JPH0216421A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH0216421A
JPH0216421A JP63166101A JP16610188A JPH0216421A JP H0216421 A JPH0216421 A JP H0216421A JP 63166101 A JP63166101 A JP 63166101A JP 16610188 A JP16610188 A JP 16610188A JP H0216421 A JPH0216421 A JP H0216421A
Authority
JP
Japan
Prior art keywords
light
wavelength
layer
photoelectric conversion
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63166101A
Other languages
Japanese (ja)
Inventor
Michio Okajima
道生 岡嶋
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63166101A priority Critical patent/JPH0216421A/en
Publication of JPH0216421A publication Critical patent/JPH0216421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To detect ultrafaint light by providing an electroluminescence body in contact with a photosensitive layer impressing a specified voltage between said body and said layer so that the wavelength of light made incident on the photosensitive layer is converted, detecting the light emission of said electroluminescence body and photoelectrically converting it. CONSTITUTION:The photosensitive layer 3 and the electroluminescence layer 2 are closely laminated and the electrostatic voltage V is impressed between transparent conductive films 4 and 1 which hold both sides of said layers between them so as to form a wavelength conversion part 5, then the wavelength hupsilon2 of incident light is converted into the wavelength hupsilon2. By making a photoelectric conversion part 6 abut on the transparent conductive film 1 and irradiating a photoelectric conversion film 9 with the light of the wavelength hupsilon2, a photoelectron is emitted into a glass tube. The photo-electron is multiplied in a dynode group 10 consisting of plural dynodes formed in the glass tube 8 and gathered in an anode 11 so as to obtain an output current. Thus, the ultrafaint light of near infrared light, which can not be detected by a photomultiplier tube, can be detected. The title photodetector becomes appropriate to detect the light emission of the living or chemical light emission.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微弱光検出装置にかかわるものである。[Detailed description of the invention] Industrial applications The present invention relates to a weak light detection device.

従来の技術 従来の微弱光検出装置の例として、現存する光検出器の
なかでもっとも高感度なものは、光電子増倍管である。
2. Description of the Related Art As an example of a conventional weak light detection device, the most sensitive photodetector in existence is a photomultiplier tube.

第4図に、その断面図を示す。光電面50に光が照射さ
れると、光電子が真空領域51に放出される。放出され
た光電子は、約100Vの電圧が印加された第1ダイノ
ード52による電界によって加速されて、第1ダイノー
ド52に入射し、a(3−6)個の二次電子を放出する
FIG. 4 shows a sectional view thereof. When the photocathode 50 is irradiated with light, photoelectrons are emitted into the vacuum region 51. The emitted photoelectrons are accelerated by the electric field generated by the first dynode 52 to which a voltage of about 100V is applied, and enter the first dynode 52, where a(3-6) secondary electrons are emitted.

これらの二次電子が今度は第2ダイノード53に加速、
衝突し、32個の二次電子を放出する。 この過程を繰
り返して、k段目ではak個(通常は106個)となる
。 これらの電子が陽極54に集められ出力電流となる
These secondary electrons are now accelerated to the second dynode 53,
Collision and release 32 secondary electrons. This process is repeated until the kth stage has ak pieces (usually 106 pieces). These electrons are collected at the anode 54 and become an output current.

光電面50の代表的な材料としては、使用する波長範囲
に応じて、例えば、CsCs−1(115−200n、
Ag−0−Cs (400−1200nm)、Na−に
−8b−Cs (マルチアルカリ)(300−850n
m)、GaAs  (Cs)(300−910nm)な
どがある。これらの最高放射感度は、6060−8O/
Wである。
Typical materials for the photocathode 50 include, for example, CsCs-1 (115-200n,
Ag-0-Cs (400-1200nm), Na-8b-Cs (multialkali) (300-850n
m), GaAs (Cs) (300-910 nm), etc. The highest radiation sensitivity of these is 6060-8O/
It is W.

光電面が、光電子を放出し得る入射光(エネルギーhν
)の長波長側限界は、光電子放出材料のバンドギャップ
Egと、電子親和力χの和Eg+χによって規定される
。即ちhν≦Eg十χの光は検出できない。
The photocathode can emit photoelectrons from the incident light (energy hν
) is defined by the sum Eg+χ of the band gap Eg of the photoelectron emitting material and the electron affinity χ. That is, light with hv≦Eg1χ cannot be detected.

従来、もっとも長波長域まで検出できる光電材料は、負
電子親和力系材料(NBA材料)であった。これは、所
定の半導体単結晶の清浄表面にCs−0を単原子層程度
吸着させ、表面にバンド湾曲を生じさせたもので、真空
準位は、伝導バンドの底よりも低(、実効的に負の電子
親和力状態(NEA状態)となっている。現在、実用に
供する負電子親和力系材料(NBA材料)は、GaAs
(Cs)であるが、GaAsのバンドギャップEgは1
.4eVであり、その長波長側検出限界は910nmで
ある。
Conventionally, photoelectric materials that can detect up to the longest wavelength range have been negative electron affinity materials (NBA materials). In this method, a monoatomic layer of Cs-0 is adsorbed onto the clean surface of a given semiconductor single crystal, creating band curvature on the surface, and the vacuum level is lower than the bottom of the conduction band (effectively is in a negative electron affinity state (NEA state).Currently, the negative electron affinity material (NBA material) in practical use is GaAs.
(Cs), but the bandgap Eg of GaAs is 1
.. 4 eV, and its detection limit on the long wavelength side is 910 nm.

また、これ以上長波長の赤外線検出器のうち、最も高感
度のものは、S1アバランシエフオトダイオードであっ
た。第5図にその断面図を示す。
Among the infrared detectors with longer wavelengths, the one with the highest sensitivity was the S1 avalanche photodiode. FIG. 5 shows its cross-sectional view.

入射光が、逆方向降伏電圧に近い値にまで逆バイアスさ
れたPN接合部55で吸収され、空乏層内に電子正孔対
が生成する。空乏層内の強い電界により加速されたこれ
らのキャリヤーは、走行中に次々と束縛電子を衝撃し、
イオン化する。この様な機構が雪崩的に起こって、電流
が増倍される。
The incident light is absorbed by the PN junction 55, which is reverse biased to a value close to the reverse breakdown voltage, and electron-hole pairs are generated within the depletion layer. These carriers, accelerated by the strong electric field in the depletion layer, bombard bound electrons one after another while traveling, and
Ionize. Such a mechanism occurs like an avalanche, and the current is multiplied.

しかし、その検出限界光強度は、10す4W程度である
。また、その長波長側検出限界波長は、11050nで
ある。
However, its detection limit light intensity is about 104W. Further, the detection limit wavelength on the long wavelength side is 11050n.

発明が解決しようとする課題 一方、近年、例えば近赤外領域の極微弱光センサのニー
ズが高まっている。その−例として、生体からの極微弱
な近赤外化学発光を捉えようとするものがある。
Problems to be Solved by the Invention On the other hand, in recent years, there has been an increasing need for ultra-weak light sensors in the near-infrared region, for example. An example of this is a technique that attempts to capture extremely weak near-infrared chemiluminescence from living organisms.

しかしながら、現存する近赤外光センサでは、これらの
極微弱光を検出できる感度を有するものは存在しなかっ
た。
However, none of the existing near-infrared light sensors have the sensitivity to detect these extremely weak lights.

課題を解決するための手段 所定の波長の極微弱な光を検出するため、そ、の波長域
に光感度を有する感光体層及び、その内部もしくはそれ
に接して構成される電場発光体と、前記感光体及び前記
電場発光体に所定の電界が印加できるように設けられた
電極より構成される波長変換部と、前記電場発光体の発
光を検知し電気信号に変換する光電変換部から成る光検
出器を形成する。前記電場発光体は、前記光電変換部が
高感度を有する波長の光を放出する材料で構成する。
Means for Solving the Problems In order to detect ultra-weak light of a predetermined wavelength, a photoreceptor layer having photosensitivity in that wavelength range, an electroluminescent body configured inside or in contact with the photoreceptor layer, and the aforementioned A photodetector comprising a wavelength converting section composed of a photoreceptor and an electrode provided so as to apply a predetermined electric field to the electroluminescent body, and a photoelectric conversion section that detects light emission from the electroluminescent body and converts it into an electric signal. Form a vessel. The electroluminescent body is made of a material that emits light at a wavelength to which the photoelectric conversion section has high sensitivity.

作用 所定の波長域に感度を有する感光体層及び、その内部も
しくはそれに接して構成される電場発光体には、それら
に近接して設けられた電極対により所定の電界が印加さ
れる。光電変換部は、前記電場発光体からの発光を検知
できる位置に設けられる。前記光電変換部は、前記電場
発光体の発光波長領域では、高感度の光電変換効率を有
するように、前記光電変換部材料及び前記電場発光体材
料が選ばれる。
Operation A predetermined electric field is applied to the photoreceptor layer having sensitivity in a predetermined wavelength range and the electroluminescent body formed inside or in contact with the photoreceptor layer by an electrode pair provided close to the photoreceptor layer. The photoelectric conversion section is provided at a position where light emission from the electroluminescent body can be detected. The photoelectric conversion part material and the electroluminescent material are selected so that the photoelectric conversion part has a highly sensitive photoelectric conversion efficiency in the emission wavelength region of the electroluminescent material.

所定の波長λ1の光が前記感光体層に入射すると、感光
体層に吸収され、電子正孔対が生成する。
When light with a predetermined wavelength λ1 is incident on the photoreceptor layer, it is absorbed by the photoreceptor layer, and electron-hole pairs are generated.

これらのフォトキャリヤーは印加された電界によりドリ
フトする。
These photocarriers drift due to the applied electric field.

前記フォトキャリヤーのうち前記電場発光体に注入され
た電子は、印加された高電界によって加速され、高エネ
ルギーを得て、電場発光体の母体自体もしくはその中の
不純物中心(発光中心)に衝突し、これをイオン化する
。この際発生した電子は、次々に衝突を繰り返しながら
、雪崩的に新たな電子正孔対を生成する。そして不純物
中心に捕獲された電子正孔対の再結合により発光する。
Among the photocarriers, the electrons injected into the electroluminescent body are accelerated by the applied high electric field, obtain high energy, and collide with the base body of the electroluminescent body itself or an impurity center (luminescence center) therein. , ionizes this. The electrons generated at this time repeatedly collide one after another, producing new electron-hole pairs like an avalanche. Then, light is emitted by recombination of electron-hole pairs captured at the impurity center.

または、ホットエレクトロンが発光中心イオンに衝突し
、その内殻電子を励起する。そして、発光中心の励起状
態から基底状態への内殻電子遷移により発光する。
Alternatively, hot electrons collide with the luminescent center ion and excite its core electrons. Then, light is emitted due to core electron transition from the excited state of the luminescent center to the ground state.

以上の電場発光(波長λ2)を、前記光電変換部で受光
し、所定の手段を用いて光電変換し、増倍して、電気信
号に変換する。
The above electroluminescence (wavelength λ2) is received by the photoelectric conversion section, photoelectrically converted using a predetermined means, multiplied, and converted into an electric signal.

実施例 本発明の一実施例を、第1図に示す。これは、本発明の
一実施例における高感度近赤外光検出器の断面図である
。透明導電膜1、発光層2、感光層3及び透明導電膜4
を積層した波長変換部5が、光電変換部6の端面に、図
のように形成される。
Embodiment An embodiment of the present invention is shown in FIG. This is a cross-sectional view of a high-sensitivity near-infrared photodetector in one embodiment of the present invention. Transparent conductive film 1, light emitting layer 2, photosensitive layer 3, and transparent conductive film 4
A wavelength conversion section 5 in which the photoelectric conversion section 6 is laminated is formed on the end face of the photoelectric conversion section 6 as shown in the figure.

光電変換部6として、本実施例では、光電子増倍管7を
用いている。光電子増倍管7は、ガラス管8の内面に構
成された光電変換膜9、及び数段のダイノード群10、
陽極11等より成る。
As the photoelectric conversion section 6, a photomultiplier tube 7 is used in this embodiment. The photomultiplier tube 7 includes a photoelectric conversion film 9 formed on the inner surface of a glass tube 8, a group of dynodes 10 in several stages,
It consists of 11 anodes.

感光層3及び、発光層2には、透明導電膜1.4からな
る電極対により、図のように所定の静電界が印加される
A predetermined electrostatic field is applied to the photosensitive layer 3 and the light emitting layer 2 by an electrode pair made of a transparent conductive film 1.4 as shown in the figure.

所定の波長λ、の光が前記感光層3に入射すると、感光
層3に吸収され、電子正孔対が生成する。
When light with a predetermined wavelength λ is incident on the photosensitive layer 3, it is absorbed by the photosensitive layer 3, and electron-hole pairs are generated.

これらのフォトキャリヤーは印加された電界により、電
子は発光層2にむかって、正孔は透明導電膜4にむかっ
てドリフトする。
Due to the applied electric field, these photocarriers drift electrons toward the light-emitting layer 2 and holes toward the transparent conductive film 4.

前記フォトキャリヤーのうち前記発光層2に注入された
電子は、印加された高電界によって加速され、高エネル
ギーを得て、発光層2の母体自体もしくはその中の不純
物中心(発光中心)に衝突し、これをイオン化する。こ
の際発生した電子は、次々に衝突を繰り返しながら、雪
崩的に新たな電子正孔対を生成する。そして不純物中心
に捕獲された電子正孔対の再結合により発光する。また
は、ホットエレクトロンが発光中心イオンに衝突し、そ
の内殻電子を励起する。そして、発光中心の励起状態か
ら基底状態への内殻電子遷移により発光する。
Among the photocarriers, the electrons injected into the light-emitting layer 2 are accelerated by the applied high electric field, obtain high energy, and collide with the matrix itself of the light-emitting layer 2 or the impurity center (light-emitting center) therein. , ionizes this. The electrons generated at this time repeatedly collide one after another, producing new electron-hole pairs like an avalanche. Then, light is emitted by recombination of electron-hole pairs captured at the impurity center. Alternatively, hot electrons collide with the luminescent center ion and excite its core electrons. Then, light is emitted due to core electron transition from the excited state of the luminescent center to the ground state.

以上の、発光層2からの電場発光(波長λ2)を、前記
光電変換膜9で受光し、外部光電効果を利用して光電子
を真空中に放出する。それをダイノード群10で106
倍程度に増倍して、陽極11に捕獲して、電気信号とし
て取り出す。
The electroluminescence (wavelength λ2) from the light-emitting layer 2 is received by the photoelectric conversion film 9, and photoelectrons are emitted into vacuum using the external photoelectric effect. It is 106 with a group of 10 dynodes.
The signal is multiplied approximately twice as much, captured by the anode 11, and taken out as an electrical signal.

光電変換部6としては、波長λ2の光に対して高感度で
あれば、光電子増倍管以外の光電変換素子であってもよ
い。光電変換部6の他の実施例として、他の、外部光電
効果を利用したものや、アバランシェフォトダイオード
などの内部光電効果を利用した素子などでも、同様の効
果を有する。
The photoelectric conversion unit 6 may be a photoelectric conversion element other than a photomultiplier tube as long as it is highly sensitive to light of wavelength λ2. As other embodiments of the photoelectric conversion section 6, other devices that utilize an external photoelectric effect or elements that utilize an internal photoelectric effect such as an avalanche photodiode may have similar effects.

透明導電膜1.4はITOもしくは金属メソシュ等の薄
膜であって、少なくとも透明導電膜1は前記電場発光(
波長λ2)を、透明導電膜4は入射光(波長λ1)をよ
く透過する。。発光層2は、Z n S: Cu、  
A L  Z n S: M n、Z n S:Cut
  CL  ZnS: Mn、Cut  などのZnS
系や、 SrS:  Ce、  CaS:  Ce、 
 Cab:  EU等に代表される無機電場発光材料、
もしくは、たとえば8−ハイドロオキシキノリンアルミ
ニウム(以後AIQ3とよぶ)などの金属キレート蛍光
材料に代表される有機電場発光材料であって可視光を放
つ。  AIQaの分子構造は下記の通りである。 (
例えば、ジ−タング(C,Tang)アンドエスヴアン
スライク(S、VanSlyke);アプライド フィ
ジックス レター(Appl、Ph1s、Lett、)
51 (1987)913P〜915P)。本実施例で
は、AIQaを用いた。
The transparent conductive film 1.4 is a thin film such as ITO or metal mesh, and at least the transparent conductive film 1 has the electroluminescence (
The transparent conductive film 4 well transmits incident light (wavelength λ1). . The light emitting layer 2 is made of ZnS: Cu,
A L Z n S: M n, Z n S: Cut
CL ZnS: ZnS such as Mn, Cut, etc.
system, SrS: Ce, CaS: Ce,
Cab: Inorganic electroluminescent material represented by EU, etc.
Alternatively, it is an organic electroluminescent material typified by a metal chelate fluorescent material such as aluminum 8-hydroxyquinoline (hereinafter referred to as AIQ3), which emits visible light. The molecular structure of AIQa is as follows. (
For example, Tang (C, Tang) and VanSlyke (S, VanSlyke); Applied Physics Letter (Appl, Ph1s, Lett,)
51 (1987) 913P-915P). In this example, AIQa was used.

1q3 感光層3は、本実施例では、アズレニウム塩化合物L−
(p−ジメチルアミノシンナミリデン)−5−インプロ
ピル−3,8−ジメチルアズレニウムヨウ素(以後、C
−GAZ−Iとよぶ)を用いた。C−GAZ−Iの分子
構造は下記の通りである。
1q3 In this example, the photosensitive layer 3 is made of azulenium salt compound L-
(p-dimethylaminocinnamylidene)-5-inpropyl-3,8-dimethylazulenium iodine (hereinafter referred to as C
-GAZ-I) was used. The molecular structure of C-GAZ-I is as follows.

第2図に、その分光感度特性を示す。C−GAZ−Iは
、近赤外域に、強い感度を有する。感光層3の材料とし
ては他にも、近赤外域に強い感度ヲ有スる、α−チタニ
ルフタロシアニン(αTi0Pc)などのフタロシアニ
ン系顔料、アゾ系顔料、スクアリウム塩等の有機感光体
材料を用いても良い。
FIG. 2 shows its spectral sensitivity characteristics. C-GAZ-I has strong sensitivity in the near-infrared region. Other materials for the photosensitive layer 3 include organic photoreceptor materials such as phthalocyanine pigments such as α-titanyl phthalocyanine (αTi0Pc), azo pigments, and squalium salts, which have strong sensitivity in the near-infrared region. Also good.

発光層2の膜厚および感光層3の膜厚は、2000A〜
1μである。対しする透明導電膜1.4には、発光層2
及び感光層3にかかる電界が106〜107V/m に
なるように、数Vのバイアス電圧が与えられる。
The thickness of the light emitting layer 2 and the thickness of the photosensitive layer 3 are 2000A~
It is 1μ. On the other hand, the transparent conductive film 1.4 has a light emitting layer 2.
A bias voltage of several volts is applied so that the electric field applied to the photosensitive layer 3 is 10 6 to 10 7 V/m 2 .

光電変換膜9として、GaAs (Cs)(300−9
10nm)を用いた。これは、Ag−0−Cs (40
0−1200nm)、Na−に−8b−C8(フルチア
ルカリ)(300−850nm)などでも良い。
As the photoelectric conversion film 9, GaAs (Cs) (300-9
10 nm) was used. This is Ag-0-Cs (40
0-1200 nm), Na--8b-C8 (fluoric alkali) (300-850 nm), etc. may also be used.

本発明の他の実施例の構成を示す断面図を、第3図に示
す。本実施例では、波長変換部5は、図の様に感光層1
5中に発光粒子16を分散した構成をとる。  発光粒
子16は、前記実施例同様の、可視光を放つ無機電場発
光材料、もしくはを機電場発光材料よりなる微粉末であ
る。
A sectional view showing the configuration of another embodiment of the present invention is shown in FIG. In this embodiment, the wavelength converter 5 includes the photosensitive layer 1 as shown in the figure.
It has a structure in which luminescent particles 16 are dispersed in 5. The luminescent particles 16 are fine powders made of an inorganic electroluminescent material or an organic electroluminescent material that emits visible light, similar to the embodiments described above.

波長λ1の光が感光層15に入射し、吸収され、生成し
たフォトキャリヤーは印加された電界により、電子は透
明導電膜1にむかって、正孔は透明導電膜4にむかって
ドリフトする。
Light with a wavelength λ1 is incident on the photosensitive layer 15 and absorbed, and the generated photocarriers drift toward the transparent conductive film 1, causing electrons to drift toward the transparent conductive film 1 and holes to drift toward the transparent conductive film 4 due to the applied electric field.

発光粒子16に衝突した電子の一部は、その中に注入さ
れ、印加された高電界によって加速され、電場発光を生
じる。発光粒子16からの電場発光(波長λ2)は、光
電子増倍管7で、光電変換、増倍されて、電気信号とし
て取りだされる。
Some of the electrons that hit the luminescent particles 16 are injected into them and are accelerated by the applied high electric field, producing electroluminescence. The electroluminescence (wavelength λ2) from the luminescent particles 16 is photoelectrically converted and multiplied by the photomultiplier tube 7, and taken out as an electrical signal.

本発明のこれらの光検出器からの信号を、波高弁別器を
用いた単一光電子計数法で計測することにより、数フォ
ト77分の程度の、近赤外域の超微弱光を検出できるよ
うになった。
By measuring the signals from these photodetectors of the present invention using a single photoelectron counting method using a pulse height discriminator, it is possible to detect ultra-weak light in the near-infrared region, which is about a few photos and 77 minutes. became.

本発明は、以上のように、波長λ、の入射光を、感光層
と発光層よりなる波長変換部で、−旦波長λ2の光に変
換して、それを、波長λ2の光に対しては非常に高感度
な光電変換部で光電変換し、増倍し、電気信号に変換す
るものである。従って、例えば、従来存在する光検出器
では十分な感度が得られなかった近赤外域の超微弱光に
対しても、光電子増倍管等の従来の充電変換素子の高感
度波長域の光に波長変換して入射させる作用により、非
常に高感度な検出ができるようになった。無論、感光層
3.15の材料としては、入射光の波長に対して十分な
感度を有する感光体材料を使用する。
As described above, the present invention first converts incident light with a wavelength λ into light with a wavelength λ2 using a wavelength conversion unit comprising a photosensitive layer and a light emitting layer, and converts the incident light into light with a wavelength λ2. The photoelectric converter performs photoelectric conversion, multiplies the signal, and converts it into an electrical signal using an extremely sensitive photoelectric conversion unit. Therefore, for example, even for ultra-weak light in the near-infrared region for which conventional photodetectors could not obtain sufficient sensitivity, conventional charge conversion elements such as photomultiplier tubes can respond to light in the high-sensitivity wavelength range. By converting the wavelength and making it incident, extremely sensitive detection has become possible. Of course, as the material for the photosensitive layer 3.15, a photosensitive material having sufficient sensitivity to the wavelength of incident light is used.

例えば本実施例では、近赤外域に高感度を有する感光体
材料を採用した。特に、有機感光体材料は、近赤外域に
高感度を有するものが多く、また、その様に設計可能性
のある点で、前記感光体材料として、適している。
For example, in this embodiment, a photoreceptor material having high sensitivity in the near-infrared region was used. In particular, many organic photoreceptor materials have high sensitivity in the near-infrared region, and are suitable as the photoreceptor material because they can be designed in such a manner.

発明の効果 本発明により、従来の光電子増倍管等の光検出器では不
可能であった、近赤外域などの超微弱光の検出が可能と
なった。これにより、例えば、極微弱な化学発光や生体
発光を捉えることができるようになった。
Effects of the Invention The present invention has made it possible to detect ultra-weak light in the near-infrared region, which was impossible with conventional photodetectors such as photomultiplier tubes. This has made it possible, for example, to capture extremely weak chemiluminescence and bioluminescence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における光検出器の構成を
示す断面図、第2図は、同実施例で使用される有機感光
体材料の分光感度特性図、第3図は、本発明の光検出器
の他の実施例の構成を示す断面図、第4図は、従来の光
検出器である光電子増倍管の断面図、第5図は、従来の
他の光検出器であるアバランシェフォトダイオードの断
面図である。 2.5・・・透明導電膜、3・・・発光層、4・・・感
光層、6・・・波長変換部、7・・・光電変換膜、9・
・・光電変換部、16・・・発光粒子。 代理人の氏名 弁理士 業界重孝 はか1名第 図 浪 長 (nm) 尾 図 縁t
FIG. 1 is a sectional view showing the configuration of a photodetector in an embodiment of the present invention, FIG. 2 is a spectral sensitivity characteristic diagram of the organic photoreceptor material used in the embodiment, and FIG. FIG. 4 is a cross-sectional view showing the configuration of another embodiment of the photodetector of the invention. FIG. 4 is a cross-sectional view of a photomultiplier tube which is a conventional photodetector. FIG. 1 is a cross-sectional view of an avalanche photodiode. 2.5... Transparent conductive film, 3... Light emitting layer, 4... Photosensitive layer, 6... Wavelength conversion section, 7... Photoelectric conversion film, 9...
...Photoelectric conversion part, 16... Luminescent particle. Name of agent: Patent attorney Shigetaka Sangyo Haka1 person No. 1 (nm) Enumi Ozu

Claims (2)

【特許請求の範囲】[Claims] (1)所定の波長域に光感度を有する感光体層及び、そ
の内部もしくはそれに接して構成される電場発光体と、
前記感光体及び前記電場発光体に所定の電界が印加でき
るように設けられた電極より構成される波長変換部と、
前記電場発光体の発光を検知し電気信号に変換する光電
変換部から成ることを特徴とする光検出器。
(1) A photoreceptor layer having photosensitivity in a predetermined wavelength range, and an electroluminescent body configured inside or in contact with the photoreceptor layer;
a wavelength conversion unit configured of an electrode provided to apply a predetermined electric field to the photoreceptor and the electroluminescent body;
A photodetector comprising a photoelectric conversion section that detects light emission from the electroluminescent body and converts it into an electric signal.
(2)感光体層の材料として、近赤外域に感度を有する
感光体材料を用いることを特徴とする特許請求の範囲第
1項に記載の光検出器。
(2) The photodetector according to claim 1, wherein a photoreceptor material having sensitivity in the near-infrared region is used as the material of the photoreceptor layer.
JP63166101A 1988-07-04 1988-07-04 Photodetector Pending JPH0216421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166101A JPH0216421A (en) 1988-07-04 1988-07-04 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166101A JPH0216421A (en) 1988-07-04 1988-07-04 Photodetector

Publications (1)

Publication Number Publication Date
JPH0216421A true JPH0216421A (en) 1990-01-19

Family

ID=15825031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166101A Pending JPH0216421A (en) 1988-07-04 1988-07-04 Photodetector

Country Status (1)

Country Link
JP (1) JPH0216421A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512439A (en) * 2009-11-24 2013-04-11 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. Method and apparatus for sensing infrared radiation
JP2014522578A (en) * 2011-06-06 2014-09-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Infrared imaging device incorporating IR up-conversion device with built-in CMOS image sensor
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
JP2013512439A (en) * 2009-11-24 2013-04-11 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. Method and apparatus for sensing infrared radiation
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
JP2014522578A (en) * 2011-06-06 2014-09-04 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッド Infrared imaging device incorporating IR up-conversion device with built-in CMOS image sensor
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Similar Documents

Publication Publication Date Title
US11081310B2 (en) Photocathode including silicon substrate with boron layer
KR102402975B1 (en) A photovoltaic cathode comprising an array of field emitters on a silicon substrate with a boron layer
JP2004131567A (en) Illuminant, and electron beam detector, scanning electron microscope and mass spectrometer using the same
EP0532358B1 (en) Reflection type photocathode and photomultiplier using it
JPH0216421A (en) Photodetector
US6476395B2 (en) Flat X-ray detector comprising an alkali-halogenide scintillator
Townsend Photocathodes—past performance and future potential
Seib et al. Photodetectors for the 0.1 to 1.0 μm Spectral Region
Costello et al. Imaging GaAs vacuum photodiode with 40% quantum efficiency at 530 nm
La Rue et al. Photon counting 1060-nm hybrid photomultiplier with high quantum efficiency
JP3774492B2 (en) IMAGING ELEMENT, ITS OPERATION METHOD, IMAGING DEVICE USING THE ELEMENT, AND IMAGE ANALYSIS SYSTEM
EP0718865A3 (en) Photomultiplier having a photocathode comprised of semiconductor material
JP2798696B2 (en) Photoelectron emitter
US11676790B2 (en) Photocathode with improved quantum yield
GB2214382A (en) Infra-red image detector systems
Sonnenberg Negative-electron-affinity photoemitters
JPH02234323A (en) Photoelectron radiator
Martinengo et al. Position Sensitive Gaseous Photomultipliers
Jalonen et al. Fabrication and performance of novel monolithic GaAs/AlGaAs microvacuum transmission-mode photoemitters
Pashler Light Amplification
JPS63110673A (en) Radiation detector