JPH02164247A - Multipolar reluctance motor - Google Patents

Multipolar reluctance motor

Info

Publication number
JPH02164247A
JPH02164247A JP31495188A JP31495188A JPH02164247A JP H02164247 A JPH02164247 A JP H02164247A JP 31495188 A JP31495188 A JP 31495188A JP 31495188 A JP31495188 A JP 31495188A JP H02164247 A JPH02164247 A JP H02164247A
Authority
JP
Japan
Prior art keywords
magnetic
cores
stator
rotor
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31495188A
Other languages
Japanese (ja)
Inventor
Isao Matsuda
功 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP31495188A priority Critical patent/JPH02164247A/en
Publication of JPH02164247A publication Critical patent/JPH02164247A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable making the capacity of a reluctance motor higher by forming a stator through arranging cores and V-connection coils under certain conditions and by forming a rotor through arranging magnetic poles made by laminating magnetic sheets on the outer peripheral face of a non-magnetic material. CONSTITUTION:To form a stator, three ring cores 20 each having a plurality of teeth 22 on the inner peripheral face are arranged axially around the same shaft center in the manner of electrically deviating 120 deg. from each other, two ring coils are interposed between the cores 20 around the same shaft center as that of the core 20, and the coils are connected with a V-connection and with a three-phase power supply. On the other hand, a rotor 30 surrounded by the cores 20 is formed when magnetic poles 31 made by circumferentially laminating many axially extending magnetic sheets are arranged equally in the circumferential direction on the outer peripheral face of a non-magnetic base material 32. In this case, the magnetic poles 31 composed of laminated magnetic sheets reduces an eddy current caused by axially passing magnetic fluxes to collect and pass the fluxes suitably.

Description

【発明の詳細な説明】 ^ 産業上の利用分計 本発明は多極リラクタンスモータに関し、小型でしかも
大トルクが得られ、ろように大容量化を企図したもので
ある。
[Detailed Description of the Invention] ^ Industrial Application The present invention relates to a multi-polar reluctance motor, which is small in size and can obtain a large torque, and is intended to have a large capacity.

B 発明の概要 本発明は、f48i子となる固定子により、回転子にリ
ラクタンストルクを発生させるようにしたものである。
B. Summary of the Invention In the present invention, reluctance torque is generated in the rotor by a stator serving as an f48i element.

しかも固定子は、回転磁界を生じさせるために歯のつい
たリング状の鉄心と■結線のリング状コイルとを一定条
件で配列して構成され、回転子はリング状の非磁性体の
外周面に、磁性板を積層してなる磁極を配して構成して
いる。
Moreover, the stator is composed of a toothed ring-shaped iron core and a wire-connected ring-shaped coil arranged under certain conditions in order to generate a rotating magnetic field, and the rotor is made of a ring-shaped non-magnetic material. It is constructed by arranging a magnetic pole made of laminated magnetic plates.

C従来の技術とその課題 リラクタンストルクを利用するリラクタンスモーフとし
ては、従来、第3図ないし第5図に示す固定子を有し、
これらの図に示すように、ヨーク1.鉄心2.コイル3
.スロット4があり、コイル3は亀甲型に形成されてそ
の直線部がスロット4内に嵌め込まれろ構造となってい
る。そして、このコイル3はY結線されて三相電源に接
続され回転磁界を生ずるものである。
C. Conventional technology and its problems A reluctance smorph that utilizes reluctance torque has conventionally had a stator shown in FIGS. 3 to 5,
As shown in these figures, the yoke 1. Iron core 2. coil 3
.. There is a slot 4, the coil 3 is formed in a hexagonal shape, and the straight part thereof is fitted into the slot 4. This coil 3 is Y-connected and connected to a three-phase power source to generate a rotating magnetic field.

一方、リラクタンスモータの回転子は、強磁性体で形成
された塊状であって、磁気凹凸性を有する構造が一般的
である。
On the other hand, the rotor of a reluctance motor is generally a block made of a ferromagnetic material and has a structure with magnetic unevenness.

ところが、この種モータは、今まで、小容量のものしか
作られていないのが現状である。
However, at present, this type of motor has only been manufactured with a small capacity.

これは、大トルクを発生させるべく極数を多くすると励
磁電流が増大して力率・効率とも低下すること、極数増
大に伴いスロットも多数となって機械の体格が極めて大
形になること、コイルエンド部の増大に伴い更に体格が
大形化し銅損も大きくなること等に基因する。
This is because when the number of poles is increased to generate large torque, the excitation current increases and both power factor and efficiency decrease.As the number of poles increases, the number of slots also increases, making the machine extremely large. This is due to the fact that as the coil end portion increases, the body becomes larger and the copper loss also increases.

このため、本発明者は全く新規なリラクタンスモータと
して次のような固定子(電機子)を提案した。ここで、
この新たな固定子を原理から説明する。
For this reason, the present inventor proposed the following stator (armature) as a completely new reluctance motor. here,
This new stator will be explained from its principle.

第6図は簡単のためNS極を有する永久磁石からなろ2
橿の回転子5と固定子6とを示し、第7図は第6図■−
■断面であって第8図に示すリング状のコイル7a、7
bを固定子の周方向に配置した例を示している。第7図
において、2個のコイル7a、7bにより固定子6の歯
を通る磁束をφ1φ2φつと仮定する。
Figure 6 is made of a permanent magnet with NS poles for simplicity.
Fig. 7 shows the rotor 5 and stator 6 of the rod, and Fig. 6 -
■ Ring-shaped coils 7a, 7 shown in FIG. 8 in cross section
This shows an example where b is arranged in the circumferential direction of the stator. In FIG. 7, it is assumed that the magnetic flux passing through the teeth of the stator 6 by the two coils 7a and 7b is φ1φ2φ.

一方、コイル7a、7bはU相からV相へ右巻きに巻回
し、更にW相からV相へも右巻きに巻回して、三相交流
を通電する。このようにするとコイル7a、7bによっ
て第9図に示す鎖交磁束φ、φ。を生ずる。すなわち、
第10図に示すベクトル図にて電圧V、がUからVへ向
うベクトルで、電圧V、がWからVに向うベクトルとな
る。そして、 v=vo癲ωtとすれば、 v −−v o席(ωt  3π)となる。
On the other hand, the coils 7a and 7b are wound clockwise from the U phase to the V phase, and are further wound clockwise from the W phase to the V phase, thereby supplying three-phase alternating current. In this way, the coils 7a and 7b create interlinkage magnetic fluxes φ and φ as shown in FIG. will occur. That is,
In the vector diagram shown in FIG. 10, voltage V is a vector from U to V, and voltage V is a vector from W to V. Then, if v=vo ωt, then v −−vo ωt (ωt 3π).

コイル7aに鎖交する磁束φ、とコイル7bに鎖交する
磁束φ。は、φ、= f vadt、φb −f vb
 d tとなる。
A magnetic flux φ interlinks with the coil 7a, and a magnetic flux φ interlinks with the coil 7b. is φ, = f vadt, φb − f vb
d t.

したがって、 φ、= f vadt= f vomcc+tdt=’
 CIG ((Ll t−π1ω 第7図、第9図にてφ1=φ、、φ、=−φゎの関係に
あるから、φ2は次式となる。
Therefore, φ,= f vadt= f vomcc+tdt='
CIG ((Ll t-π1ω In FIGS. 7 and 9, there is a relationship of φ1=φ, φ,=−φゎ, so φ2 becomes the following equation.

しt二がって、 φ1=50(act−□) ω こうして、磁束φ1φ2φ、ば互に1πずつずれた磁束
となる。
Therefore, φ1=50(act-□) ω In this way, the magnetic fluxes φ1φ2φ become magnetic fluxes that are shifted by 1π from each other.

以上の結果、第11図に示す三相交流を■結線コイル7
a、’Ibに通電することにより、第12図に示すよう
に固定子には電気角で120°ずっずれた各相の磁束が
生じ、図示の如く、u、v、w相にて模擬的に矩形に示
す磁極を生ずることになる。
As a result of the above, the three-phase AC shown in FIG.
By energizing a and 'Ib, the magnetic flux of each phase shifted by 120 degrees in electrical angle is generated in the stator as shown in FIG. This results in a magnetic pole shown as a rectangle.

しかも、この磁極は、第12図ta+ (bl (cl
に示すように時間と共に順に変化することになる。
Moreover, this magnetic pole is ta+ (bl (cl
As shown in the figure, it changes sequentially over time.

すなわち、第11図に示すように時刻tにて第12図(
al、時刻t2+cr第12図(bl、時刻t3にて第
12図(clに示す磁極分布状態となる。
That is, as shown in FIG. 11, at time t, FIG. 12 (
al, time t2+cr FIG. 12 (bl, at time t3, the magnetic pole distribution state is as shown in FIG. 12 (cl).

この第12図(al (bl (c)において、記号「
N」rsJは最大磁界、rnnJrssJは中磁界(最
大磁界Q、866) 、rnJ  rsJは弱磁界(R
大磁界の0.5)をそれぞれ示しており、時#t、 t
2t3の変化により第12図(al (bl fc) 
(7)パターンに磁極が変化する。そしてこのパターン
は、第12図(alを例にとると、第12図(alにお
いて、xy座漂を採り、例えばy軸上のy1点でX方向
の磁界を積分してこの積分値をy、点の磁界の強さとす
る。12点でも同様となる。すなわち任意のy、、点の
磁界の強さを求めそれをy軸上に展開すると完全ではな
し)が正磁波分布となった。
In this Figure 12 (al (bl (c)), the symbol "
N''rsJ is the maximum magnetic field, rnnJrssJ is the medium magnetic field (maximum magnetic field Q, 866), rnJrsJ is the weak magnetic field (R
0.5) of the large magnetic field, respectively, and times #t, t
Figure 12 (al (bl fc)
(7) The magnetic pole changes in the pattern. This pattern is shown in Figure 12 (taking al as an example). , is the strength of the magnetic field at a point.The same is true for 12 points.In other words, if we find the strength of the magnetic field at any point y and expand it on the y-axis, we get a positive magnetic wave distribution (not perfect).

以上の結果、固定子6の周方向に正弦波に分布した磁極
が生じ、その磁極位置が第12図(dlに示すように時
刻の進行と共に順にずれて回転磁界を生ずることとなツ
tこ。
As a result of the above, magnetic poles are distributed in a sinusoidal manner in the circumferential direction of the stator 6, and as shown in FIG. .

次に励磁コイル(リング状コイル)につき説明する。第
13図に示すようにコイルNを巻回したコアを考えろと
き、第13図(alと第13図fblとのエアギャップ
Gが同しで・4のギャップGに要する磁界の強さが同じ
であるから、各歯に巻回したコイルの起磁力も同じであ
る。してみると、第13図(alと第13図(C1とに
よって歯の数が異なっていても第13図tc+の全体を
励磁することで、起磁力が一定となる。すなわち、1個
のコイルで所望の磁界の強さを得ることができる。
Next, the excitation coil (ring-shaped coil) will be explained. When considering a core with a coil N wound around it as shown in Fig. 13, the air gap G between Fig. 13 (al and Fig. 13 fbl is the same, and the strength of the magnetic field required for the gap G of 4 is the same). Therefore, the magnetomotive force of the coil wound around each tooth is also the same.As a result, even if the number of teeth is different between Figure 13 (al) and Figure 13 (C1), the magnetomotive force of Figure 13 (tc+) is the same. By energizing the entire coil, the magnetomotive force becomes constant. That is, a desired magnetic field strength can be obtained with one coil.

このような原理に基づく固定子の具体的な構造としては
、第14図および第15図に示すものとした。つまり、
3個のリング状の鉄心20と2個のリング状のコイル2
1を有しており、リング状の鉄心20は第15図にも示
すように、その内周壁に周方向に沿って複数個の歯22
が設けられている。一方、リング状の鉄心20間に介在
されるリング状のコイル21は2個のリング状のコイル
・21の引出し綿を■結線に接続している。
The specific structure of the stator based on this principle is shown in FIGS. 14 and 15. In other words,
Three ring-shaped iron cores 20 and two ring-shaped coils 2
As shown in FIG. 15, the ring-shaped core 20 has a plurality of teeth 22 along the circumferential direction on its inner peripheral wall.
is provided. On the other hand, the ring-shaped coil 21 interposed between the ring-shaped iron cores 20 connects the two ring-shaped coils 21 to the wire connection.

リング状の鉄心20の3個のものは、同一形状の歯22
の形を有し、それぞれの鉄心20は第15図の如く電気
角で120°ずつ相互にずれろように配置される。また
、各リング状の鉄心20相互はその外周にヨーク23が
橋架されて磁気的に結合される。
The three ring-shaped iron cores 20 have teeth 22 of the same shape.
As shown in FIG. 15, the cores 20 are arranged so as to be offset from each other by 120 degrees in electrical angle. Further, each of the ring-shaped cores 20 is magnetically coupled to each other by a yoke 23 bridging the outer periphery thereof.

しかしながら、上述の如き新規な固定子を提案してもリ
ラクタンスモータの回転子としては、なお、小容量のス
テップモータにみられる単なる塊状の磁気凹凸性を有す
る構造であって、うず電流積が大きく、第6図に示され
る永久磁石を採用したとしても大容量化は無理である。
However, even if the above-mentioned novel stator is proposed, the rotor of a reluctance motor still has a structure with the lumpy magnetic unevenness found in small-capacity step motors, and has a large eddy current product. , even if the permanent magnet shown in FIG. 6 is employed, it is impossible to increase the capacity.

そこで、本発明は、上述の課題に鑑み小形のわりに大き
なトルクを発生させろ大容量化したリラクタンスモータ
にあって、前述の新規に提案された固定子にみあう新規
な回転子の提供を目的とする。
Therefore, in view of the above-mentioned problems, the present invention aims to provide a new rotor that is suitable for the newly proposed stator in a reluctance motor that has a large capacity and generates a large torque despite its small size. do.

の磁性板を周方向に積層してなる磁極を、周方向に沿っ
て等配に配置した回転子を得ることを待(敞とする。
The aim is to obtain a rotor in which magnetic poles formed by laminating magnetic plates in the circumferential direction are arranged equidistantly along the circumferential direction.

E  作     用 軸方向に通る磁束を積層磁性板からなる磁極によりうず
電流等を軽減して好適に集め通すことができる。
E Effect The magnetic flux passing in the axial direction can be appropriately collected and passed by the magnetic pole made of the laminated magnetic plate while reducing eddy current and the like.

D 課題を解決するための手段 上記目的を達成する本発明は、内周面に周方向に沿って
複数個の歯を等配に形成した3個のリング状の鉄心を、
電気的に120°ずつずらして同軸心となるように軸方
向にならべて配置し、上記3個ならんだ鉄心の間にこの
鉄心と同軸心となるようにリング状コイルを2個介在さ
せ、この2個のリング状コイルを■結線に接続して三相
電源に接続する構成の固定子に対して、 非磁性体の外周面に、軸方向に呻びろ多数F実施例 ここで、第1図及び第2図を参照して本発明の詳細な説
明する。第1図において、20は固定子の鉄心、22は
歯である。鉄心20に囲土れた回転子30は、リラクタ
ンストルクを発生させるため、非磁性の母材32の周囲
に複数極の磁極31が備えられた構成を有する。
D. Means for Solving the Problems The present invention, which achieves the above objects, comprises three ring-shaped iron cores each having a plurality of teeth equally spaced along the circumferential direction on the inner circumferential surface.
They are arranged in the axial direction so that they are electrically shifted by 120 degrees so that they form coaxial centers, and two ring-shaped coils are interposed between the above three arranged iron cores so that they are coaxial with this iron core. For a stator with a configuration in which two ring-shaped coils are connected to a three-phase power supply by connecting two ring-shaped coils to a three-phase power supply, a large number of axially extending grooves are provided on the outer peripheral surface of a non-magnetic material. The present invention will be described in detail with reference to FIG. In FIG. 1, 20 is the iron core of the stator, and 22 is the tooth. The rotor 30 surrounded by the iron core 20 has a configuration in which a plurality of magnetic poles 31 are provided around a non-magnetic base material 32 in order to generate reluctance torque.

このうち、回転子30の母材32は、例えばアルミニウ
ム等の非磁性材料にて形成された円柱回転体であって、
その外周には周方向に沿って磁8F131が収まる溝3
3が等配に第2図に示すように形成されている。したが
って、s33は軸方向に延びる構造となる。
Among these, the base material 32 of the rotor 30 is a cylindrical rotating body made of a non-magnetic material such as aluminum,
On its outer periphery, there is a groove 3 in which the magnetic 8F131 is accommodated along the circumferential direction.
3 are equally spaced as shown in FIG. Therefore, s33 has a structure extending in the axial direction.

他方、回転子30に形成される溝33内には磁極31が
備丸られる。この磁極31は回転子の周方向に沿って強
磁性体の板を積層した構造である。
On the other hand, magnetic poles 31 are provided in grooves 33 formed in the rotor 30. The magnetic pole 31 has a structure in which ferromagnetic plates are laminated along the circumferential direction of the rotor.

回転子30の製造に当っては、母材32の外周に極数分
だけ歯を切りFIII33を形成する。
In manufacturing the rotor 30, teeth are cut on the outer periphery of the base material 32 by the number of poles to form FIII 33.

この溝33内に積層した磁極31を収めて固定する。こ
の場合、磁極31は非磁性体の母材32に収められて磁
気的に開路されている。
The stacked magnetic poles 31 are accommodated and fixed in the grooves 33. In this case, the magnetic pole 31 is housed in a non-magnetic base material 32 and is magnetically opened.

この後、アルミダイキャストによって磁極31が固定さ
れる。ここで、歯の側面や磁極31には湯口用の溝や穴
が設けであるので、アルミニウムを鋳込めば磁極31は
母材32に強固に固定される。
After that, the magnetic pole 31 is fixed by aluminum die casting. Here, since the side surfaces of the teeth and the magnetic pole 31 are provided with grooves and holes for sprues, the magnetic pole 31 is firmly fixed to the base material 32 by casting aluminum.

なお、磁極31を周方向に積層した構造としたのは、回
転子内を通過する磁束が軸方向に通過し、しかも電源周
波数に比例して交番することによるからである。
The reason why the magnetic poles 31 are laminated in the circumferential direction is that the magnetic flux passing through the rotor passes in the axial direction and alternates in proportion to the power frequency.

また、回転子30のl材32はステンレス鋳物とかステ
ンレス板を打ち抜いたものを積層したものでもよい。
Further, the l material 32 of the rotor 30 may be made of stainless steel casting or a stack of punched stainless steel plates.

G 発明の詳細 な説明したように本発明によれば、提案された固定子に
みあう新規な回転子を得ることができ、大吉l化したリ
ラクタンスモーフを得ろことができろ。また、この回転
子は簡単な力演で製作することができろ。
G. As described in detail, according to the present invention, it is possible to obtain a novel rotor that matches the proposed stator, and it is possible to obtain a reluctance morph that is highly advantageous. Also, this rotor can be manufactured with simple effort.

【図面の簡単な説明】[Brief explanation of the drawing]

Mr、1図および第2図は本発明の実施例で、第1図は
一部構成図、第2図は分解構成図、第3図は従来の固定
子の展開図、第4図は第3図のIV−IV断面図、第5
図は第3図の■−■断面図、第6図ないし第15図は固
定子の説明のためのもので、第6図は2極機の簡略構成
図、第7図は第6図の■−■断面図、第8図はリング状
のコイルの結線状態図、第9図は鎮交磁束の説明図、@
10図は三相ベクトル図、第11図は三相電流波形図、
第12図1a) +bJ師)はm極パターンの状a図、
第12図1a)は正弦波分布の進行状態図、第13図は
励磁電流の説明図、第14図は固定子の斜視図、第15
図は固定子のNIj1図である。 図 中、 Oは鉄心、 2は歯、 Oは回転子、 1は磁極、 2は母材、 3は溝である。 第1図 一笑施例構造 第2図 分M斜視 特許用 株式会社 代     理
Mr. 1 and 2 show an embodiment of the present invention; FIG. 1 is a partial configuration diagram; FIG. 2 is an exploded configuration diagram; FIG. 3 is a developed view of a conventional stator; IV-IV sectional view in Figure 3, No. 5
The figure is a sectional view taken along the line ■-■ of Figure 3, Figures 6 to 15 are for explaining the stator, Figure 6 is a simplified configuration diagram of a two-pole machine, and Figure 7 is a cross-sectional view of Figure 6. ■-■ Cross-sectional view, Figure 8 is a diagram of the connection state of a ring-shaped coil, Figure 9 is an explanatory diagram of intersecting magnetic flux, @
Figure 10 is a three-phase vector diagram, Figure 11 is a three-phase current waveform diagram,
Figure 12 1a) +bJ) is a diagram of the m-pole pattern,
Fig. 12 1a) is a progression state diagram of the sine wave distribution, Fig. 13 is an explanatory diagram of the excitation current, Fig. 14 is a perspective view of the stator, and Fig. 15
The figure is a NIj1 diagram of the stator. In the figure, O is the iron core, 2 is the tooth, O is the rotor, 1 is the magnetic pole, 2 is the base material, and 3 is the groove. Figure 1: Example structure Figure 2: M perspective patent agent

Claims (1)

【特許請求の範囲】 円筒状をなして固定設置された固定子と、この固定子の
内周側に同心状態で位置して回転自在に支持された回転
子と、を有し、 前記固定子は、内周面に周方向に沿って複数個の歯を等
配に形成した3個のリング状の鉄心を、電気的に120
°ずつずらして同軸心となるように軸方向にならべて配
置し、上記3個ならんだ鉄心の間にこの鉄心と同軸心と
なるようにリング状コイルを2個介在させ、この2個の
リング状コイルをV結線に接続して三相電源に接続する
構成となっており、 前記回転子は、非磁性体の外周面に、軸方向に伸びる多
数の磁性板を周方向に積層してなる磁極を、周方向に沿
い等配に配置した構成となっていることを特徴とする多
極リラクタンスモータ。
[Scope of Claims] A stator having a cylindrical shape and fixedly installed, and a rotor positioned concentrically on the inner circumferential side of the stator and rotatably supported, the stator electrically connects three ring-shaped iron cores with a plurality of teeth equally spaced along the circumferential direction on the inner circumferential surface.
The two ring-shaped coils are arranged in the axial direction so that the cores are coaxial with each other, and the two ring-shaped coils are interposed between the three cores arranged in a row so that the cores are coaxial with the core. The rotor has a structure in which a shaped coil is connected to a V-connection and connected to a three-phase power supply, and the rotor is formed by laminating a large number of magnetic plates extending in the axial direction on the outer peripheral surface of a non-magnetic material in the circumferential direction. A multi-polar reluctance motor characterized by having a configuration in which magnetic poles are arranged equidistantly along the circumferential direction.
JP31495188A 1988-12-15 1988-12-15 Multipolar reluctance motor Pending JPH02164247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31495188A JPH02164247A (en) 1988-12-15 1988-12-15 Multipolar reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31495188A JPH02164247A (en) 1988-12-15 1988-12-15 Multipolar reluctance motor

Publications (1)

Publication Number Publication Date
JPH02164247A true JPH02164247A (en) 1990-06-25

Family

ID=18059625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31495188A Pending JPH02164247A (en) 1988-12-15 1988-12-15 Multipolar reluctance motor

Country Status (1)

Country Link
JP (1) JPH02164247A (en)

Similar Documents

Publication Publication Date Title
US6172438B1 (en) Two-phase permanent-magnet electric rotating machine
US4280072A (en) Rotating electric machine
JP4675019B2 (en) Hybrid synchronous motor with annular winding
US6064132A (en) Armature structure of a radial rib winding type rotating electric machine
KR20180006306A (en) Stators and coils for axial-flux dynamoelectric machines
EP1045509A1 (en) An alternating current machine
KR20080018207A (en) Motor and control device thereof
EP1096648B1 (en) Motor/generator having two rotors
US4829205A (en) Dual-rotary induction motor with stationary field winding
JP2003134762A (en) Electric rotating machine
JP6327803B2 (en) High-power, high-efficiency single-phase multipolar generator
US20150097459A1 (en) Homopolar motor-generators
JPH0270253A (en) Electric multipolar machine
WO2016004823A1 (en) Stator, brushless direct current motor, three-phase switch reluctance motor and shaded pole motor
JP2008211918A (en) Rotary electric machine
JPH0239180B2 (en)
JPH0479741A (en) Permanent magnet rotor
JP2005020885A (en) Rotary linear dc motor
JP3631788B2 (en) motor
JPH02164247A (en) Multipolar reluctance motor
JP3064302B2 (en) Non-stacked concentrated winding induction motor
JPH02164249A (en) Multipolar reluctance motor
JPH02164250A (en) Multipolar reluctance motor
JP2008211892A (en) Axial gap type rotating electric machine
JP2008160896A (en) Rotary machine