JPH02165116A - Phase control method for semiconductor laser with external fiber resonator - Google Patents

Phase control method for semiconductor laser with external fiber resonator

Info

Publication number
JPH02165116A
JPH02165116A JP31952888A JP31952888A JPH02165116A JP H02165116 A JPH02165116 A JP H02165116A JP 31952888 A JP31952888 A JP 31952888A JP 31952888 A JP31952888 A JP 31952888A JP H02165116 A JPH02165116 A JP H02165116A
Authority
JP
Japan
Prior art keywords
optical fiber
semiconductor laser
phase control
pressure
stably
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31952888A
Other languages
Japanese (ja)
Inventor
Hideyuki Miyata
英之 宮田
Hiroshi Onaka
寛 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31952888A priority Critical patent/JPH02165116A/en
Publication of JPH02165116A publication Critical patent/JPH02165116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To stably maintain the characteristic of a semiconductor laser, and also, to stably and simply execute the assembly thermally and mechanically by fixing in advance its own optical fiber being an external resonator against the semiconductor laser, and applying pressure to a part of this optical fiber. CONSTITUTION:In a state that an optical fiber 2 is fixed and supported by a fixing member 12 of the lower side, the length is varied by applying an electric field to a piezoelectric element 13, and pressure is applied to the optical fiber 2 by its expanding force. In such a case, magnitude of the electric field applied to the piezoelectric element 13 is adjusted so that desired pressure is applied to the optical fiber 2. When pressure is applied to the optical fiber 2 in such a way, a refractive index in the optical fiber 2 is varied (photoelastic effect). By following it up, the optical path length of the optical fiber 2 is varied, therefore, a phase control of a propagation light can be executed. Therefore, the characteristic of a semiconductor laser 1 can be held stably, and also, the phase control can be executed stably and easily, and thermally and mechanically.

Description

【発明の詳細な説明】 〔概   要〕 外部に光フアイバ型の光共振器を持つ半導体レーザにお
ける上記共振器中を伝搬する光の位相制御方法に関し、 半導体レーザの特性を安定に保つことができ、しかも熱
的及び機械的に安定、かつ簡単に位相制御できることを
目的とし、 ファイバ外部共振器付半導体レーザのファイバ外部共振
器中を伝搬する光の位相を、該ファイバ外部共振器に圧
力を付加することによって制御するように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for controlling the phase of light propagating in the resonator in a semiconductor laser having an external optical fiber type optical resonator, the characteristics of the semiconductor laser can be kept stable. In addition, the purpose is to be thermally and mechanically stable and to easily control the phase, and to control the phase of light propagating in the fiber external cavity of a semiconductor laser with a fiber external cavity by applying pressure to the fiber external cavity. Configure it to be controlled by

(産業上の利用分野) 本発明は、外部に光フアイバ型の光共振器を持つ半導体
レーザにおける上記共振器中を伝搬する光の位相制御方
法に関する。
(Industrial Application Field) The present invention relates to a method for controlling the phase of light propagating in a semiconductor laser having an external optical fiber type optical resonator.

近年、光の波としての性質を用いた計測や通信が行われ
るようになった。このような計測や通信の分野において
は、半導体レーザの外部に光共振器を付加し、スペクト
ル線幅を狭くした光源が用いられる。この場合、上記光
共振器中を伝搬する光の位相は、精度良く制御される必
要がある。
In recent years, measurements and communications using the properties of light as waves have come to be carried out. In such fields of measurement and communication, light sources are used in which an optical resonator is added to the outside of a semiconductor laser to narrow the spectral linewidth. In this case, the phase of the light propagating in the optical resonator needs to be controlled with high precision.

〔従来の技術〕[Conventional technology]

従来、上述した光共振器中を伝搬する光の位相制御は、
第4図に示すようにして行っていた。すなわち、半導体
レーザ1に対して、その外部に設けられた共振器である
光ファイバ2そのものを矢印入方向に機械的に動かし、
共振器長を変化させることによって、位相を制御してい
た。
Conventionally, the phase control of light propagating in the optical resonator described above is
This was done as shown in Figure 4. That is, the optical fiber 2 itself, which is a resonator provided outside the semiconductor laser 1, is mechanically moved in the direction of the arrow.
The phase was controlled by changing the resonator length.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の位相制御方法では、以下のような問題点
があった。
The conventional phase control method described above has the following problems.

(1)半導体レーザlと光ファイバ2の光結合の状態が
変わるため、光帰還量が変化し、半導体レーザ1の特性
が不安定となる。
(1) Since the state of optical coupling between the semiconductor laser 1 and the optical fiber 2 changes, the amount of optical feedback changes and the characteristics of the semiconductor laser 1 become unstable.

(11)光ファイバ2を再現性良く、かつ精度良く微動
するのが困難である。
(11) It is difficult to slightly move the optical fiber 2 with good reproducibility and accuracy.

(iii)熱的及び機械的に安定にアセンブリするのが
困難である。
(iii) difficult to assemble in a thermally and mechanically stable manner;

本発明は、半導体レーザの特性を安定に保つことができ
、しかも熱的及び機械的に安定、かつ簡単に位相制御で
きるようにすることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to maintain stable characteristics of a semiconductor laser, to make it thermally and mechanically stable, and to easily control the phase.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は、本発明の原理説明図である。 FIG. 1 is a diagram explaining the principle of the present invention.

同図において、半導体レーザ1に対し、外部共振器であ
る光ファイバ2自体は固定しておき、この光ファイバ2
の一部に圧力を加えることにより、伝搬光の位相制御を
行う。
In the figure, the optical fiber 2 itself, which is an external resonator, is fixed to the semiconductor laser 1.
The phase of propagating light is controlled by applying pressure to a part of the beam.

〔作  用〕[For production]

光ファイバは弾性体なので、これに圧力を加えると、光
フアイバ内の屈折率が変化する(光弾性効果)、すると
、これに伴って光ファイバの光路長が変化するので、伝
搬光の位相制御が可能になる。この作用について、以下
に具体的な数式を用いて説明する。
Since an optical fiber is an elastic body, when pressure is applied to it, the refractive index within the optical fiber changes (photoelastic effect), and the optical path length of the optical fiber changes accordingly, which can be used to control the phase of propagating light. becomes possible. This effect will be explained below using specific mathematical formulas.

ここでは、第2図に示すような簡単なモデルについて検
討を行ってみる。
Here, we will consider a simple model as shown in Figure 2.

同図において、光ファイバ2は、コアとクラッドのヤン
グ率及びポアソン比は極めて近いので、近似的に一層の
誘電体ロッドと考えることができる。そこで、同図(a
)に示すように、薄い円板に一方向から力が加わったも
のと考えると、この時の中心付近の主応力成分σ8、σ
y  (kg/mm” )は、以下の式で表すことがで
きる(波平他「光ファイバの伝送特性に及ぼす機械的圧
力の影響」信学技報、0QE−76−43(1976)
参照)。
In the figure, since the Young's modulus and Poisson's ratio of the core and cladding of the optical fiber 2 are very close, it can be approximately considered to be one layer of dielectric rod. Therefore, the same figure (a
), if we consider that a force is applied to a thin disk from one direction, then the principal stress components near the center σ8, σ
y (kg/mm”) can be expressed by the following formula (Namihira et al., “Effect of Mechanical Pressure on Transmission Characteristics of Optical Fibers,” IEICE Technical Report, 0QE-76-43 (1976)
reference).

σ、  =−3r/πa σ、=r/πa ・ ・ ・(1) ・ ・ ・(2) ここで、fは単位長当たりの外力(kg/mm)であり
、aはクラッドの半径(mm)である。なお、光のエネ
ルギーはコア(中心)に集中しているため、このような
二次元の弾性問題では、材料の弾性定数の値は応力分布
に無関係となる。
σ, = -3r/πa σ, = r/πa ・ ・ ・(1) ・ ・ ・(2) Here, f is the external force per unit length (kg/mm), and a is the radius of the cladding (mm ). Note that since the energy of light is concentrated in the core (center), in such two-dimensional elasticity problems, the value of the elastic constant of the material is unrelated to the stress distribution.

一方、応力σ8、σ、と、その方向に偏波している光に
対する屈折率の変化Δnx、Δn、との間には、次のよ
うな関係がある(辻他「光弾性実験法」日刊工業社 参
照)。
On the other hand, there is the following relationship between the stress σ8, σ and the change in refractive index Δnx, Δn for light polarized in that direction (Tsuji et al., "Photoelastic Experimental Method", Daily Journal Kogyosha (see Kogyosha).

Δn、=c、  σ、+C2σx      l ・ 
・(4)ここで、CIは直接光弾性係数であり、C2は
横光弾性係数である。なお、主応力と主屈折率の方向は
一致する。
Δn, = c, σ, +C2σx l ・
-(4) Here, CI is the direct photoelastic coefficient, and C2 is the transverse photoelastic coefficient. Note that the directions of the principal stress and the principal refractive index coincide.

式(])、(2)を式(3)、(4)に代入することに
より、Δnx  −−3c、  (f/ia)十cz(
f/πa) = (f/ga)(−3c+  +Cz  )・ ・(
5) Δny=c+(f/πa) 3C2(f/πa) =  (f/Wa)(C1−3C2)−−・(6)が得
られる。
By substituting equations (]) and (2) into equations (3) and (4), Δnx −−3c, (f/ia) ten cz(
f/πa) = (f/ga)(-3c+ +Cz)・・(
5) Δny=c+(f/πa) 3C2(f/πa)=(f/Wa)(C1-3C2)---(6) is obtained.

そこで、Xまたはy方向に直線偏波した光を入射した場
合、往復の光路長変化Δ!8、ΔN、は、以下の式で表
すことができる。
Therefore, when linearly polarized light in the X or Y direction is incident, the round trip optical path length change Δ! 8, ΔN, can be expressed by the following formula.

Δnx =(、e、+C2a、       ・ ・ 
・(3)Δf、=2Δn、  1 =2  (f/za)(−3Ci  +C2)  Q・
(7) Δf、=2Δn、  1 =2  (f/πa)(c+   3 C2)  1・
 ・ ・(8) 従って、この場合の位相のシフl−1Δφ8、Δφアは
、光の波長をλとすると、 Δφ8=ΔI1.  (2π/λ) =2 (f/πa)(−3c、 十c2) 1× (2
π/λ)・ ・ ・(9) Δφア=Δf、  (2π/λ) =2  (f /lt a)(c+  −3cz ) 
 1× (2π/λ)・ ・ ・00) となる。
Δnx = (, e, +C2a, ・ ・
・(3) Δf, = 2Δn, 1 = 2 (f/za) (-3Ci +C2) Q・
(7) Δf, = 2Δn, 1 = 2 (f/πa) (c+ 3 C2) 1.
・・(8) Therefore, the phase shift l-1Δφ8, Δφa in this case is as follows, where λ is the wavelength of light. Δφ8=ΔI1. (2π/λ) = 2 (f/πa) (-3c, +c2) 1× (2
π/λ)・・・・(9) Δφa=Δf, (2π/λ) =2 (f/lt a)(c+ -3cz)
1× (2π/λ)・・・00).

ここで、例えば、 とすると、式(9)、00)はそれぞれ、Δφ、  =
2(f/πx  (125/2) x 1O−3)x(
3x6.7  xlO−’−4.11xlO−’)X5
 xto−’X(2π/ 1.55X 10−’)=−
1,38fπ            ・ ・ ・(1
0Δφ、  =2(f/πX  (125/2) X 
10−’)X(−6,7Xl0−6+3 X4.11X
10−’)X5 Xl0−”X(2π/ 1.55x 
10−’)=7.66 fπ            
 ・ ・ ・021となる。
Here, for example, if , equations (9) and 00) are Δφ, =
2(f/πx (125/2) x 1O-3)x(
3x6.7xlO-'-4.11xlO-')X5
xto-'X(2π/ 1.55X 10-')=-
1,38fπ ・ ・ ・(1
0Δφ, =2(f/πX (125/2)
10-')X(-6,7Xl0-6+3 X4.11X
10-')X5 Xl0-"X(2π/ 1.55x
10-')=7.66 fπ
・ ・ ・021.

よって、X方向に偏波した光を2πシフトするために必
要な外力fは、弐〇〇でΔφ8=2πとおくことにより
、 f=1.45  (kg/mm) と求まる。また、X方向に偏波した光を2πシフトする
ために必要な外力fは、弐〇2)でΔφ、=2πとおく
ことにより、 f=0.26  (kg/mm) と求まる。
Therefore, the external force f required to shift the light polarized in the X direction by 2π can be found as f=1.45 (kg/mm) by setting Δφ8=2π in 2〇〇. Further, the external force f required to shift the light polarized in the X direction by 2π can be found as f=0.26 (kg/mm) by setting Δφ = 2π in 2〇2).

以上に述べたことから、光ファイバ2に対して数kg(
実現可能な値)の圧力を付加することで、伝搬光の位相
を2πシフトできることがわかる。
From the above, it is clear that the optical fiber 2 weighs several kg (
It can be seen that the phase of propagating light can be shifted by 2π by applying a pressure of (realizable value).

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は、本発明の一実施例を示す構成図である。FIG. 3 is a configuration diagram showing an embodiment of the present invention.

同図において、半導体レーザ1の外部には、−方の端面
2aがテーパ先球化され、かつもう一方の端面2bに反
射膜の形成された光ファイバ2が光共振器として配置さ
れている。そして、この光ファイバ2の一部に、これを
半径方向に加圧するための手段として、上側及び下側の
固定部材11.12と、上記上側の固定部材11と光フ
ァイバ2との間に配置されたPZT等の圧電素子13と
が設けられている。
In the figure, outside the semiconductor laser 1, an optical fiber 2 is disposed as an optical resonator, the negative end surface 2a of which is tapered to a spherical end, and the other end surface 2b of which is provided with a reflective film. Upper and lower fixing members 11 and 12 are arranged between the upper fixing member 11 and the optical fiber 2 as means for applying pressure to a part of the optical fiber 2 in the radial direction. A piezoelectric element 13 made of PZT or the like is provided.

本実施例においては、下側の固定部材I2で光ファイバ
2を固定支持した状態で、圧電素子13に電界を印加し
て長さを変化させ、その伸長する力によって光ファイバ
2に圧力を加える。この際、光ファイバ2に所望の圧力
(例えば、数kg程度)が加わるように、圧電素子13
に印加する電界の大きさを調整する。このようにして光
ファイバ2に圧力を加えることにより、前述した原理に
基づき、光フアイバ2中の伝搬光の位相を容易に制御す
ることができる。
In this embodiment, with the optical fiber 2 fixedly supported by the lower fixing member I2, an electric field is applied to the piezoelectric element 13 to change the length, and pressure is applied to the optical fiber 2 by the elongating force. . At this time, the piezoelectric element 13 is used so that a desired pressure (for example, about several kg) is applied to the optical fiber 2.
Adjust the magnitude of the electric field applied to the By applying pressure to the optical fiber 2 in this manner, the phase of the light propagating in the optical fiber 2 can be easily controlled based on the principle described above.

以上に述べたように、本実施例によれば、光ファイバ2
を固定した状態で位相を制御できるため、熱的にも機械
的にも安定に、しかも簡単にアセンブリできる。また、
半導体レーザ1と光ファイバ2との位置関係が変わらな
いため、光結合状態も変化することがなく、よって半導
体レーザ1の特性を安定に維持することができる。
As described above, according to this embodiment, the optical fiber 2
Since the phase can be controlled while the phase is fixed, it is thermally and mechanically stable and can be easily assembled. Also,
Since the positional relationship between the semiconductor laser 1 and the optical fiber 2 does not change, the optical coupling state also does not change, so that the characteristics of the semiconductor laser 1 can be stably maintained.

なお、光ファイバを加圧するための手段として、上記実
施例では固定部材11.12及び圧電素子l3を用いた
が、その他の手段を用いて圧力を付加するようにしても
よい。
Although the fixing members 11, 12 and the piezoelectric element 13 are used in the above embodiment as means for pressurizing the optical fiber, other means may be used to apply pressure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、半導体レーザの
特性を安定に維持でき、しかも熱的及び機械的にも安定
、かつ簡単にアセンブリすることができ、極めて精度の
良い位相制御を可能にする。
As explained above, according to the present invention, the characteristics of a semiconductor laser can be maintained stably, it is thermally and mechanically stable, it can be assembled easily, and extremely accurate phase control is possible. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図(a)、 (b)は本発明の詳細な説明するため
の図、 第3図は本発明の一実施例を示す構成図、第4図は従来
の位相制御方法を示す構成図である。 1・・・半導体レーザ、 2・・・光ファイバ(外部共振器)、 11.12・・・固定部材、 13・・・圧電素子。 本発明め作用有説嘆tはめの目 wJ 2 図 参会日月の、原理畜’L明圓 第1図 本発明の一実捻例を示ト溝族゛図 第3図 先出力 従、来のイ豆オ巨鵜りお叩方潰を示す橋戸(口笛 図
Fig. 1 is a diagram for explaining the principle of the present invention, Fig. 2 (a) and (b) are diagrams for explaining the present invention in detail, Fig. 3 is a configuration diagram showing an embodiment of the present invention, and Fig. 4 The figure is a block diagram showing a conventional phase control method. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Optical fiber (external resonator), 11.12... Fixing member, 13... Piezoelectric element. 2. Figure 1 shows an example of the twist of the present invention. Figure 3. Hashido (whistle diagram) showing how to beat the next Izuo giant cormorant Rio

Claims (1)

【特許請求の範囲】[Claims]  ファイバ外部共振器付半導体レーザ(1)のファイバ
外部共振器(2)中を伝搬する光の位相を、該ファイバ
外部共振器に圧力を付加することによって制御すること
を特徴とするファイバ外部共振器付半導体レーザの位相
制御方法。
A fiber external resonator characterized in that the phase of light propagating in the fiber external resonator (2) of the fiber external resonator-equipped semiconductor laser (1) is controlled by applying pressure to the fiber external resonator. A method for controlling the phase of a semiconductor laser.
JP31952888A 1988-12-20 1988-12-20 Phase control method for semiconductor laser with external fiber resonator Pending JPH02165116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31952888A JPH02165116A (en) 1988-12-20 1988-12-20 Phase control method for semiconductor laser with external fiber resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31952888A JPH02165116A (en) 1988-12-20 1988-12-20 Phase control method for semiconductor laser with external fiber resonator

Publications (1)

Publication Number Publication Date
JPH02165116A true JPH02165116A (en) 1990-06-26

Family

ID=18111244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31952888A Pending JPH02165116A (en) 1988-12-20 1988-12-20 Phase control method for semiconductor laser with external fiber resonator

Country Status (1)

Country Link
JP (1) JPH02165116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602823B2 (en) 2006-09-01 2009-10-13 Nec Corporation Light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602823B2 (en) 2006-09-01 2009-10-13 Nec Corporation Light-emitting element

Similar Documents

Publication Publication Date Title
US4669814A (en) Single mode, single polarization optical fiber with accessible guiding region and method of forming directional coupler using same
US4784454A (en) Optical fiber and laser interface device
US4606605A (en) Optical fiber having in-line polarization filter
US5091983A (en) Optical modulation apparatus and measurement method
US4668264A (en) Method for making self-aligning optical fiber with accessible guiding region
CA1304970C (en) Polarization maintaining fiber interferometer and method for source stabilization
Pang et al. In-fiber Mach–Zehnder interferometer based on double cladding fibers for refractive index sensor
KR20070062602A (en) Transverse closed-loop resonator
US4997282A (en) Dual fiber optic gyroscope
US4514054A (en) Quadrature fiber-optic interferometer matrix
WO2013132266A2 (en) Optical device
JPH0738488B2 (en) Dielectric optical waveguide device, optical fiber amplifier, optical signal wavelength selection method, and dielectric optical waveguide device manufacturing method
CA1248797A (en) Form birefringent cutoff polarizer
US6816315B1 (en) Optical path length tuner
Sun et al. A new sensor for simultaneous measurement of strain and temperature
Georgiou et al. Low-loss single-mode optical couplers
JPH05181028A (en) Optical ring resonator
EP0260885A2 (en) Dual fiber optic gyroscope
US20020157422A1 (en) Method of making a mach-zehnder interferometer, and related device
US11569431B1 (en) Piezoelectric deformable photonic devices
WO2016169023A1 (en) Single-beam-splitter transmission-type pohotonic crystal fiber resonant cavity
US11073412B2 (en) Subwavelength waveguide opto-mechanical resonator
EP0127257B1 (en) Fiber-optic rotation sensor
JPH02165116A (en) Phase control method for semiconductor laser with external fiber resonator
Farwell et al. 22 fused fiber null couplers with asymmetric waist cross sections for polarization independent (< 0.01 dB) switching