JPH02165091A - Measurement of beam diameter or beam edge resolution - Google Patents

Measurement of beam diameter or beam edge resolution

Info

Publication number
JPH02165091A
JPH02165091A JP63320885A JP32088588A JPH02165091A JP H02165091 A JPH02165091 A JP H02165091A JP 63320885 A JP63320885 A JP 63320885A JP 32088588 A JP32088588 A JP 32088588A JP H02165091 A JPH02165091 A JP H02165091A
Authority
JP
Japan
Prior art keywords
scanning
electron beam
gold wire
distance
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63320885A
Other languages
Japanese (ja)
Inventor
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Mamoru Nakasuji
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63320885A priority Critical patent/JPH02165091A/en
Publication of JPH02165091A publication Critical patent/JPH02165091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable picking up of an effective signal without being affected by noises by setting an angle theta between a direction of scanning and a tangential to an interface at a value sufficiently less than 90 deg.. CONSTITUTION:An electron beam 7 is deflected with a deflector 1 wherein an applied voltage is changed repeatedly in continuity with a deflection controller 11 with a deflecting voltage controlled by a command from a computer 10 and scans traversing a gold fine line 2 (gold wire 2) so arranged that a diameter position thereof coincides with a height the same as a focal position 3. A relationship between axis-of-abscissa dimensions on a CRT 5 and a moving distance of the electron beam 7 on a focal plane 3 is determined from a thickness (h) of the gold wire 2 and a distance X0 at which a waveform on the CRT 5 traverses 50% at the level thereof. Thus, a beam diameter of the electron beam can be determined by X1/X0h cosec theta. In this case, as a scanning distance is longer by a consec theta factor as compared with the case where the electron beam scans at the right angle of the gold wire 2, higher resolutions are achieved. On the other hand, this results in a larger range of change in a scanning voltage of the deflector 2 thereby making effect of noises hard to suffer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はエネルギービームのビーム径又はビームエツ
ジ分解能を高精度で測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the beam diameter or beam edge resolution of an energy beam with high precision.

〔従来の技術〕[Conventional technology]

従来、電子線等のエネルギービームのビーム径を測定す
る場合、ある境界をほぼ直角に横切る方向へエネルギー
ビームを走査させ、その時境界を介して得られるエネル
ギービームの信号波形からビーム径等を測定していた。
Conventionally, when measuring the beam diameter of an energy beam such as an electron beam, the energy beam is scanned in a direction that crosses a certain boundary at a nearly right angle, and the beam diameter is measured from the signal waveform of the energy beam obtained through the boundary. was.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、ビーム径が小さくなると、走査電源に重
畳された雑音等によって一定値より小さいビーム径では
正確に測定できない問題点があった。
However, as the beam diameter becomes smaller, there is a problem that accurate measurements cannot be made with a beam diameter smaller than a certain value due to noise superimposed on the scanning power supply.

この発明の目的は、0.1 tt m以下のビーム径や
ビームエツジ分解能を走査電圧、あるいはステージの振
動等の影響を受けないで高精度で測定する方法を提供す
ることである。
An object of the present invention is to provide a method for measuring a beam diameter and beam edge resolution of 0.1 tt m or less with high precision without being affected by scanning voltage, stage vibration, etc.

〔課題を解決する為の手段〕[Means to solve problems]

従来、境界と直角方向に走査していたのを改め、境界と
小さい角度をなす方向にビームを走査させる。
Instead of the conventional method of scanning in a direction perpendicular to the boundary, the beam is now scanned in a direction that makes a small angle with the boundary.

すなわち、境界を横切ってエネルギービームを走査した
時に、前記境界を介して得られる前記エネルギービーム
の信号から前記エネルギービームのビーム径又はビーム
エツジ分解能を測定する方法において、前記走査方向と
前記境界の接線方向との為す角度θを90度より十分小
さい角度としたことを特徴とするビーム径又はビームエ
ツジ分解能測定方法、である。
That is, in a method of measuring the beam diameter or beam edge resolution of the energy beam from the signal of the energy beam obtained through the boundary when scanning the energy beam across the boundary, the scanning direction and the tangential direction of the boundary This is a method for measuring beam diameter or beam edge resolution, characterized in that the angle θ formed between the beam diameter and the beam edge resolution is set to be an angle sufficiently smaller than 90 degrees.

〔作  用〕[For production]

本発明においては、ビームの一端が境界に接し始めてか
らビームの他端が境界を離れるまでに、直角に走査する
場合に比し長距離走査されるため、走査期間が長くなり
、雑音の影響を受けることなく有効な信号を取り出すこ
とができる。
In the present invention, from the time one end of the beam starts touching the boundary until the other end of the beam leaves the boundary, a longer distance is scanned than when scanning at right angles, so the scanning period is longer and the influence of noise is reduced. It is possible to extract a valid signal without receiving any signal.

〔実 施 例〕〔Example〕

第2図は本発明の方法を実施するための装置の実施例で
ある。不図示の電子光学系で集束された電子線7はコン
ピュータ10からの指令により偏向電圧を制御される偏
向制御装置11により印加電圧を連続的に繰り返し変化
される偏向器1で偏向され、焦点位置3と同じ高さにそ
の直径位置が一致するよう設けられた金の細線2(以下
、金線2)を横切って走査される。但し、第1図に示し
たように、金線2と走査方向の角度をθ度とするとθく
く90になっている。すなわち、金線2が電子線走査の
X方向にあれば、コンピュタ1oは偏向器1のY方向偏
向器に直線的に変化する信号を印加する一方、X方向偏
向器に角度θに相当する直線的に変化する信号を印加す
る。金線2の下方、十分能れた位置には、金線2より十
分大きい面積の電子線検出器4が設けられ、検出器4か
らの電気信号はコンピュータ10からの指令により制御
される画像処理装置12に入力され、増幅された後、偏
向器1の走査に同期させた1次元の画像信号として画像
メモリに記憶され、画像処理装置12は、画像メモリの
記憶データに基づきコンピュータ10の指令によって、
CRT5に、第3図に図示したような波形を表示させる
FIG. 2 is an embodiment of an apparatus for carrying out the method of the invention. An electron beam 7 focused by an electron optical system (not shown) is deflected by a deflector 1 whose applied voltage is continuously and repeatedly changed by a deflection control device 11 whose deflection voltage is controlled by a command from a computer 10, and the focus position is A thin gold wire 2 (hereinafter referred to as "gold wire 2") is scanned across a thin gold wire 2 (hereinafter referred to as "gold wire 2"), which is provided so that its diameter position coincides with the height of the gold wire 3. However, as shown in FIG. 1, if the angle between the gold wire 2 and the scanning direction is θ degrees, the angle is θ×90. That is, if the gold wire 2 is in the X direction of electron beam scanning, the computer 1o applies a linearly varying signal to the Y direction deflector of the deflector 1, while applying a linearly changing signal to the X direction deflector corresponding to the angle θ. Apply a signal that changes over time. An electron beam detector 4 having a sufficiently larger area than the gold wire 2 is provided below the gold wire 2 at a sufficiently high position, and the electric signal from the detector 4 is processed by image processing controlled by instructions from the computer 10. After being input to the device 12 and amplified, it is stored in the image memory as a one-dimensional image signal synchronized with the scanning of the deflector 1. ,
A waveform as shown in FIG. 3 is displayed on the CRT 5.

これらの回路及び動作は従来のものをそのまま用いるこ
とができる。而して、金線2の大さhと、CRT5上の
波形がそのレベルの50%を横切る距離XO(これは、
焦点面3上で電子17が金線2を横切る移動時間、すな
わち走査電圧の変化量に対応する)からCRT5上の横
軸寸法と焦点面3上での電子線7の移動距離との関係が
求められる。従って、電子線のビーム径は、CRT5上
の波形が90%から10%に変化する横軸距離X。
Conventional circuits and operations can be used as they are. Therefore, the size h of the gold wire 2 and the distance XO at which the waveform on the CRT 5 crosses 50% of its level (this is
The relationship between the horizontal axis dimension on the CRT 5 and the moving distance of the electron beam 7 on the focal plane 3 is determined from Desired. Therefore, the beam diameter of the electron beam is the horizontal axis distance X where the waveform on the CRT 5 changes from 90% to 10%.

から、−h cosec θにて求められる。すなわe ち、上記実施例では、金線2に直角に走査する場合と比
べて、cosecθ倍走査距離が長(なるので、分解能
が向上するわけである。ところで、CRTs上での横軸
距離は走査電圧に対応しているから、走査距離が長くな
ると、ビームが金線2に掛かってから完全に陰れるまで
の時間が多くなるので、その間の偏向器2の走査電圧の
変化幅が大きくなり、雑音の影響を受は難い。
, it is determined by −h cosec θ. In other words, in the above embodiment, the scanning distance is cosecθ times longer than when scanning at right angles to the gold wire 2 (therefore, the resolution is improved. By the way, the horizontal axis distance on CRTs corresponds to the scanning voltage, so as the scanning distance becomes longer, the time from when the beam hits the gold wire 2 to when it is completely hidden increases, so the range of change in the scanning voltage of the deflector 2 during that time increases. Therefore, it is difficult to be affected by noise.

なお、通常は、ビーム径をCRTS上の画面から求める
のではなく、画像処理装置12の画像メモリに記憶され
た画像信号に基づいて、コンピュータ10に演算させる
ことが好ましい。すなわち、コンピュータ10は、まず
画像処理装置12の画像メモリから1次元の画像信号の
最大値と最小値とを求め、画像信号が50%となる立下
り部と立上り部との間隔を、例えば画像メモリの画素数
n。で求め、あらかじめ与えられている金線2の大さh
及び走査方向と金線2の長平方向とのなす角θとから、
画像メモリの1画素当りの焦点位置3上での距離h c
osec θ/ n oを演算する。そして、画像信号
が90%から10%となる立下り部(勿論、画像信号が
10%から90%となる立上り部で考えても同じ)での
間隔(第3図のX、に相当)を画像メモリの画素数nl
で求め、上述の1画素当りの距離h cosec θ/
n0と画素数n、とから、演算nl  −h C08e
Cθ/ n oによって、ビーム径を求め、このビーム
径をCRT5に表示させる。
Note that normally, it is preferable to have the computer 10 calculate the beam diameter based on an image signal stored in the image memory of the image processing device 12, rather than determining the beam diameter from the screen on the CRTS. That is, the computer 10 first obtains the maximum value and minimum value of the one-dimensional image signal from the image memory of the image processing device 12, and calculates the interval between the falling part and the rising part where the image signal becomes 50%, for example, in the image. Number of pixels in memory n. The size h of the gold wire 2 given in advance is calculated by
And from the angle θ between the scanning direction and the longitudinal direction of the gold wire 2,
Distance h c on focal position 3 per pixel of image memory
Calculate osec θ/no. Then, calculate the interval (corresponding to Number of pixels in image memory nl
The distance per pixel h cosec θ/
From n0 and the number of pixels n, calculate nl -h C08e
The beam diameter is determined by Cθ/no, and this beam diameter is displayed on the CRT 5.

なお、以上に説明した金線2は、表面に凹凸のない化の
金属線に置き換えることができ、また、段差等信の境界
に置き換えることもできる。また、電子線の代わりに他
のエネルギービームのビーム径を同様に測定できること
も勿論である。
Note that the gold wire 2 described above can be replaced with a metal wire with no unevenness on the surface, or can be replaced with a border with a level difference or the like. Furthermore, it goes without saying that the beam diameter of other energy beams can be similarly measured instead of the electron beam.

また、第3図のXtは、ビームの周辺部のぼけ具合を表
わすエツジ分解能に対応しており、第3図の波形を微分
して得られる信号からxtは容易に求めることができ、
ビーム径を求めた場合と同様にして真のビーム分解能を
演算することができる。
In addition, Xt in FIG. 3 corresponds to the edge resolution that represents the degree of blur in the peripheral part of the beam, and xt can be easily obtained from the signal obtained by differentiating the waveform in FIG.
The true beam resolution can be calculated in the same way as when calculating the beam diameter.

〔発明の効果〕〔Effect of the invention〕

以上述べた如き本発明によれば、境界に直角に走査する
場合に比べて、走査電圧の変化幅がcosecθ倍にな
るので、逆に、走査電圧の雑音でビーム分解能が決る場
合には、cosec θ倍小さいビーム径迄測定できる
According to the present invention as described above, the variation width of the scanning voltage is multiplied by cosecθ compared to the case of scanning perpendicular to the boundary, so conversely, when the beam resolution is determined by the noise of the scanning voltage, Measurements can be made up to a beam diameter that is θ times smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金線と走査方向との関係を示す図、第2図は本
発明の方法を実施するための装置の概略図、第3図はC
RT上に表示される画像の例、である。 (主要部分の符号の説明) 2・・・金線、6・・・走査方向、7・・・電子線°出
願人 株式会社 ニ コ ン
FIG. 1 is a diagram showing the relationship between the gold wire and the scanning direction, FIG. 2 is a schematic diagram of an apparatus for carrying out the method of the present invention, and FIG. 3 is a diagram showing the relationship between the gold wire and the scanning direction.
This is an example of an image displayed on RT. (Explanation of symbols of main parts) 2...Gold wire, 6...Scanning direction, 7...Electron beam Applicant: Nikon Corporation

Claims (1)

【特許請求の範囲】[Claims] 境界を横切ってエネルギービームを走査した時に、前記
境界を介して得られる前記エネルギービームの信号から
前記エネルギービームのビーム径又はビームエッジ分解
能を測定する方法において、前記走査方向と前記境界の
接線方向との為す角度θを90度より十分小さい角度と
したことを特徴とするビーム径又はビームエッジ分解能
測定方法。
In the method of measuring the beam diameter or beam edge resolution of the energy beam from the energy beam signal obtained through the boundary when the energy beam is scanned across the boundary, the scanning direction and the tangential direction of the boundary A method for measuring beam diameter or beam edge resolution, characterized in that the angle θ formed by is made sufficiently smaller than 90 degrees.
JP63320885A 1988-12-20 1988-12-20 Measurement of beam diameter or beam edge resolution Pending JPH02165091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320885A JPH02165091A (en) 1988-12-20 1988-12-20 Measurement of beam diameter or beam edge resolution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320885A JPH02165091A (en) 1988-12-20 1988-12-20 Measurement of beam diameter or beam edge resolution

Publications (1)

Publication Number Publication Date
JPH02165091A true JPH02165091A (en) 1990-06-26

Family

ID=18126350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320885A Pending JPH02165091A (en) 1988-12-20 1988-12-20 Measurement of beam diameter or beam edge resolution

Country Status (1)

Country Link
JP (1) JPH02165091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267426A (en) * 2014-09-04 2015-01-07 北京大学 Electronic beam spot measuring method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267426A (en) * 2014-09-04 2015-01-07 北京大学 Electronic beam spot measuring method and device

Similar Documents

Publication Publication Date Title
JPS6335094B2 (en)
JPH0324771B2 (en)
JPH0513037A (en) Charged particle beam device and control thereof
JPH04504184A (en) Scanning electron microscope vibration removal system
US6605811B2 (en) Electron beam lithography system and method
US4186412A (en) Apparatus for detecting the position of fine object
JPH02165091A (en) Measurement of beam diameter or beam edge resolution
WO2001069643A1 (en) Charged particle beam scanning device
JP3156694B2 (en) Scanning electron microscope
JPH0458104A (en) Electron beam size measuring instrument
JPS62110248A (en) Correction method for rotational angle and device thereof
JP6995648B2 (en) Measurement inspection equipment
JPS5922325A (en) Electron beam drawing device
GB1597203A (en) Position setting systems using a scanning beam
JP2571110B2 (en) Pattern dimension measuring method and apparatus using charged beam
JP2695797B2 (en) Small size measurement method
JP2786662B2 (en) Charged beam drawing method
JPH0658221B2 (en) Scanning electron microscope
JPH07286842A (en) Method and device for inspecting dimension
JP3194986B2 (en) Mark detection method and device, and electron beam drawing method and device using the same
JPS6120849B2 (en)
JPS6312146A (en) Pattern-dimension measuring apparatus
JPH03289507A (en) Method and apparatus for measuring size of pattern
JPS6376252A (en) Positioning device
JPH02262326A (en) Charged beam pattern drawing method