JPH02164428A - Polysulfone hollow fiber separation membrane - Google Patents

Polysulfone hollow fiber separation membrane

Info

Publication number
JPH02164428A
JPH02164428A JP31938788A JP31938788A JPH02164428A JP H02164428 A JPH02164428 A JP H02164428A JP 31938788 A JP31938788 A JP 31938788A JP 31938788 A JP31938788 A JP 31938788A JP H02164428 A JPH02164428 A JP H02164428A
Authority
JP
Japan
Prior art keywords
membrane
layer
hollow fiber
dense
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31938788A
Other languages
Japanese (ja)
Other versions
JP2905208B2 (en
Inventor
Shoichi Doi
正一 土井
Katsuhiko Hamanaka
克彦 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18109597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02164428(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63319387A priority Critical patent/JP2905208B2/en
Publication of JPH02164428A publication Critical patent/JPH02164428A/en
Application granted granted Critical
Publication of JP2905208B2 publication Critical patent/JP2905208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain a membrane of high fraction molecular weight having inner and outer dense layers of highly reliable fraction by providing pores with an average diameter of 100Angstrom -0.5mum on both inner and outer surfaces and forming a cross section relative to the longitudinal direction of a hollow fiber into a five-layer construction. CONSTITUTION:A hollow dense membrane of polysulfone resin which has pores with an average pore diameter of 100Angstrom -0.5mum on both the inner and outer surfaces and a cores section, relative to the longitudinal direction of hollow fiber, of which is comprised of a five-layer construction comprising an inner- surface dense layer, inner side void layer, intermediate sponge layer, outer side void layer, and outer-surface dense layer is obtained. Since the hollow fiber membrane has the most dense construction in which pores are formed on both the inner and outer surfaces, while strength of the membrane is maintained by the intermediate sponge layer and water permeability of the membrane is improved by both the inner and outer void layers, a membrane of high fractional molecular weight having inner and outer dense layers of highly reliable fraction can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリスルホン系樹脂からなる中空糸状分離膜
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a hollow fiber separation membrane made of polysulfone resin.

(従来技術) ポリスルホン系樹脂は、耐熱性、耐薬品性、安全性に秀
れており、これを素材とした中空糸膜は、従来より種々
提案されている。
(Prior Art) Polysulfone resins are excellent in heat resistance, chemical resistance, and safety, and various hollow fiber membranes made from them have been proposed in the past.

例えば、特開昭58−156018号公報には内表面緻
密層、内側ボイド層、中間層、外側ボイド層、外表面緻
密層から成る5層構造を有する中空糸限外濾過膜が開示
されている。ここで、緻密層とは、膜の断面において、
最も緻密にポリマーが集合している場所を指す。同公報
に開示される膜は、内外両表面に同程度の緻密さの緻密
層が存在する。
For example, JP-A-58-156018 discloses a hollow fiber ultrafiltration membrane having a five-layer structure consisting of an inner surface dense layer, an inner void layer, an intermediate layer, an outer void layer, and an outer surface dense layer. . Here, the dense layer means, in the cross section of the membrane,
Refers to the place where polymers are most densely assembled. The membrane disclosed in the publication has dense layers of comparable density on both the inner and outer surfaces.

すなわち、1つの中空糸膜の断面に2つの限外濾過機能
をもつ層が存在するという特徴をもつ。
That is, it has the characteristic that two layers having an ultrafiltration function exist in the cross section of one hollow fiber membrane.

特に同公報に開示される緻密層は、0.01μm程度の
小さなポリマー粒子の集合から成り、粒子の間隙は、内
外表面近傍では、非常に狭く密につまっており、表面か
ら遠ざかるにつれて、粒子間隔と共に粒子径も太き(な
る。内外両表面は平滑であり、走査型電子顕微鏡では、
その孔の存在は認められず、その孔径は10〜100人
であろうと推定されると記載されている。
In particular, the dense layer disclosed in the same publication consists of a collection of small polymer particles of about 0.01 μm, and the gaps between the particles are very narrow and densely packed near the inner and outer surfaces, and as the distance from the surface increases, the gap between the particles increases. At the same time, the particle size becomes thicker.Both the inner and outer surfaces are smooth, and in a scanning electron microscope,
It is stated that the existence of such pores is not recognized, and that the pore size is estimated to be 10 to 100 people.

同公報に開示されている膜は、内外両表面緻密層の緻密
さが同程度であるため、万一内表面に欠陥が生じても、
外表面の緻密層が溶質の透過を阻止するため、分画分子
量は変わらず、分画の信頼性が高いという特徴を有する
The film disclosed in the publication has the same degree of density in both the inner and outer surface dense layers, so even if a defect occurs on the inner surface,
Since the dense layer on the outer surface prevents the permeation of solutes, the molecular weight fraction remains unchanged and the reliability of the fractionation is high.

例えば、この膜の内表面もしくは、外表面を針のような
もので傷つけたり、こすったりしても、デキストランや
タンパク質等の溶質透過阻止率は変わらない場合が多い
。特公昭50−22508号公報に見られるような、内
表面だけに緻密層を有する膜では、内表面に傷をつける
と、溶質透過阻止率が大きく低下してしまうことからす
れば、特に医薬用水、注射用水等、絶対に菌、パイロジ
エン等の混入があってはならない水を膜を用いて製造す
る分野では、両面緻密層はきわめて重要な特徴である。
For example, even if the inner or outer surface of this membrane is scratched or rubbed with something like a needle, the permeation inhibition rate of solutes such as dextran and proteins often remains unchanged. In a membrane having a dense layer only on the inner surface, as seen in Japanese Patent Publication No. 50-22508, if the inner surface is scratched, the solute permeation rejection rate will be greatly reduced, so it is especially difficult to use for pharmaceutical water. The double-sided dense layer is an extremely important feature in the field of producing water using membranes, such as water for injection, which must never be contaminated with bacteria, pyrogene, etc.

さらに、一般用途でも分画がシャープになるというメリ
ットを与える。
Furthermore, it provides the advantage of sharp fractionation even in general applications.

その一方、電子顕微鏡的に全く孔が認められないほど緻
密な内外表面緻密層を有する膜は、透水性が上がらない
だけでなく、高分画分子量の膜が得られないという欠点
を有している。
On the other hand, membranes with dense layers on the inner and outer surfaces so dense that no pores are observed under an electron microscope have the drawback that not only do they not have high water permeability, but they also cannot provide membranes with a high molecular weight cut-off. There is.

(本発明が解決しようとする問題点) 本発明は、分画の信頼性の高い内外表面両縁密層を有し
、かつ高分画分子量の膜を提供するものである。
(Problems to be Solved by the Present Invention) The present invention provides a membrane having dense layers on both inner and outer surfaces with high reliability in fractionation and having a high molecular weight cut-off.

(問題点を解決するための手段) 本発明のポリスルホン系樹脂よりなる中空糸状膜は、内
表面および外表面に平均孔径100Å〜0.5μmの孔
を有し、かつ、中空糸の長さ方向に対する膜の横断面が
、(a)内表面緻密層、(b)内側ボイド層、(c)中
間スポンジ層、(d)外側ボイド層、(e)外表面緻密
層からなる5層構造を有していることを特徴とする。
(Means for Solving the Problems) The hollow fiber membrane made of the polysulfone resin of the present invention has pores with an average pore diameter of 100 Å to 0.5 μm on the inner and outer surfaces, and has pores in the longitudinal direction of the hollow fibers. The cross section of the membrane has a five-layer structure consisting of (a) inner surface dense layer, (b) inner void layer, (c) intermediate sponge layer, (d) outer void layer, and (e) outer surface dense layer. It is characterized by the fact that

第1図は、本発明における実施例2の膜の電子顕微鏡に
よる断面写真である。膜断面が、内表面緻密層、内側ボ
イド層、中間スポンジ層、外側ボイド層、外表面緻密層
から成る5層構造を示していることがわかる。
FIG. 1 is an electron microscope cross-sectional photograph of the membrane of Example 2 of the present invention. It can be seen that the cross section of the membrane shows a five-layer structure consisting of an inner surface dense layer, an inner void layer, an intermediate sponge layer, an outer void layer, and an outer surface dense layer.

第2図は、同じ膜の外表面の電子顕微鏡写真であるが、
直径1000人程度0孔があることが観察され。
Figure 2 is an electron micrograph of the outer surface of the same membrane.
It was observed that there were about 1000 holes in diameter.

第3図は、同じ膜の内表面の電子顕微鏡写真であるが、
円相当直径1000人程度0孔があることが観察される
Figure 3 is an electron micrograph of the inner surface of the same membrane.
It is observed that there are approximately 1000 holes with an equivalent circle diameter.

第2図、第3図に示されるごとく、膜の内外両表面は、
はぼ同程度の大きさの孔を有している。
As shown in Figures 2 and 3, both the inner and outer surfaces of the membrane are
They have pores of similar size.

さらに、その孔は、第1図に示す内外ボイド層、中間層
のスポンジ部分の孔に比べ、十分小さいため、膜断面全
体の中で、内外両表面は最も緻密な構造であり、特開昭
58−156018号公報に開示される膜と同様に、膜
に分画の信頼性を与える。
Furthermore, the pores are sufficiently smaller than those in the inner and outer void layers and the sponge part of the intermediate layer shown in Figure 1, so both the inner and outer surfaces have the most dense structure in the entire membrane cross section. Similar to the membrane disclosed in Japanese Patent No. 58-156018, it provides fractionation reliability to the membrane.

本願膜の内外両表面の緻密層は、この目的のためある程
度の厚みを有することが好ましい。ボイド層の先端から
表面までは最もうすいところでも、内外共にそれぞれ膜
厚全体の1〜20%、好ましくは3〜10%の厚みを有
することが分画の信頼性をより高める上で好ましい。し
かし、15%をこえると、透水性に支障をきたすことも
ある。
The dense layers on both the inner and outer surfaces of the membrane of the present invention preferably have a certain thickness for this purpose. In order to further improve the reliability of the fractionation, it is preferable that the void layer has a thickness of 1 to 20%, preferably 3 to 10%, of the entire film thickness for both the inside and outside, even at its thinnest point from the tip to the surface. However, if it exceeds 15%, water permeability may be impaired.

また、本願では中間スポンジ層で膜の強度を保持し、内
外両ボイド層で膜の透水性を向上させつつ、内外両表面
に孔を形成させているので、高分画分子量でかつ良好な
透水性を有する膜が得られる。中間スポンジ層の厚さは
、膜厚全体の1〜20%であることが強度、透水性のか
ねあいから好ましい。さらに好ましくは3〜10%であ
る。
In addition, in this application, the strength of the membrane is maintained by the intermediate sponge layer, and the water permeability of the membrane is improved by both the inner and outer void layers, and pores are formed on both the inner and outer surfaces, so it has a high molecular weight fraction and good water permeability. A film with properties can be obtained. The thickness of the intermediate sponge layer is preferably 1 to 20% of the total thickness from the viewpoint of strength and water permeability. More preferably, it is 3 to 10%.

膜の内外両表面の平均孔径100Å〜0.5μmの孔と
は、走査型電子顕微鏡で観察される孔と同じ面積を有す
る円の平均直径が100人より大きく0.5μm以下の
孔をいう。主に、0.5 μmより大きい孔が内外表面
にあると強度上好ましくない。
The pores on both the inner and outer surfaces of the membrane with an average pore diameter of 100 Å to 0.5 μm refer to pores in which the average diameter of a circle having the same area as the pore observed with a scanning electron microscope is larger than 100 and 0.5 μm or less. Mainly, the presence of pores larger than 0.5 μm on the inner and outer surfaces is unfavorable in terms of strength.

平均孔径が500Å以上0.5μmの範囲が高分画分子
量およびその信頼性の面から好ましい。
The average pore diameter is preferably in the range of 500 Å or more and 0.5 μm from the viewpoint of high molecular weight cut-off and reliability.

ポリスルホン系樹脂は、以下の式(1)〜(III)の
いずれかで与えられる繰返し単位を有するものである。
The polysulfone resin has a repeating unit given by any of the following formulas (1) to (III).

υ これらのポリマーは、耐熱・耐PH性に秀れており、医
用分野において不可欠な蒸気滅菌にも対応できるという
特徴を有している。
υ These polymers have excellent heat resistance and PH resistance, and have the characteristics of being compatible with steam sterilization, which is essential in the medical field.

次に本発明のポリスルホン系中空糸膜の製造方法の一例
について述べる。
Next, an example of the method for manufacturing the polysulfone hollow fiber membrane of the present invention will be described.

本発明では、ポリマーを溶解した紡糸原液を環状ノズル
から吐出し、空中を走行させた後、凝固浴で凝固させて
中空糸状膜をつくる乾湿式紡糸法が好ましく用いられる
。この乾湿式紡糸法による膜の製造方法では、ポリスル
ホン系樹脂、溶媒、非溶媒から成る紡糸原液を環状ノズ
ルから凝固浴へ押しだし、中空糸状膜とする過程におい
て、(i)ポリマー濃度が10〜30重量%であること (ii )非溶媒/(溶媒/非溶媒)の重量比が、相溶
限界における重量比の50〜90%であること かつ、 (in)内部凝固液として40〜90重量%のグリコー
ル類水溶液を用いること を特徴とする。
In the present invention, a dry-wet spinning method is preferably used in which a spinning solution in which a polymer is dissolved is discharged from an annular nozzle, travels through the air, and is then coagulated in a coagulation bath to produce a hollow fiber membrane. In this dry-wet spinning membrane manufacturing method, in the process of extruding a spinning dope consisting of a polysulfone resin, a solvent, and a nonsolvent from an annular nozzle into a coagulation bath to form a hollow fiber membrane, (i) the polymer concentration is 10 to 30 (ii) The weight ratio of nonsolvent/(solvent/nonsolvent) is 50 to 90% of the weight ratio at the compatibility limit, and (in) 40 to 90% by weight as the internal coagulation liquid. It is characterized by using an aqueous solution of glycols.

この方法における原液中の溶媒としては、Nメチル2ピ
ロリドン、ジメチルアセトアセトアミド、ジメチルホル
ムアミド等非プロトン性極性有機溶媒が好ましく用いら
れる。また、原液中の非溶剤として、ポリエチレングリ
コール、ポリプロピレングリコール等のグリコール類、
電解質、ポリビニルピロリドン等を用いることができる
が、グリコール類が紡糸性の点から好ましく、また良好
な膜を提供する。
As the solvent in the stock solution in this method, aprotic polar organic solvents such as N-methyl 2-pyrrolidone, dimethylacetoacetamide, and dimethylformamide are preferably used. In addition, as non-solvents in the stock solution, glycols such as polyethylene glycol and polypropylene glycol,
Although electrolytes, polyvinylpyrrolidone, etc. can be used, glycols are preferred from the viewpoint of spinnability and provide a good membrane.

原液中のポリマー濃度は10〜30重量%、好ましくは
15〜25重量%である。この値は、得られる中空糸膜
の強度と特に関係がある。
The polymer concentration in the stock solution is 10-30% by weight, preferably 15-25% by weight. This value is particularly related to the strength of the hollow fiber membrane obtained.

溶媒/非溶媒の重量比は、非溶媒/(溶媒+非溶媒)の
重量比が、相溶限界における重量比の50〜90%の範
囲内の値をとるように設定する。
The weight ratio of solvent/nonsolvent is set so that the weight ratio of nonsolvent/(solvent+nonsolvent) takes a value within the range of 50 to 90% of the weight ratio at the compatibility limit.

相溶限界とは、ポリマー溶液が均一な溶液となり得す、
相分離する点のことをいう。一般に温度の関数でもある
ので、紡糸温度における相溶限界を求める必要がある。
The compatibility limit is the point at which a polymer solution can become a homogeneous solution.
Refers to the point of phase separation. Since it is generally a function of temperature, it is necessary to find the compatibility limit at the spinning temperature.

50%未満では、原液粘度が低くて紡糸性が悪かったり
、得られる中空糸膜の断面が5層構造にならなかったり
する。90%より多い場合は、得られる中空糸膜の断面
が、やはり5層構造とならないことが多い。
If it is less than 50%, the viscosity of the stock solution will be low and the spinnability will be poor, or the cross section of the resulting hollow fiber membrane will not have a five-layer structure. When it is more than 90%, the cross section of the hollow fiber membrane obtained often does not have a five-layer structure.

内部凝固液に用いるグリコール類は、エチレングリコー
ル、ジエチレングリコール、トリエチレングリコール、
テトラエチレングリコール、平均分子量200〜600
のポリエチレングリコール、プロピレングリコール、ジ
プロピレングリコール、トリプロピレングリコールのう
ち、少なくとも一種であることが好ましい。高分子量の
グリコールは融点が高く、高分子量になるにしたがって
水溶性も低下してゆくため、特に内部凝固液中のグリコ
ール濃度が高くなるときは、紡糸安定性を得ることが難
しくなることがある。
Glycols used in the internal coagulation liquid include ethylene glycol, diethylene glycol, triethylene glycol,
Tetraethylene glycol, average molecular weight 200-600
It is preferable to use at least one type of polyethylene glycol, propylene glycol, dipropylene glycol, and tripropylene glycol. High molecular weight glycols have high melting points and water solubility decreases as the molecular weight increases, so it may be difficult to obtain spinning stability, especially when the glycol concentration in the internal coagulation solution increases. .

この中では、テトラエチレングリコールが紡糸安定性、
膜の性能の可変性から最も好ましい。
Among these, tetraethylene glycol has excellent spinning stability and
Most preferred due to the variability of membrane performance.

内部凝固液の組成は、グリコール類が40〜90重量%
の水溶液であることが好ましい。
The composition of the internal coagulation liquid is 40 to 90% by weight of glycols.
It is preferable that it is an aqueous solution of.

40重量%未満では、中空系膜内外表面の孔の大きさの
バランスを保つことが難しく、内表面の孔が小さくなり
やすい。
If it is less than 40% by weight, it is difficult to maintain a balance between the pore sizes on the inner and outer surfaces of the hollow membrane, and the pores on the inner surface tend to become smaller.

一方、90重世%以上では、透水量が、象、滅する場合
がある。また、内表面の孔が外表面に比べて著しく大き
くなってしまう場合があり、好ましくない。
On the other hand, at 90% or more, the water permeability may disappear. Moreover, the pores on the inner surface may become significantly larger than those on the outer surface, which is not preferable.

(発明の効果) 本発明の中空系膜は、分離膜の必須要件である分画の信
頼性を、内外両表面に同程度の緻密さをもつ緻密層によ
り与えるという、従来の5層構造膜の特徴を活かしたま
ま、その欠点であった低透水能力及び小分画分子量を大
巾に改善することができ、分画の信頼性を特に重視する
医薬、病院用水分野での純水の大量造水や、医療用有価
物の精製等に多大な貢献をすることが期待出来る。
(Effects of the Invention) The hollow membrane of the present invention provides the reliability of fractionation, which is an essential requirement for a separation membrane, by providing dense layers with the same degree of density on both the inner and outer surfaces, compared to the conventional five-layer structure membrane. It is possible to significantly improve the low water permeability and small fractionated molecular weight, which had been disadvantageous, while taking advantage of the characteristics of It can be expected to make a significant contribution to water production and the purification of medically valuable substances.

以下、本発明を実施例により、具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples.

なお、膜の物性は、透水量、破裂強度、デキストランの
透過阻止率(分画分子量の大きさを表わす)で示した。
The physical properties of the membrane were shown in terms of water permeability, bursting strength, and dextran permeation rejection rate (representing the size of the molecular weight fraction).

また、走査型電子顕微鏡で膜の断面、内表面、外表面を
観察した。
In addition, the cross section, inner surface, and outer surface of the membrane were observed using a scanning electron microscope.

各物性の測定法を下記に示す。The measurement method for each physical property is shown below.

透水1 中空糸膜を長さ20cm&こ切り、片端から、温度25
℃の純水を注入し、他端からエアぬきをした後封止し、
平均圧力1  atmで内圧濾過し、濾水量を計測し、
単位時間、単位膜内表面積あたりの透水量を算出する。
Water permeation 1 Cut the hollow fiber membrane into a length of 20 cm and cut it into pieces at a temperature of 25 cm from one end.
Inject pure water at ℃, remove air from the other end, and then seal.
Internal pressure filtration was performed at an average pressure of 1 atm, and the amount of filtrate was measured.
Calculate the water permeation amount per unit time and unit membrane inner surface area.

岐裂蒼度 中空糸膜を20CIに切り、両端開口部より、窒素を1
 kg / cd / 5ecO昇圧速昇圧性入し、中
空糸膜が破裂したときの圧力を破裂強度とする。
Cut the bifurcated hollow fiber membrane to 20CI, and add 1 liter of nitrogen from the openings at both ends.
kg/cd/5ecO pressure increase rate, and the pressure at which the hollow fiber membrane ruptures is defined as the bursting strength.

デキストランの゛  ・ 分子盟約70000のデキストラン(ファルマシア製デ
キストランT−70)の5重量%水溶液を25°Cの純
水で調製する。
Dextran - Prepare a 5% by weight aqueous solution of dextran with a molecular weight of approximately 70,000 (Dextran T-70 manufactured by Pharmacia) in pure water at 25°C.

中空糸膜を長さ20cmに切り、中空部に上記水溶液を
、中空糸膜内流速がll1l/sec、平均゛濾過圧力
が1  armで流れるように供給する。
The hollow fiber membrane was cut into a length of 20 cm, and the aqueous solution was supplied into the hollow part so that the flow rate inside the hollow fiber membrane was 111 l/sec and the average filtration pressure was 1 arm.

濾液のデキストラン濃度をデジタル屈折計(■アタゴ製
)DBX−50で経時的に読みとる。
The dextran concentration of the filtrate is read over time using a digital refractometer (■ Atago DBX-50).

濾液のデキストラン濃度の最高値Cpmaxと原水溶液
濃度Coより、阻止率Rは、下記の式より求められる。
From the maximum dextran concentration Cpmax of the filtrate and the raw aqueous solution concentration Co, the rejection rate R is determined by the following formula.

Rが小さいほど、分画分子量は高い。The smaller R is, the higher the molecular weight cutoff is.

実施例1〜4、比較例1,2 ポリスルホン(U、C、C,製Udel −P3500
 ) 19重量部、N−メチル−2−ピロリドン(三菱
化成■製)53重量部、テトラエチレングリコール(東
京化成■製)28重量部から成る均一なポリマー溶液を
得た。
Examples 1 to 4, Comparative Examples 1 and 2 Polysulfone (Udel-P3500 manufactured by U, C, C,
), 53 parts by weight of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Kasei Ltd.), and 28 parts by weight of tetraethylene glycol (manufactured by Tokyo Kasei Ltd.) was obtained.

この紡糸原液を、中空糸製造用の環状ノズルから押しだ
し、空気中を3c+a走行させた後、凝固浴にて凝固さ
せ、中空糸膜を得た。
This spinning dope was extruded from an annular nozzle for manufacturing hollow fibers, passed through the air for 3c+a, and then coagulated in a coagulation bath to obtain a hollow fiber membrane.

このとき、内部凝固液として、水またはテトラエチレン
グリコール30〜90重量%水溶液を、凝固浴として水
を用いた。
At this time, water or a 30 to 90% by weight aqueous solution of tetraethylene glycol was used as the internal coagulation liquid, and water was used as the coagulation bath.

紡糸温度は30°Cであった。The spinning temperature was 30°C.

結果を第1表に示した。The results are shown in Table 1.

ポリスルホン/N−メチル−2−ピロリドン/テトラエ
チレングリコール系の30°Cにおける相溶限界は、ポ
リスルホン20重量部のときは、非溶媒/(溶媒+非溶
媒)の値で0.50である。実施例1〜4の原液中の値
は、0.35であり相溶限界の70%であった。
The compatibility limit of the polysulfone/N-methyl-2-pyrrolidone/tetraethylene glycol system at 30°C is 0.50 in terms of nonsolvent/(solvent+nonsolvent) when 20 parts by weight of polysulfone is used. The value in the stock solutions of Examples 1 to 4 was 0.35, which was 70% of the compatibility limit.

実施例2の膜の内表面を24Gの注射針で長さ1 cm
はど傷つけて、評価を行なったところ、デキストラン阻
止率は、35%であった。
The inner surface of the membrane of Example 2 was injected with a 24G injection needle to a length of 1 cm.
When the throat was injured and evaluated, the dextran inhibition rate was 35%.

一方、比較例1の膜で同様の評価を行なうと、デキスト
ラン阻止率は、41%に低下していた。
On the other hand, when similar evaluation was performed on the membrane of Comparative Example 1, the dextran rejection rate was reduced to 41%.

以下余白 比較例3 ポリスルホン(U、 C,C,製11def−P350
0) 17重量部、N−メチル−2−ピロリドン(三菱
化成■製)58重量部、テトラエチレングリコール(東
京化成■製)25重量部から成る均一なポリマー溶液を
得た。
Margin Comparative Example 3: Polysulfone (U, C, C, 11def-P350)
0) A homogeneous polymer solution containing 17 parts by weight of N-methyl-2-pyrrolidone (manufactured by Mitsubishi Kasei ■), and 25 parts by weight of tetraethylene glycol (manufactured by Tokyo Kasei ■) was obtained.

この紡糸原液を、中空糸製造用の環状ノズルから押しだ
し、空気中を3 cm走行させた後、凝固浴にて凝固さ
せ、外径1080μ隅、内径59.0μmの中空糸状膜
を得た。
This spinning stock solution was extruded from an annular nozzle for manufacturing hollow fibers, traveled 3 cm in the air, and then coagulated in a coagulation bath to obtain a hollow fiber membrane with an outer diameter of 1080 μm and an inner diameter of 59.0 μm.

このとき、内部凝固液として、水を、凝固浴として水を
用いた。
At this time, water was used as the internal coagulation liquid and water as the coagulation bath.

紡糸温度は50°Cであった。The spinning temperature was 50°C.

この膜は、透水量が0.65 (rrf/hr −rd
 ・atl++ )と実施例1.2に匹敵する程高いが
、デキストランT−70の阻止率は65%と高く、分画
分子量は小さいと考えられる。
This membrane has a water permeability of 0.65 (rrf/hr −rd
・atl++) is as high as that of Example 1.2, but the inhibition rate of dextran T-70 is as high as 65%, and the molecular weight cutoff is considered to be small.

この膜の電子顕微鏡観察では、膜の内外表面には100
人に達するような孔は認められず、また、断面は5層構
造であり、特開昭58−156018号公報に開示され
る膜である。
Electron microscopic observation of this membrane revealed that the inner and outer surfaces of the membrane contained 100%
There were no holes that could reach humans, and the cross section had a five-layer structure, which is the membrane disclosed in Japanese Patent Application Laid-open No. 156018/1983.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例2の中空糸の断面構造を示す約170
倍の写真である。 第2図は、実施例2の中空糸の外表面の構造を示す約5
000倍の写真である。 第3図は、実施例2の中空糸の内表面の構造を示す約5
000倍の写真である。 特許出願人 旭化成工業株式会社
FIG. 1 shows the cross-sectional structure of the hollow fiber of Example 2.
This is a double photo. FIG. 2 shows the structure of the outer surface of the hollow fiber of Example 2.
This is a 1,000x photo. FIG. 3 shows the structure of the inner surface of the hollow fiber of Example 2.
This is a 1,000x photo. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] ポリスルホン系樹脂よりなる中空糸状膜であっで、内表
面および外表面に平均孔径100Å〜0.5μmの孔を
有し、かつ、中空糸の長さ方向に対する膜の横断面が、
(a)内表面緻密層、(b)内側ボイド層、(c)中間
スポンジ層、(d)外側ボイド層、(e)外表面緻密層
からなる5層構造を有していることを特徴とするポリス
ルホン系中空糸状分離膜
A hollow fiber membrane made of polysulfone resin, having pores with an average pore diameter of 100 Å to 0.5 μm on the inner and outer surfaces, and a cross section of the membrane in the longitudinal direction of the hollow fibers.
It is characterized by having a five-layer structure consisting of (a) inner surface dense layer, (b) inner void layer, (c) intermediate sponge layer, (d) outer void layer, and (e) outer surface dense layer. Polysulfone-based hollow fiber separation membrane
JP63319387A 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane Expired - Fee Related JP2905208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319387A JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319387A JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Publications (2)

Publication Number Publication Date
JPH02164428A true JPH02164428A (en) 1990-06-25
JP2905208B2 JP2905208B2 (en) 1999-06-14

Family

ID=18109597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319387A Expired - Fee Related JP2905208B2 (en) 1988-12-20 1988-12-20 Polysulfone hollow fiber separation membrane

Country Status (1)

Country Link
JP (1) JP2905208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506709A (en) * 2006-10-18 2010-03-04 ガンブロ・ルンディア・エービー Hollow fiber membrane and method for producing hollow fiber membrane
WO2017217446A1 (en) * 2016-06-17 2017-12-21 旭化成株式会社 Porous membrane, and method for manufacturing porous membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156018A (en) * 1982-01-29 1983-09-16 Asahi Chem Ind Co Ltd Polysulfone resin hollow fiber
JPS6045358A (en) * 1983-08-22 1985-03-11 住友ベークライト株式会社 Serum separating membrane and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156018A (en) * 1982-01-29 1983-09-16 Asahi Chem Ind Co Ltd Polysulfone resin hollow fiber
JPS6045358A (en) * 1983-08-22 1985-03-11 住友ベークライト株式会社 Serum separating membrane and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506709A (en) * 2006-10-18 2010-03-04 ガンブロ・ルンディア・エービー Hollow fiber membrane and method for producing hollow fiber membrane
WO2017217446A1 (en) * 2016-06-17 2017-12-21 旭化成株式会社 Porous membrane, and method for manufacturing porous membrane
JPWO2017217446A1 (en) * 2016-06-17 2019-03-14 旭化成株式会社 Porous membrane and method for producing porous membrane
US10974204B2 (en) 2016-06-17 2021-04-13 Asahi Kasei Kabushiki Kaisha Porous membrane and process for producing porous membrane

Also Published As

Publication number Publication date
JP2905208B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US4481260A (en) Aromatic polysulfone type resin hollow fiber membrane and process for producing the same
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
US4822489A (en) Aromatic polysulfone type resin hollow fiber membrane and a process for producing the same
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
US5443728A (en) Method of preparing membranes from blends of polyetherimide and polyimide polymers
JPH0628705B2 (en) Method for producing semipermeable hollow fiber membrane
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
JPH0569571B2 (en)
JPH0347127B2 (en)
JPH02164428A (en) Polysulfone hollow fiber separation membrane
JPH0323647B2 (en)
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
JP3431622B1 (en) High-performance plasma purification membrane
KR100602429B1 (en) A polysulfone typed hollow fiber membrane, and a process of preparing for the same
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPH01176407A (en) Production of hollow yarn membrane made of polysulfone
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JPH0698283B2 (en) Semipermeable membrane and manufacturing method thereof
JPH02164424A (en) Manufacture of hollow fiber membrane of synthetic polymer
JP3236233B2 (en) Method for producing selectively permeable hollow fiber membrane
KR100200040B1 (en) Sponge-like polysulphone hollow fibre membrane and manufacturing method thereof
JPS59209611A (en) Hollow yarn like membrane and preparation thereof
JPS6045358A (en) Serum separating membrane and its preparation
JPH0313322B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees