JPH02164346A - Ultrasonic pulse doppler blood stream diagnostic device - Google Patents

Ultrasonic pulse doppler blood stream diagnostic device

Info

Publication number
JPH02164346A
JPH02164346A JP31845788A JP31845788A JPH02164346A JP H02164346 A JPH02164346 A JP H02164346A JP 31845788 A JP31845788 A JP 31845788A JP 31845788 A JP31845788 A JP 31845788A JP H02164346 A JPH02164346 A JP H02164346A
Authority
JP
Japan
Prior art keywords
circuit
signal
blood flow
frequency
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31845788A
Other languages
Japanese (ja)
Other versions
JP2719710B2 (en
Inventor
Yuichi Hirota
廣田 祐一
Takao Tosen
東泉 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP31845788A priority Critical patent/JP2719710B2/en
Publication of JPH02164346A publication Critical patent/JPH02164346A/en
Application granted granted Critical
Publication of JP2719710B2 publication Critical patent/JP2719710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide any desired sample volume position and max. blood stream observing speed by controlling the pulsation period and the transport/ demodulation frequency, and removing pseudo sample volume position from unfavorable position without varying the max. blood stream observing speed. CONSTITUTION:Echo signal received by a probe 1 is amplified by a received signal amplification focusing circuit 3 and sent to a DC/AC detector circuit 5. From a wave sending spacing, transport/demodulation frequency determining circuit 10, a demodulation control signal (d) for controlling the demodulation frequency to fo1 is sent to this DC/AC detector circuit 5. Another DC/AC detector circuit 6 decides the demodulation frequency to fo1 on the basis of control signal for demodulation signal (d), and the echo signal is DC/AC detected and sent to range gate circuit 6. This range gate circuit 6 is a circuit to sample a signal DC/AC detected, which performs sampling in conformity to a range gate signal (e) from a wave sending spacing, transport/demodulation frequency determining circuit 10 and forwards the output signal therefrom to a frequency analyzing circuit 7. This frequency analyzing circuit 7 makes spectral analysis of signals in the integral division sampled and passes to an image information processing/converting part.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば血流速度を観測する超音波パルスドプ
ラ血流診断装置、特に、高パルス繰り返し周波数モード
による血流速度の測定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic pulsed Doppler blood flow diagnostic device for observing blood flow velocity, for example, and particularly to measurement of blood flow velocity in a high pulse repetition frequency mode.

[従来の技術] 第6図は従来の高パルス繰り返し周波数モード(以下H
i ghPRFモードという)での血流観測に於ける位
置分解能の関係を示す説明図である。
[Prior art] Figure 6 shows the conventional high pulse repetition frequency mode (hereinafter referred to as H).
FIG. 2 is an explanatory diagram showing the relationship between positional resolution in blood flow observation in ighPRF mode).

図に於いて、Hi ghPRFモードは通常のパルスド
プラ法よりパルス繰り返し周波数(PRF)を2倍にし
た場合である。この場合、サンプル点をA2に設定した
とすると、その位置で得られるエコー信号EIには一つ
前のレートTl−1のAlからのエコー信号El−1も
混入している。従って、ドプラ出力信号としては、Al
とA2のドプラ信号が合成されたものとなる。PRFを
3倍、4倍と大きくしてゆくと、出力信号も3点、4点
のドプラ信号が合成されたものとなる。
In the figure, the High PRF mode is a case where the pulse repetition frequency (PRF) is doubled compared to the normal pulsed Doppler method. In this case, if the sample point is set at A2, the echo signal EI obtained at that position also contains the echo signal El-1 from Al at the previous rate Tl-1. Therefore, as a Doppler output signal, Al
The Doppler signals of A2 and A2 are combined. When the PRF is increased by 3 times or 4 times, the output signal also becomes a combination of Doppler signals from 3 and 4 points.

Hi ghPRFモードを用いることにより、体深部の
速い血流をも折り返しなく観測することができるが、血
流観測場所であるサンプル、ボリュームと体表との間に
擬似サンプルボリュームが存在する。そして、この擬似
サンプルボリューム位置にも血流が存在すると、観n1
場所の血流と重なって表示されるため、誤診を招く。
By using the HighPRF mode, even fast blood flow deep in the body can be observed without loopback, but a pseudo sample volume exists between the sample volume where the blood flow is observed and the body surface. If blood flow also exists at this pseudo sample volume position, then the view n1
The display overlaps with the blood flow in the area, leading to misdiagnosis.

又、サンプルボリュームと体表との間には送波点も存在
する。送波点に擬似サンプルボリュームを持ってきても
、装置のダイナミックレンジ等の制約により影響を受け
る。
Furthermore, a wave transmission point also exists between the sample volume and the body surface. Even if a pseudo sample volume is brought to the transmission point, it will be affected by constraints such as the dynamic range of the device.

これを避けるためにPRFを少し変え、擬似サンプルボ
リュームが送波点と合わない位置に制御する。ところが
、PRFを変えると、最大血流観測速度が変化してしま
う。
To avoid this, the PRF is slightly changed and controlled to a position where the pseudo sample volume does not match the transmitting point. However, when the PRF is changed, the maximum blood flow observation speed changes.

[発明が解決しようとする課題] この発明は、かかる問題点を解決するためになされたも
ので、擬似サンプルボリュームを観測に悪影響を及ぼさ
ない位置に設定しても、最大血流観測速度を所望の値に
維持することができる超音波パルスドプラ血流診断装置
を得ることを目的とする。
[Problems to be Solved by the Invention] The present invention has been made to solve such problems, and even if the pseudo sample volume is set at a position that does not adversely affect the observation, the maximum blood flow observation speed cannot be adjusted to the desired speed. The purpose is to obtain an ultrasonic pulsed Doppler blood flow diagnostic device that can maintain the value of .

[課題を解決するための手段] この発明に係る超音波パルスドプラ血流診断装置は、高
パルス繰り返し周波数モードを用いて、血流速度を観測
する超音波パルスドプラ血流診断装置に於いて、サンプ
ルボリューム位置を設定するサンプルボリューム入力機
構と、最大血流観測速度を設定する最大血流観測速度入
力機構と、サンプルボリューム入力機構より設定された
サンプルボリューム位置及び最大血流観iUJ速度入力
機構より設定された最大血流観測速度に基づいて、送信
超音波の送波間隔及び搬送/復調周波数を決定する決定
手段と、決定手段によって決定された送波間隔と搬送周
波数に従って超音波の送波を行う送波回路と、決定手段
によって決定された復調周波数に一致する周波数を持つ
復調信号でエコー受信信号の直交検波を行う直交検波回
路とを備えている。
[Means for Solving the Problems] The ultrasonic pulsed Doppler blood flow diagnostic device according to the present invention uses a high pulse repetition frequency mode to observe blood flow velocity. A sample volume input mechanism for setting the position, a maximum blood flow observation speed input mechanism for setting the maximum blood flow observation speed, and a sample volume position set by the sample volume input mechanism and the maximum blood flow observation speed input mechanism for setting the maximum blood flow observation speed. a determining means for determining the transmission interval and carrier/demodulation frequency of the transmitted ultrasound based on the maximum blood flow observation speed determined by the determination means; and a transmitter for transmitting the ultrasound according to the transmission interval and carrier frequency determined by the determining means and a quadrature detection circuit that performs quadrature detection of the echo reception signal using a demodulated signal having a frequency matching the demodulation frequency determined by the determining means.

[作 用] 送波間隔及び搬送/復調周波数決定手段が、サンプルボ
リューム入力機構及び最大血流観測速度入力機構からの
入力信号に基づいて、最大血流観測速度を設定値どおり
に維持するための送波間隔と搬送/復調周波数を決定し
て、それぞれ送波回路と直交検波回路を制御する。
[Function] The transmission interval and carrier/demodulation frequency determining means maintains the maximum blood flow observation speed as the set value based on the input signals from the sample volume input mechanism and the maximum blood flow observation speed input mechanism. The transmission interval and carrier/demodulation frequency are determined to control the transmission circuit and quadrature detection circuit, respectively.

[実施例) 第1図はこの発明の一実施例を示す超音波パルスドプラ
血流診断装置のブロック図であり、(1)はHighP
RFモードで所定の搬送周波数の超音波ビームを送波し
、エコー信号を受波する探触子で、(2)は任意に設定
される送波間隔及び送信搬送周波数の駆動信号を前記探
触子に与える送波回路である。
[Embodiment] FIG. 1 is a block diagram of an ultrasonic pulsed Doppler blood flow diagnostic apparatus showing an embodiment of the present invention, (1) is a HighP
(2) is a probe that transmits an ultrasonic beam of a predetermined carrier frequency in RF mode and receives an echo signal; This is a transmitter circuit that provides signals to the child.

(3)は前記探触子(1)よりの受渡エコー信号を増幅
し所定の音線の受波信号を形成する受波増幅焦点回路で
、(4)は前記受波増幅焦点回路(3)の受波信号すの
受波強度を検出する受波信号強度検出器で、設定された
レンジゲート位置での受波強度信号Cを送波間隔、搬送
/復調周波数決定回路(■0)へ送る。
(3) is a receiving amplification focusing circuit that amplifies the transmitted echo signal from the probe (1) to form a receiving signal of a predetermined sound ray; (4) is a receiving amplifying focusing circuit that amplifies the received echo signal from the probe (1); The received signal strength detector detects the received signal strength of the received signal C, and sends the received signal strength signal C at the set range gate position to the transmission interval and carrier/demodulation frequency determining circuit (■0). .

(5)は受波増幅された信号を直交検波する直交検波回
路で、その復調周波数は、送波間隔、搬送/復調周波数
決定回路(10)からの復調周波数制御信号dで制御さ
れる。
(5) is a quadrature detection circuit that orthogonally detects the received and amplified signal, and its demodulation frequency is controlled by the transmission interval and demodulation frequency control signal d from the carrier/demodulation frequency determining circuit (10).

(6)は直交検波された信号を所定の積分区間でサンプ
リングするレンジゲート回路で、送波間隔。
(6) is a range gate circuit that samples the orthogonally detected signal in a predetermined integration interval, and is the transmission interval.

搬送/復調周波数決定回路(10)からのレンジゲート
信号eによって制御される。
It is controlled by the range gate signal e from the carrier/demodulation frequency determining circuit (10).

(7)はサンプリングされた積分区間の信号をスペクト
ル解析する周波数分析回路で、(8)はユーザがサンプ
ルボリューム位置を設定するサンプルボリューム入力機
構である。
(7) is a frequency analysis circuit that spectrally analyzes the sampled signal in the integral interval, and (8) is a sample volume input mechanism through which the user sets the sample volume position.

(9)はユーザが最大血流観測速度を設定する最大血流
観測速度入力機構である。
(9) is a maximum blood flow observation speed input mechanism through which the user sets the maximum blood flow observation speed.

(10)は送波間隔、搬送/復調周波数決定回路であり
、送波間隔及び搬送/復調周波数を決定する演算器と、
送信搬送周波数の送波間隔を所定の周期に制御してタイ
ミングパルスを設定するタイミング発生器と、直交検波
回路へ復調周波数の制御信号を送る搬送/復調用周波数
制御回路とで構成されており、具体的にはマイクロプロ
セッサ及びメモリにより構成され、プログラムによって
制御されている。
(10) is a transmission interval and carrier/demodulation frequency determination circuit, which includes an arithmetic unit that determines the transmission interval and carrier/demodulation frequency;
It consists of a timing generator that controls the transmission interval of the transmission carrier frequency to a predetermined period and sets timing pulses, and a carrier/demodulation frequency control circuit that sends a demodulation frequency control signal to the quadrature detection circuit. Specifically, it is composed of a microprocessor and memory, and is controlled by a program.

上記のように構成された超音波パルスドプラ血流診断装
置のHi ghPRFモードにおいて、ユーザは、サン
プルボリューム入力機構(8)によって任意の深さのサ
ンプルボリューム位置を入力し設定し、最大血流観測速
度入力機構(9)によって任意の最大血流観測速度を入
力し設定する。
In the High PRF mode of the ultrasonic pulsed Doppler blood flow diagnosis apparatus configured as described above, the user inputs and sets the sample volume position at an arbitrary depth using the sample volume input mechanism (8), and sets the maximum blood flow observation speed. An arbitrary maximum blood flow observation speed is input and set using the input mechanism (9).

送波間隔、搬送/復調周波数決定回路(10)は、これ
ら入力機構からの入力情報に基づき、後に詳しく述べる
ように、設定された最大血流観測速度に対応する送波間
隔、搬送周波数及び復調周波数を決定する。
Based on the input information from these input mechanisms, the transmission interval and carrier/demodulation frequency determining circuit (10) determines the transmission interval, carrier frequency, and demodulation corresponding to the set maximum blood flow observation speed, as will be described in detail later. Determine the frequency.

そして、このような送波間隔、搬送周波数及び復調周波
数に対応する送波信号a及び復調制御信号すを出力する
。送波間隔、搬送/復、調周波数決定回路(lO)は、
又、レンジゲート信号eを出力する。
Then, a transmission signal a and a demodulation control signal S corresponding to such transmission interval, carrier frequency, and demodulation frequency are output. The transmission interval, carrier/demodulation, and modulation frequency determination circuit (lO) is
It also outputs a range gate signal e.

送波間隔、搬送/復調周波数決定回路(lO)からの送
波制御信号aを受けた送波回路(2)は探触子(1)に
対して送波間隔がPRTで、周波数がfOの駆動パルス
を送る。
The transmitting circuit (2) which receives the transmitting control signal a from the transmitting interval and carrier/demodulation frequency determining circuit (lO) sets the transmitting interval to the probe (1) at PRT and the frequency at fO. Send drive pulse.

被検体からのエコー信号を探触子(1)で受波し、受波
増幅焦点回路(3)へ送る。受渡増幅焦点回路(3)は
エコー信号を増幅し、受波信号すを受波信号強度検出器
(4)へ送る。
An echo signal from the subject is received by a probe (1) and sent to a receiving amplification focusing circuit (3). The delivery amplification focus circuit (3) amplifies the echo signal and sends the received signal to the received signal strength detector (4).

受渡信号強度検出器(4)は、送波間隔、搬送/復調周
波数決定回路(10)のレンジゲート信号eにより、サ
ンプリングされたレンジゲート位置での受波強度信号C
を送波間隔、搬送/復調周波数決定回路(10)へ送る
The delivery signal strength detector (4) detects the received wave strength signal C at the sampled range gate position based on the range gate signal e of the transmission interval and carrier/demodulation frequency determining circuit (10).
is sent to the transmission interval and carrier/demodulation frequency determining circuit (10).

送波間隔、搬送/復調周波数決定回路(lO)は受波強
度信号CをA/D変換し、演算し、メモリに書き込む。
The transmission interval and carrier/demodulation frequency determination circuit (lO) performs A/D conversion on the received wave intensity signal C, performs calculations, and writes the results into memory.

受波強度信号Cが大きな値を示すとき、送波間隔、搬送
/復調周波数決定回路(10)は最大血流観測速度を設
定値どおりに保ちながら送信搬送周波数の送波間隔PR
T及び送信搬送周波数fOを変更して、受波強度信号C
の値が小さくなるようにする。
When the received wave intensity signal C shows a large value, the transmission interval and carrier/demodulation frequency determination circuit (10) adjusts the transmission interval PR of the transmission carrier frequency while maintaining the maximum blood flow observation speed as the set value.
By changing T and the transmission carrier frequency fO, the received wave strength signal C
so that the value of is small.

このようにして決定された新たなPRTI及びfoL用
の制御信号を送波回路(2)へ送る。送波回路(2)は
、その信号に基づいた送波間隔がPRTlで、周波数が
folの駆動パルスを探触子(1)へ送る。
The new PRTI and foL control signals determined in this way are sent to the wave transmitting circuit (2). The wave transmitting circuit (2) sends a driving pulse having a frequency of fol to the probe (1) with a wave sending interval of PRTl based on the signal.

探触子(1)で受信したエコー信号は受波増幅焦点回路
(3)で増幅され、直交検波回路(5)へ送られる。送
波間隔、搬送/復調周波数決定回路(10)からは直交
検波回路(5)へ復調周波数をfoLに制御する復調制
御信号dが送られる。
The echo signal received by the probe (1) is amplified by the reception amplification focusing circuit (3) and sent to the quadrature detection circuit (5). A demodulation control signal d for controlling the demodulation frequency to foL is sent from the transmission interval and carrier/demodulation frequency determining circuit (10) to the quadrature detection circuit (5).

直交検波回路(6)は復調信号dの制御信号に基づいて
復調周波数をfolに定め、エコー信号を直交検波して
レンジゲート回路(6)へ送る。
The orthogonal detection circuit (6) sets the demodulation frequency to fol based on the control signal of the demodulation signal d, orthogonally detects the echo signal and sends it to the range gate circuit (6).

レンジゲート回路(6)は直交検波された信号をサンプ
リングする回路で、送波間隔、搬送/復調周波数決定回
路(10)からのレンジゲート信号eに従ってサンプリ
ングして、その出力信号を周波数分析回路(7)へ送る
The range gate circuit (6) is a circuit that samples the orthogonally detected signal, and samples it according to the range gate signal e from the transmission interval and carrier/demodulation frequency determination circuit (10), and sends the output signal to the frequency analysis circuit ( 7).

周波数分析回路(7)はサンプリングされた積分区間の
信号をスペクトル解析し、画像情報処理変換部(図示せ
ず)へ送る。
The frequency analysis circuit (7) spectrally analyzes the sampled signal in the integral interval and sends it to an image information processing conversion section (not shown).

上記のようにユーザが選択したサンプルボリューム位置
の設定、最大血流観測速度の設定及びサンプルボリュー
ム位置からの受波強度信号に基づいて、送波間隔、搬送
/復調周波数決定回路(10)は、最大血流観測速度を
変化させない送波間隔と搬送/復調周波数を演算し、擬
似サンプルボリューム位置を不都合な位置から外す。
Based on the setting of the sample volume position selected by the user as described above, the setting of the maximum blood flow observation speed, and the received wave intensity signal from the sample volume position, the transmission interval and carrier/demodulation frequency determining circuit (10): The wave transmission interval and carrier/demodulation frequency that do not change the maximum blood flow observation speed are calculated, and the pseudo sample volume position is removed from an inconvenient position.

第2図は通常のドプラシステムのイメージである。Figure 2 is an image of a normal Doppler system.

第2図(a)に見られる任意の深さDsのサンプル位置
と、第2図(b)に見られる任意の最大血流観測速度範
囲−Vmax−Vmaxがユーザによって設定される。
A sample position at an arbitrary depth Ds shown in FIG. 2(a) and an arbitrary maximum blood flow observation velocity range -Vmax-Vmax shown in FIG. 2(b) are set by the user.

又、第3図は、パルス繰返し周期時間(PRT)即ち送
波間隔Tに於いて、搬送波fo及び受波(受信エコー信
号)及びサンプリングするレンジ拳ゲート・パルスとの
送受波タイミングチャートであり、 Ds及びVmaxは次式の様に示される。
Further, FIG. 3 is a wave transmission/reception timing chart of the carrier wave fo, the received wave (received echo signal), and the range fist gate pulse to be sampled in the pulse repetition period time (PRT), that is, the wave transmission interval T, Ds and Vmax are expressed as in the following equation.

D s m C* T s / 2 vmax−IIC/4・folIT  ・・・■C:音
速 第4図はHLghPRFモードの送受波タイミングチャ
ートであり、ここで、Vmaxを小さな値から大きな値
に変化して行くには、従来、Tの値を小さくして行った
が、第4図(a)に見られる様に、レンジ・ゲート・パ
ルスが次回の送波パルスにぶつかる状態が発生するので
、第4図(b)の様にTd+TIだけ一挙に縮めなけれ
ばならず、第5図のPRT設定領域図の (ア)の領域
に相当する範囲のVmax値を実現することができなか
った。
D s m C* T s / 2 vmax-IIC/4・folIT... ■C: Speed of sound Figure 4 is a wave transmission/reception timing chart in HLghPRF mode, where Vmax is changed from a small value to a large value. Conventionally, this was done by reducing the value of T, but as shown in Figure 4(a), a situation occurs where the range gate pulse collides with the next transmission pulse, so As shown in Figure 4 (b), only Td + TI had to be reduced at once, and it was not possible to achieve a Vmax value in the range corresponding to area (a) in the PRT setting area diagram in Figure 5.

この様なVmaxの設定不可能な領域を無くすには、■
式を見てみるとVmaxはfO−Tの関数であるから、
Tの値を連続的にとれないところではfoc搬送周波数
)の値を変更することにより、Vmax値の設定不可領
域を無くすことが出来るのである。送波間隔、搬送/復
調周波数決定回路(lO)は■式に従って送波間隔と搬
送/復調周波数を決定する。
To eliminate such areas where Vmax cannot be set, ■
Looking at the formula, Vmax is a function of fO-T, so
By changing the value of foc (foc carrier frequency) where the value of T cannot be taken continuously, it is possible to eliminate the region where the Vmax value cannot be set. The transmission interval and carrier/demodulation frequency determining circuit (lO) determines the transmission interval and carrier/demodulation frequency according to equation (2).

例えば第5図を例に取ると、実際のPRTを(Ts+T
d/2)に固定して、搬送波をf o ・T / (T
 s + T d / 2 )但し Ts−Td/2−
TI≦T T s + T d / 2≦T の様に可変すれば、第5図(ア)の設定不可領域を無く
すことが出来るのである。
For example, if we take Figure 5 as an example, the actual PRT is (Ts+T
d/2), and the carrier wave is f o ・T / (T
s + Td/2) However, Ts-Td/2-
By varying TI≦T T s + T d /2≦T, it is possible to eliminate the unsettable area shown in FIG. 5(A).

[発明の効果] 以上のようにこの発明によれば、パルス繰り返し周期時
間及び搬送/復調周波数を制御することにより、最大血
流観測速度を変化させることなく疑似サンプルボリュー
ム位置を不都合な位置から外せるので、ユーザが望む任
意のサンプルボリューム位置及び最大血流観測速度が得
られる。
[Effects of the Invention] As described above, according to the present invention, by controlling the pulse repetition period time and the transport/demodulation frequency, the pseudo sample volume position can be removed from an inconvenient position without changing the maximum blood flow observation speed. Therefore, any sample volume position and maximum blood flow observation speed desired by the user can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す超音波パルスドプラ
血流診断装置のブロック図、第2図はドプラシステムに
よるイメージの例、第3図は送受波タイミングチャート
、第4図はHighPRFモードの送受波タイミングチ
ャート、第5図は最大血流観測速度又はPRT設定領域
図、第6図はHighPRFの説明図である。 図において、(1)は探触子、(2)は送波回路、(3
)受波増幅焦点回路、(4)は受波信号強度検出器、(
5)は直交検波回路、(6)はレンジゲート回路、(7
)は周波数分析回路、(8)はサンプルボリューム入力
機構、(9) i大血流観測速度入力機構、(10)は
送波間隔、搬送/復調周波数決定回路である。 第 5 図 代理人 弁理士 佐々木 宗 治
Fig. 1 is a block diagram of an ultrasonic pulsed Doppler blood flow diagnostic device showing an embodiment of the present invention, Fig. 2 is an example of an image using a Doppler system, Fig. 3 is a wave transmission/reception timing chart, and Fig. 4 is a diagram of High PRF mode. A wave transmission/reception timing chart, FIG. 5 is a maximum blood flow observation speed or PRT setting area diagram, and FIG. 6 is an explanatory diagram of HighPRF. In the figure, (1) is the probe, (2) is the transmitter circuit, and (3) is the probe.
) reception amplification focusing circuit, (4) reception signal strength detector, (
5) is a quadrature detection circuit, (6) is a range gate circuit, (7
) is a frequency analysis circuit, (8) is a sample volume input mechanism, (9) is a large blood flow observation speed input mechanism, and (10) is a transmission interval and carrier/demodulation frequency determination circuit. Figure 5 Agent Patent Attorney Muneharu Sasaki

Claims (1)

【特許請求の範囲】 高パルス繰り返し周波数モードを用いて、血流速度を観
測する超音波パルスドプラ血流診断装置に於いて、 サンプルボリューム位置を設定するサンプルボリューム
入力機構と、 最大血流観測速度を設定する最大血流観測速度入力機構
と、 前記サンプルボリューム入力機構より設定されたサンプ
ルボリューム位置及び前記最大血流観測速度入力機構よ
り設定された最大血流観測速度に基づいて、送信超音波
の送波間隔及び搬送/復調周波数を決定する決定手段と
、 該決定手段によって決定された送波間隔と搬送周波数に
従って超音波の送波を行う送波回路と、前記決定手段に
よって決定された復調周波数に一致する周波数を持つ復
調信号でエコー受信信号の直交検波を行う直交検波回路
を備えたことを特徴とする超音波パルスドプラ血流診断
装置。
[Claims] An ultrasonic pulsed Doppler blood flow diagnostic device that observes blood flow velocity using a high pulse repetition frequency mode, comprising a sample volume input mechanism that sets a sample volume position, and a maximum blood flow observation velocity. The transmission of the transmitted ultrasound is based on the maximum blood flow observation speed input mechanism to be set, the sample volume position set by the sample volume input mechanism, and the maximum blood flow observation speed set by the maximum blood flow observation speed input mechanism. a determining means for determining a wave interval and a carrier/demodulation frequency; a transmitting circuit for transmitting ultrasonic waves according to the transmitting interval and carrier frequency determined by the determining means; An ultrasonic pulse Doppler blood flow diagnostic device characterized by comprising a quadrature detection circuit that performs quadrature detection of a received echo signal using a demodulated signal having a matching frequency.
JP31845788A 1988-12-19 1988-12-19 Ultrasonic pulse Doppler blood flow diagnostic device Expired - Fee Related JP2719710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31845788A JP2719710B2 (en) 1988-12-19 1988-12-19 Ultrasonic pulse Doppler blood flow diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31845788A JP2719710B2 (en) 1988-12-19 1988-12-19 Ultrasonic pulse Doppler blood flow diagnostic device

Publications (2)

Publication Number Publication Date
JPH02164346A true JPH02164346A (en) 1990-06-25
JP2719710B2 JP2719710B2 (en) 1998-02-25

Family

ID=18099333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31845788A Expired - Fee Related JP2719710B2 (en) 1988-12-19 1988-12-19 Ultrasonic pulse Doppler blood flow diagnostic device

Country Status (1)

Country Link
JP (1) JP2719710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301179A (en) * 2006-05-11 2007-11-22 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and method of generating ultrasonic diagnostic image
JP6145202B1 (en) * 2016-07-15 2017-06-07 株式会社日立製作所 Ultrasonic diagnostic equipment
CN110090043A (en) * 2018-01-30 2019-08-06 深圳市理邦精密仪器股份有限公司 Fetal rhythm data capture method, device and the Medical Devices of ultrasonic Doppler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568080B2 (en) * 2004-10-21 2010-10-27 株式会社東芝 Ultrasonic diagnostic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301179A (en) * 2006-05-11 2007-11-22 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus and method of generating ultrasonic diagnostic image
JP6145202B1 (en) * 2016-07-15 2017-06-07 株式会社日立製作所 Ultrasonic diagnostic equipment
JP2018007952A (en) * 2016-07-15 2018-01-18 株式会社日立製作所 Ultrasonic diagnostic apparatus
WO2018012048A1 (en) * 2016-07-15 2018-01-18 株式会社日立製作所 Ultrasonic diagnostic device
CN110090043A (en) * 2018-01-30 2019-08-06 深圳市理邦精密仪器股份有限公司 Fetal rhythm data capture method, device and the Medical Devices of ultrasonic Doppler

Also Published As

Publication number Publication date
JP2719710B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JP4659973B2 (en) Sonic flash for increased penetration
US4660565A (en) Ultrasonic imaging apparatus using pulsed Doppler signal
JPH0221258B2 (en)
JPH03188841A (en) Ultrasonic diagnostic device
US5501224A (en) Ultrasonic diagnostic apparatus
JPH02164346A (en) Ultrasonic pulse doppler blood stream diagnostic device
US5018528A (en) Pulse Doppler ultrasonic diagnostic system
JPH1085220A (en) Ultrasonic diagnostic device
JP3288120B2 (en) Ultrasound Doppler diagnostic equipment
JP4568080B2 (en) Ultrasonic diagnostic equipment
JPH07236640A (en) Ultrasonic diagnosing device
JP2679814B2 (en) Ultrasonic Doppler device
JP2569582Y2 (en) Ultrasound diagnostic equipment
JP2002017725A (en) Doppler ultrasonograph
JP2594959B2 (en) Ultrasonic Doppler meter
JPH07392A (en) Ultrasonic doppler system
JPH02289236A (en) Ultrasonic blood flow imaging device
JPH07286999A (en) Ultrasonic wave diagnosis device
JPH01310647A (en) Ultrasonic doppler device
JPH0759772A (en) Ultrasonic doppler system
JPH0654847A (en) Ultrasonic diagnostic device
JPH05317312A (en) Ultrasonic diagnosing apparatus
JPH0779978A (en) Ultrasonic diagnostic apparatus
JPH067352A (en) Ultrasonic doppler system
JPH05337112A (en) Ultrasonic two-dimensional doppler rheometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees