光感度特性を測定した。
(f) Example The present applicant measured the photosensitivity characteristics of TPT made of an amorphous semiconductor in order to investigate the adverse effects of light irradiation on the TPT.

第2図は、アモルファス・シリコン(以下a −5iと
称する)からなるTFTの光照射下におけるOFF状態
のドレイン電流1dとドレイン電圧Vdとの関係をゲー
トを圧Vgをパラメータとしてグラフ化したものであり
、同図(a)はドレイン電圧Vdが正、同図(b)はド
レイン電圧Vdが負の条件を示している。
Figure 2 is a graph showing the relationship between the drain current 1d and the drain voltage Vd in the OFF state of a TFT made of amorphous silicon (hereinafter referred to as a-5i) under light irradiation, using the gate voltage Vg as a parameter. 2, (a) shows a condition in which the drain voltage Vd is positive, and (b) in the same figure shows a condition in which the drain voltage Vd is negative.

同図の測定に用いたTPTはチャンネル長が1011m
、チャンネル幅が70μmであり、その測定回路は第3
図に示した如く、TPTに光Bを照射した状態で、ドレ
イン電流1dとドレイン電圧Vdとゲート電圧Vg計測
できるものとした。
The TPT used for the measurements in the same figure has a channel length of 1011 m.
, the channel width is 70 μm, and the measurement circuit is the third one.
As shown in the figure, it was assumed that a drain current 1d, a drain voltage Vd, and a gate voltage Vg could be measured while the TPT was irradiated with light B.

尚、第3図の(G)はゲート、(D)はドレイン、(S
)はソース、(A)は電流計である。
In addition, (G) in Fig. 3 is the gate, (D) is the drain, and (S
) is the source, and (A) is the ammeter.

第2図の両図のデータより明らがな如く、ドレイン電圧
Vdは、正の場合、光照射下においてもVdとIdはリ
ニアな関係にあるが、ドレイン電圧Vdが負の場合、ド
レイン電圧Vdの変化に対してドレイン電流1dが急峻
に立ち上がる。
As is clear from the data in both figures in Figure 2, when the drain voltage Vd is positive, Vd and Id have a linear relationship even under light irradiation, but when the drain voltage Vd is negative, the drain voltage The drain current 1d rises steeply in response to a change in Vd.

これらの現象は、非結晶半導体のキャリア輸送に起因す
るものである。つまり 例として用いたa−5iは、非
晶質材料の高抵抗半導体であるため、接触する金属電極
がらのキャリアの注入及び光照射により、従来の単結晶
シリコン(以下a −5iと祢する)に代表される低抵
抗材料と異なったキャリア輸送を示す。先に示したa−
5i T FTは、一般にnチャンネルで用いられるた
め、ソース、ドレインにおける金属電極とのオーミック
を形成するため、半導体と金属を極との間に高濃度にP
(リン)などの不純物をドーピングしたn型半導体を形
成する。このため、ドレイン・ソース間は、構造上n−
1−n接合構造となり、ドレイン電圧Vdが印加される
とドレイン・ソース間の電界強度によって、オーミック
電流から非オーミツク電流へと変化することになる。こ
のような変化を招く条件は、i層の膜厚や、TPTのチ
ャネル長によって変化し、さらにゲートに印加される電
圧によっても変化する。
These phenomena are caused by carrier transport in amorphous semiconductors. In other words, since the a-5i used as an example is a high-resistance semiconductor made of an amorphous material, it can be made from conventional single-crystal silicon (hereinafter referred to as a-5i) by injection of carriers through the contacting metal electrode and light irradiation. This shows different carrier transport with low-resistivity materials represented by . a- shown earlier
5i T FT is generally used as an n-channel, so in order to form an ohmic relationship with the metal electrodes at the source and drain, a high concentration of P is applied between the semiconductor and the metal electrode.
An n-type semiconductor doped with an impurity such as (phosphorus) is formed. Therefore, the distance between the drain and source is n-
It has a 1-n junction structure, and when a drain voltage Vd is applied, the ohmic current changes to a non-ohmic current depending on the electric field strength between the drain and source. Conditions that cause such a change vary depending on the thickness of the i-layer and the channel length of the TPT, and further vary depending on the voltage applied to the gate.

しかしながら、第21ffi (b)で判るようにドレ
イン電圧Vdが負の場合においても、その絶対値を小さ
くすることによって、非オーミツク電流への移行を防止
することができるのである。
However, as seen in the 21st ffi (b), even when the drain voltage Vd is negative, the transition to a non-ohmic current can be prevented by reducing its absolute value.

本発明は上述の如き測定結果に基ずいてなされたもので
あり、第1図に本発明の液晶表示装置の駆動方法を採用
した駆動信号図を示す。
The present invention has been made based on the above-mentioned measurement results, and FIG. 1 shows a drive signal diagram employing the method for driving a liquid crystal display device of the present invention.

同図の駆動方法を用いた液晶表示装置のTPTは上述の
TPT [チャンネル長:10μm、チャンネル幅ニア
0μm]と同じであり、第4図の如き従来の駆動方法に
よれば、ゲー)OFF電圧が−10〜−15Vの範囲で
、かつドレイン電圧が絶対値でIOVの範囲で主に用い
られるものである。
The TPT of the liquid crystal display device using the driving method shown in the figure is the same as the above-mentioned TPT [channel length: 10 μm, channel width near 0 μm], and according to the conventional driving method as shown in FIG. is in the range of -10 to -15V, and the drain voltage is mainly used in the range of IOV in absolute value.

斯様な条件に本発明の駆動方法を採用したならば、第2
図の特性により、第1図に示す如くドレイン電圧Vdの
正電圧の最大値10Vに対して、ドレイン電圧Vdの負
電圧の最大値を約−3vとすることにより、I−V特性
が略リニアと見做せドレイン電圧Vdの負電圧領域を使
用できる。
If the driving method of the present invention is adopted under such conditions, the second
According to the characteristics shown in the figure, by setting the maximum value of the negative voltage of the drain voltage Vd to about -3V with respect to the maximum value of the positive voltage of the drain voltage Vd of 10V as shown in Fig. 1, the IV characteristic becomes approximately linear. Considering this, a negative voltage region of the drain voltage Vd can be used.

しかも、ドレイン電圧Vdの正電圧の最大1jE10V
時のドレイン電流1d(OFF電流)とドレイン電圧V
dの負電圧の最大値−3v時のドレイン電流1d(OF
F電流)のオーダーがほぼ等しイ(] Q −” −I
 Q−’)ノテ、トレイン電圧Vd、即ち、交流(フレ
ーム反転あるいはフィールド反転)の映像信号の極性の
正負にかかわらず、TPTを同特性で駆動動作させるこ
とができる。
Moreover, the maximum positive voltage of the drain voltage Vd is 1jE10V.
Drain current 1d (OFF current) and drain voltage V
Drain current 1d (OF
The order of F current) is almost equal to A(]Q −” −I
Q-') The TPT can be driven with the same characteristics regardless of whether the polarity of the train voltage Vd, that is, the AC (frame inversion or field inversion) video signal is positive or negative.

以上の説明では、第4図に基ずいて、ドレイン基準レベ
ルと対向電極レベルとが等しい場合について例示したが
、本発明においては必ずしも上記両レベルを一致せしめ
る必要はない。
In the above description, the case where the drain reference level and the counter electrode level are equal is exemplified based on FIG. 4, but in the present invention, it is not always necessary to make the above two levels equal.

また、本発明は、これまで、ドレイン電圧Vdの正負夫
々の状態でのデー1−OFF!圧を同じものとして説明
したが、第2図から判るように、負の場合のみのデー1
−OFF電圧の絶対値を大きくすることも、同時に行う
ことによって、本発明の効果をよりよく引き出すことが
可能である。
In addition, the present invention has been developed so far that data 1-OFF! in positive and negative states of the drain voltage Vd! The explanation was given assuming that the pressures are the same, but as you can see from Figure 2, data 1 is only for negative cases.
By simultaneously increasing the absolute value of the -OFF voltage, it is possible to better bring out the effects of the present invention.

以上に説明した駆動方法は、光照射が定常的に行われる
液晶テレビなどの液晶表示装置に有効であるが、強い光
照射の光透過型としての使用と弱い光照射の反射型とし
ての使用が選択できる液晶表示装置に対しては、ドレイ
ン電圧Vdの負領域での電圧を使用状況に応じて、自動
的に変更できる様にすることも可能である。例えば、液
晶テレビのバックライトを点灯したとき、これと同時に
」−記ドレイン電圧Vdとして供給される映像信号の負
領域の値の絶対値を圧縮する電圧変換回路、あるいは電
圧切換回路を設けることができる。
The driving method described above is effective for liquid crystal display devices such as LCD televisions where light irradiation is performed regularly, but it can be used as a light transmission type with strong light irradiation and as a reflection type with weak light irradiation. For selectable liquid crystal display devices, it is also possible to automatically change the voltage in the negative region of the drain voltage Vd depending on the usage situation. For example, when the backlight of an LCD TV is turned on, it is possible to provide a voltage conversion circuit or a voltage switching circuit that simultaneously compresses the absolute value of the negative region value of the video signal supplied as the drain voltage Vd. can.

(ト)発明の効果 本発明の液晶表示装置の駆動方法によれば、アクティブ
マトリクスのTPTの交流駆動のための映像信号の負極
性電圧、即ち、負の場合のドレイン電圧の絶対値を小さ
くするだけで、光に対するTPTへの悪影響を極めて小
さくすることができる。さらに本発明では、TPTの光
に対する初期特性の影響を調べることによって、光照射
を考慮したドレイン電圧の電圧値を決定することが可能
であるため、TPTの初期の設計を同等複雑にする危t
lLはない。また、本発明によればTPTの材質、構造
、プロセスを全く変更する必要がない。
(G) Effects of the Invention According to the method for driving a liquid crystal display device of the present invention, the negative polarity voltage of the video signal for AC driving of the active matrix TPT, that is, the absolute value of the drain voltage in the negative case, is reduced. By simply using this method, the adverse effect of light on the TPT can be extremely minimized. Furthermore, in the present invention, by examining the influence of the initial characteristics of the TPT on light, it is possible to determine the voltage value of the drain voltage in consideration of light irradiation, so there is no risk of making the initial design of the TPT equally complicated.
There is no LL. Furthermore, according to the present invention, there is no need to change the material, structure, or process of TPT at all.

従って、本発明を強烈な光がTPTに照射されると考え
られる液晶表示装置使用の元型プロジェクションで実施
すれば、その効果は大きい。
Therefore, if the present invention is implemented in a prototype projection using a liquid crystal display device in which intense light is thought to be irradiated onto the TPT, the effect will be significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶表示装置の駆動方法法を例示する
駆動信号波形図、第2図(a)(b)はそれぞれTPT
のI−V特性図、第3図は測定回路図、第4図は従来の
駆動方法を示す駆動信号波形図である。 G・・・ゲート、D・・・ドレイン、S・・・ソース、
A・・・it流計、B・・・光、Vd・・・ドレイン電
圧、Id・・・ドレイン゛lii iWt、Vg・・ゲ
ート電圧。 第1図 第3図 第4図
FIG. 1 is a drive signal waveform diagram illustrating the driving method of the liquid crystal display device of the present invention, and FIGS. 2(a) and (b) are TPT
FIG. 3 is a measurement circuit diagram, and FIG. 4 is a drive signal waveform diagram showing a conventional drive method. G...gate, D...drain, S...source,
A...it current meter, B...light, Vd...drain voltage, Id...drain iWt, Vg...gate voltage. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に複数の表示画素をマトリクス配置し
て該表示画素に夫々薄膜トランジスタを結合してなる画
素電極基板に対向電極を備えた対向電極基板を対向させ
てなり、両基板間に液晶物質を充填したアクティブマト
リクス型液晶表示装置の駆動方法に於て、 上記対向電極の電位に対して所定周期で極性反転すると
共に各極性の最大値をその極性によって異ならしめた映
像信号を上記薄膜トランジスタを介して上記画素電極に
印加することを特徴とした駆動方法。
(1) A pixel electrode substrate formed by arranging a plurality of display pixels in a matrix on an insulating substrate and coupling a thin film transistor to each display pixel is opposed to a counter electrode substrate equipped with a counter electrode, and a liquid crystal display is placed between the two substrates. In a method for driving an active matrix type liquid crystal display device filled with a substance, a video signal whose polarity is reversed at a predetermined period with respect to the potential of the counter electrode and whose maximum value of each polarity is made different depending on the polarity is transmitted to the thin film transistor. A driving method characterized in that the voltage is applied to the pixel electrode via the pixel electrode.
JP32106588A 1988-12-20 1988-12-20 Driving method for liquid crystal display device Pending JPH02165118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32106588A JPH02165118A (en) 1988-12-20 1988-12-20 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32106588A JPH02165118A (en) 1988-12-20 1988-12-20 Driving method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH02165118A true JPH02165118A (en) 1990-06-26

Family

ID=18128413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32106588A Pending JPH02165118A (en) 1988-12-20 1988-12-20 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH02165118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215613A (en) * 2013-04-22 2014-11-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display apparatus, and driving method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211829A (en) * 1985-03-28 1987-01-20 Toshiba Corp Active matrix type liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211829A (en) * 1985-03-28 1987-01-20 Toshiba Corp Active matrix type liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215613A (en) * 2013-04-22 2014-11-17 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Display apparatus, and driving method for the same
US9972237B2 (en) 2013-04-22 2018-05-15 Samsung Display Co., Ltd. Display device and driving method thereof

Similar Documents

Publication Publication Date Title
US4818077A (en) Ferroelectric liquid crystal device and method of driving the same
US5414283A (en) TFT with reduced parasitic capacitance
US6108065A (en) Parallel field liquid crystal display with counter electrodes connected to the scan lines
JP3906090B2 (en) Liquid crystal display
KR100551589B1 (en) Method of image sticking measurement of liquid crystal display
US6795142B2 (en) Liquid crystal display device having first color pixel with different Channel width/length ratio than second color pixel
US6377328B1 (en) Liquid crystal display device
KR19990014880A (en) Display device
US20130069855A1 (en) Liquid crystal display device
US20200393722A1 (en) Display panel
US6603160B1 (en) MOS capacitor, liquid crystal display, integrated circuit and method of manufacture thereof
JPH07191304A (en) Liquid crystal electrooptical device
JPH02165118A (en) Driving method for liquid crystal display device
US20030218699A1 (en) Liquid crystal display device having sunken gate electrode and fabricating method thereof
US5373378A (en) Active matrix type liquid crystal display device with peripheral pixel electrodes attached directly to signal lines
JPH01291216A (en) Active matrix type liquid crystal display device
JPH05249502A (en) Antiferroelectric liquid crystal display element
US7038644B2 (en) Apparatus for applying OFF-state stress to P-MOS device
KR102283919B1 (en) Liquid crystal display
KR101278899B1 (en) Active photosensing pixel
JPH1096896A (en) Display element device and method for driving display element
JPH06194624A (en) Driving method for ferroelectric liquid crystal display element
US5739878A (en) Liquid crystal display having common electrode with portions removed at thin film transistors
JPH02304532A (en) Active matrix type liquid crystal display device
JPH0795161B2 (en) Driving method for liquid crystal display device