JPH02163601A - Scanning type tunnel microscope - Google Patents

Scanning type tunnel microscope

Info

Publication number
JPH02163601A
JPH02163601A JP63320184A JP32018488A JPH02163601A JP H02163601 A JPH02163601 A JP H02163601A JP 63320184 A JP63320184 A JP 63320184A JP 32018488 A JP32018488 A JP 32018488A JP H02163601 A JPH02163601 A JP H02163601A
Authority
JP
Japan
Prior art keywords
stm
revolver
supported
objective lens
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63320184A
Other languages
Japanese (ja)
Other versions
JP2696106B2 (en
Inventor
Chikayoshi Miyata
宮田 千加良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP32018488A priority Critical patent/JP2696106B2/en
Priority to US07/399,910 priority patent/US4999495A/en
Priority to KR1019890012385A priority patent/KR0137474B1/en
Publication of JPH02163601A publication Critical patent/JPH02163601A/en
Application granted granted Critical
Publication of JP2696106B2 publication Critical patent/JP2696106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a concise structure, and also, to improve an S/N ratio and reproducibility at the time of positioning by constituting the microscope so that an objective lens, an STM (scanning type tunnel microscope) detecting element and an I/V amplifier are supported by a moving mechanism. CONSTITUTION:In an arm 9 of a device, an optical microscope 2 and a uniaxial table 20 of one example of a moving mechanism are fixed, and in the table 20, a revolver 3, an STM detecting element 1 and an I/V amplifier 19 are supported. Also, in the revolver 3, an objective lens 4 is attached. Moreover, the table 20 can move in the direction as indicated with an arrow. In such a way, by placing the amplifier 19 in the vicinity of the detecting element 1 and shortening a signal line 11b, an S/N ratio can be improved. Also, since a wiring 11 is brought to only uniaxial movement, a winding mechanism is not required and tension is scarcely applied and the positioning reproducibility of the table 20 can be improved. Moreover, it is unnecessary that the revolver 3 controls a rotation angle, and the automization can also be executed easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、他の測定手段で試料の測定位置合ねセを行い
、走査型l・ンネル顕微鏡測定する走査型トンネル顕微
鏡(STM装置)に関するもので、詳しくは、光学的な
観察手段とSTM検出部を複合化したSTM装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a scanning tunneling microscope (STM device) that aligns the measurement position of a sample with other measuring means and performs measurement using a scanning tunneling microscope. More specifically, the present invention relates to an STM device that combines an optical observation means and an STM detection section.

〔従来の技術〕[Conventional technology]

STM装置は原子レヘルの分解能をもつ装置であるが、
近年、ミクロンメートル領域における表面微細形状の観
察に用いられ始めている。STM装置は分解能が高い反
面、最大観察領域が101!1m程度と狭いという特徴
がある。このため、S T M装置たりでは試料の観察
したい場所(例えばギズ等)に観察領域を合わせるのが
非常に困難である。
The STM device has a resolution on the atomic level,
In recent years, it has begun to be used to observe fine surface shapes in the micrometer range. Although STM devices have high resolution, they are characterized by a narrow maximum observation area of about 101!1 m. For this reason, it is very difficult to align the observation area with the desired location (for example, the edge) of the sample in the STM apparatus.

精密試料移動テーブルイ」のSTM装置(例えば昭和6
3年精密工学会秋季大会学術講演論文集907頁〜の[
試料移動ステージイマJSTM装置の開発」)でも、斜
横から概略の位置合わせを行い、後は精密移動テーブル
で試月を微少移動してSTM測定を操り返し、試行錯誤
的に位置合わせを行わざるを得なかった。このため、光
学的な観察手段で試料の希望する測定位置を位置合わせ
し、この位置へ37M測定領域を位置合わせすることが
必要になってきている。
Precision sample moving table STM equipment (for example, 1930
[
In the case of "Development of the Sample Moving Stage Ima JSTM Device"), rough positioning is performed from the diagonal side, and then the sample is moved slightly using a precision moving table to re-manipulate the STM measurement, and positioning is done through trial and error. I didn't get it. For this reason, it has become necessary to align the desired measurement position of the sample using optical observation means and to align the 37M measurement area to this position.

このようなことから、光学的な試料観察手段とSTMと
を複合化して希望する測定位置へ位置合わせできる37
M装置として、第5図に示すものが知られている。この
装置は、光学顕微鏡(以下先頭という)のレボルバ3に
対物レンズ4とSTM検出部1とが支持されており、レ
ボルバ3を回して対物レンズ4の倍率を順次上げながら
、光学顕微鏡2内のクロスカーソルで位置合わせを行な
う。更にレボルバ3を回すとSTM検出部1が試料5の
真上に来て37M測定が行えるようになる。
For this reason, it is possible to combine optical sample observation means and STM to align to the desired measurement position37.
As an M device, the one shown in FIG. 5 is known. In this device, an objective lens 4 and an STM detection unit 1 are supported by a revolver 3 of an optical microscope (hereinafter referred to as the top). Perform alignment using the cross cursor. When the revolver 3 is further turned, the STM detection section 1 comes to be directly above the sample 5, and 37M measurement can be performed.

第6図にSTM検出部1の断面図を示す。探針ホルダ1
04は微動素子101に固定され、探針102は前記探
針ホルダ104に着脱可能にネジ込み固定されている。
FIG. 6 shows a cross-sectional view of the STM detection section 1. Probe holder 1
04 is fixed to the fine movement element 101, and the probe 102 is removably screwed and fixed to the probe holder 104.

カバー103は支持台105にねじ込まれ、ブロックを
構成している。そしてこのブロックの支持台105がレ
ボルバ3に装着された取付は台106に取付はネジ10
7に抑圧固定される。探針1(12の先端の振れや、固
体差による探針先端の位置ずれの影響は、先順傷内のど
の位置にSTM像があり、クロスカーソルからどれだけ
ずれているか求め、その量だけ37M測定を始める直前
にX、 Yテーブル7.8で試料5を移動させて補正す
ることで、取り除くことができる。
The cover 103 is screwed onto the support stand 105 and constitutes a block. The support stand 105 of this block is attached to the revolver 3 and is attached to the stand 106 with screws 10.
Suppression is fixed at 7. The influence of the deflection of the tip of the probe 1 (12) and the positional deviation of the tip of the probe due to individual differences can be determined by determining where the STM image is in the tip wound and how much it deviates from the cross cursor, and calculating the amount by that amount. This can be removed by moving the sample 5 on the X, Y table 7.8 and correcting it just before starting the 37M measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上で述べたように従来の装置では、レボルバ3に対物レ
ンズ4.STM検出部1が支持されている。STM検出
部1は第6図に示すように、微動素子101を駆動する
ための配線1)a及び探針102からの信号線1)bが
必要である。ところで、レボルバ3に取付けられたST
M検出部1からの配線1)をレボルバ3内からアーム9
.先順2等の内部を経由して取り出すと、レボルバ3の
回転の際に、配線か光顕の視野を遮ったりする不具合が
しよじる。そこで、これらの配線1)は第5図に示すよ
うに、レボルバ3の1つの穴10から外へ引き出される
。レボルバ3を回すと引き出し穴10の位置も変わるの
で、配&!1)の長さも変化する。このため配線1)を
巻き取り、常に張力を掛ける機v1)2が必要である。
As mentioned above, in the conventional apparatus, the revolver 3 is equipped with an objective lens 4. An STM detection section 1 is supported. As shown in FIG. 6, the STM detection unit 1 requires a wiring 1)a for driving the fine movement element 101 and a signal line 1)b from the probe 102. By the way, the ST attached to revolver 3
Connect the wiring 1) from the M detection unit 1 to the arm 9 from inside the revolver 3.
.. If it is taken out through the inside of the first order 2, etc., there will be problems such as wiring or blocking the field of view of the light microscope when the revolver 3 rotates. Therefore, these wiring lines 1) are drawn out from one hole 10 of the revolver 3, as shown in FIG. When you turn the revolver 3, the position of the draw-out hole 10 also changes, so the position &! 1) The length also changes. For this reason, a machine v1)2 is required to wind up the wiring 1) and constantly apply tension.

第7図に概略構造を示す。第7図fatは平面図、+a
+は断面図である。プーリー13はベアリングエ4の外
輪に固定されている。前記ベアリング14の内輪はコマ
15で固定され、コマ15の内側に)−ジョンバネ16
の一端が固定されている。他端は前記プーリー13上の
板17とバネ押え1日で固定され、プーリー13に配線
1)を巻き取る力を付与している。
Figure 7 shows the schematic structure. Figure 7 fat is a plan view, +a
+ is a cross-sectional view. The pulley 13 is fixed to the outer ring of the bearing 4. The inner ring of the bearing 14 is fixed with a piece 15, and a John spring 16 is attached inside the piece 15.
One end is fixed. The other end is fixed to the plate 17 on the pulley 13 with a spring presser, giving the pulley 13 a force for winding up the wiring 1).

配線1)はプーリー13に巻き取られ、前記板17の中
心、つまりプーリー13の回転中心から引き出すことで
、これ以降の配線1)の長さが変化しないようにしであ
る。この機構12で、レボルバ3を回転しても配線1)
が常に張られた状態にすることができる。なお、張力を
かけないと配線1)がたれ下り、試料5にされる、対物
レンズ4の焦点側を遮る、見栄えが悪い、STM検出部
1先端の探針102に当たり探針102を曲げる、配線
1)を引っ掛ける場合がある等の問題が生じる。しかし
、■張力を掛けることで、レボルバ3の位置決め精度に
悪影響を与える可能性がある。■この構成では、探針1
02からの信号線1)bが巻き取り機構12を介してI
/■アンプ19に接続されるので、信号線1)bの長さ
が長(なる。このため、インピーダンスが高くなりS/
Nが低下する。■レボルバ3はフリーで回転できると配
′a]1が対物レンズ4等により巻き取られ、断線等を
生ずるので、レボルバ3が1回転以上できないように回
転止めを付ける必要がある。■レボルバ3に加わる張力
と、レボルバ3の回転角の規制により自動化がしすらい
等の不具合点がある。
The wiring 1) is wound around the pulley 13 and pulled out from the center of the plate 17, that is, the rotation center of the pulley 13, so that the length of the wiring 1) does not change thereafter. With this mechanism 12, even if the revolver 3 is rotated, the wiring 1)
can be kept in tension at all times. Note that if tension is not applied, the wiring 1) will hang down and become part of the sample 5, it will block the focal side of the objective lens 4, it will look bad, it will hit the probe 102 at the tip of the STM detector 1, and the probe 102 will bend. Problems such as 1) may be caught. However, applying tension may adversely affect the positioning accuracy of the revolver 3. ■In this configuration, probe 1
The signal line 1)b from 02 is connected to I via the winding mechanism 12.
/■ Since it is connected to the amplifier 19, the length of the signal line 1)b becomes long. Therefore, the impedance becomes high and the S/
N decreases. (2) If the revolver 3 is allowed to rotate freely, the arrangement 'a] 1 will be wound up by the objective lens 4, etc., causing wire breakage, etc. Therefore, it is necessary to provide a rotation stopper to prevent the revolver 3 from rotating more than once. ■There are problems such as difficulty in automation due to the tension applied to the revolver 3 and the regulation of the rotation angle of the revolver 3.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題点を解決するために、移動機構に対物レンズ
とSTM検出部及びI/Vアンプが支持されている構成
のSTMとした。
In order to solve the above-mentioned problems, an STM was adopted in which an objective lens, an STM detection section, and an I/V amplifier were supported by a moving mechanism.

〔作用〕[Effect]

上記構成によれば、STM検出部の配線を測定に影響な
く設置することができ、また−軸テーブルを移動するこ
とで、先順測定と37M測定を切り換えることができる
。先頭測定とSTM測定での位置ずれは、従来の技術で
述べた方法をそのまま使うことで補正することができる
。この場合、−軸テーブルを移動して先順位置、あるい
はSTM位置にしたとき、位置の再現性が補正誤差とな
るが、クリックを用いた位置決め等でレボルバと同等以
上の精度を出すことができる。
According to the above configuration, the wiring of the STM detection section can be installed without affecting the measurement, and by moving the - axis table, it is possible to switch between the forward measurement and the 37M measurement. The positional deviation between the leading measurement and the STM measurement can be corrected by using the method described in the conventional technique as is. In this case, when the −-axis table is moved to the forward position or STM position, the position repeatability becomes a correction error, but positioning using clicks, etc. can achieve accuracy equal to or higher than that of a revolver. .

〔実施例〕〔Example〕

第1図に本発明に係る実施例を示す。装置のアム9は先
頭2と移動機構の一例の一軸テーブル20が固定され、
該−軸テーブル20にはレボルバ3とSTM検出部1及
びl/Vアンプ19が支持されている。即ち、−軸テー
ブル20には、取付は台25が設置され、この取付は台
25に取付はネジ107によりSTM検出部1が固定さ
れる。STM検出部内の配線と取付は台とは端子ピンと
ソケート等により着脱可能に電気的接続がなされる。そ
して、取イ1け台25の近傍にはI/Vアンプ19が一
軸テーブルに支持され、取付は台25とl/Vアンプも
電気的接続がなされている。前記レボルバ3には対物レ
ンズ4が取り付けである。−軸テーブル20は矢印方向
に移動可能で、2つの点で位置決めされる。1つは第1
図に示す状態、つまり、先頭2の光軸21と測定位置に
ある対物レンズ4の中心軸22が一致している状態であ
り、他の一点は光軸21とSTM検出部1の中心軸23
とが一致する位置である。同図には位置決め手段の1つ
の例が示されている。−軸テーブル20はアリ9aとア
リ溝20aでアーム9に一軸方向に摺動可能に支持され
ている。
FIG. 1 shows an embodiment according to the present invention. In the am 9 of the device, the head 2 and a single-axis table 20, which is an example of a moving mechanism, are fixed.
The -axis table 20 supports a revolver 3, an STM detector 1, and an l/V amplifier 19. That is, a mounting base 25 is installed on the -axis table 20, and the STM detection unit 1 is fixed to the mounting base 25 with screws 107. The wiring inside the STM detection section and its mounting are removably electrically connected to the base using terminal pins and sockets. An I/V amplifier 19 is supported on a uniaxial table near the mount 25, and the mount 25 and the I/V amplifier are also electrically connected. An objective lens 4 is attached to the revolver 3. - the axis table 20 is movable in the direction of the arrow and is positioned at two points; one is the first
The state shown in the figure is a state in which the optical axis 21 of the leading part 2 and the central axis 22 of the objective lens 4 at the measurement position are aligned, and the other point is the optical axis 21 and the central axis 23 of the STM detector 1.
is the matching position. The figure shows one example of positioning means. - The shaft table 20 is supported by the arm 9 so as to be slidable in the uniaxial direction by the dovetail 9a and the dovetail groove 20a.

アーム9には位置決め用の■溝9bが形成され、−軸テ
ーブル側には2ケ所にクリックボール24がスプリング
により」二方に付勢され、■溝にクリックボールが押圧
され位置決めを行う。第1図でSTM測定をする場合は
、対物レンズ4で試料5の所定箇所を観察し、先順内の
クロスカーソルにその位置を合わす。レボルバ3を回し
、対物レンズのついていない位置(穴10の位置)にセ
ットした状態で、−軸テーブル20で37Mポジション
へ移動させる。この状態でXテーブル7、Yテーブル8
で、予め得ている対物レンズ4の中心軸22とSTM検
出部1の中心軸23とのズレ量の位置補正を行い、Xテ
ーブル6でトンネル電流を検出するまでオートアプロー
チする。位置補正は従来の技術で述べた通りである。 
本構成によればI/VアンプJ9をsrMt*出部1の
辺部1置き、信号線1)bを短くし、S/N比を向上さ
せることができる。
A positioning groove 9b is formed in the arm 9, and click balls 24 are biased in two directions by springs at two locations on the -axis table side, and the click balls are pressed against the grooves for positioning. When performing STM measurement in FIG. 1, a predetermined location on the sample 5 is observed with the objective lens 4, and its position is aligned with the cross cursor in the previous order. Rotate the revolver 3 and move it to the 37M position using the -axis table 20 while setting it in the position where the objective lens is not attached (the position of the hole 10). In this state, X table 7, Y table 8
Then, the position of the deviation amount between the center axis 22 of the objective lens 4 and the center axis 23 of the STM detection unit 1, which has been obtained in advance, is corrected, and an automatic approach is performed until the X table 6 detects the tunnel current. Position correction is as described in the prior art.
According to this configuration, the I/V amplifier J9 can be placed every other side of the srMt* output section 1, the signal line 1)b can be shortened, and the S/N ratio can be improved.

又、配線■1は一軸移動するだけなので、巻き取り機構
が不用で張力もほとんど加わらず、−軸移動テーブル2
0の位置決め再現性も向上することができる。更に、レ
ボルバ3は回転角を規制する必要がなく、自動化も容易
に行なうことができる。
In addition, since the wiring (1) only moves on one axis, there is no need for a winding mechanism and almost no tension is applied.
0 positioning reproducibility can also be improved. Furthermore, the revolver 3 does not need to regulate its rotation angle, and can be easily automated.

第2図は本発明の第2実施例の側面図で一軸テーブル2
0に直接対物レンズ4が支持された構成である。第3図
は第3実施例の側面図でSTM検出部を2つ(la、 
1b)−軸テーブル20゛に装着した構成のものである
。第4図は、第4実施例の側面図で一軸テーブル20に
対物レンズ用のレボルバ3とSTM検出部用のレボルバ
3aとが装着された構成例である。このように、レボル
バに多数個のSTM検出部が具備できると、原子用ST
M検出部、形状測定用STM検出部を各々備えることが
できる。又、同し種類のSTM検出部を複数個備えるこ
とで、例えばぶつけたなどで探針102がおかしくなっ
た場合、すく変えることができる。なお、第4図におい
てレボルバ3aからの配線1)の引き出しは、レボルバ
3aの回転軸の中心を通して行なう。
FIG. 2 is a side view of a second embodiment of the present invention, and is a uniaxial table 2.
This is a configuration in which the objective lens 4 is directly supported at 0. Figure 3 is a side view of the third embodiment, showing two STM detection units (la,
1b) - This is a configuration mounted on the shaft table 20'. FIG. 4 is a side view of the fourth embodiment, showing a configuration example in which a revolver 3 for an objective lens and a revolver 3a for an STM detection section are mounted on a uniaxial table 20. In this way, if the revolver can be equipped with a large number of STM detectors, the atomic ST
An M detection section and a shape measurement STM detection section can be provided. Furthermore, by providing a plurality of STM detection sections of the same type, if the probe 102 becomes abnormal due to, for example, being hit, it can be easily replaced. In FIG. 4, the wiring 1) is drawn out from the revolver 3a through the center of the rotating shaft of the revolver 3a.

従来の例を示す第1図でレボルバの回転軸を通して配線
1)を引き出せないのは、光軸を遮ってしまうからであ
る。
The reason why the wiring 1) cannot be drawn out through the rotating shaft of the revolver in FIG. 1, which shows a conventional example, is that it blocks the optical axis.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本構成によれば、STM検出部とI
/Vアンプ間の信号線を短くすることでS/N比を向上
させることができる、配線の巻き取り機構が不用で構造
がN潔乙こなる、配線に張力が加わらないので位置決め
時の再現性が向上する、自動化も容易に行える等非常に
効果がある。
As described above, according to this configuration, the STM detection section and the
By shortening the signal line between /V amplifiers, the S/N ratio can be improved. No wiring winding mechanism is required, resulting in a clean structure. No tension is applied to the wiring, making it easier to reproduce positioning. It is very effective, as it improves performance and can be easily automated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の側面図、第2図は第2実
施例の側面図、第3図は第3実施例の側面図、第4図は
第4実施例の側面図、第5図は従来例を示す側面図、第
6図はSTM検出部の断面図、第7図(alは巻き取り
機構の平面図、第7図Fblは巻き取り機構の断面図で
ある。 1・・・STM検出部 3・・・レボルバ 4・・・対物レンズ 5・・・試料 1)・・・配線 12・・・T/Vアンプ 20・・・−軸テーブル (移動機構) 以 上
Fig. 1 is a side view of the first embodiment of the present invention, Fig. 2 is a side view of the second embodiment, Fig. 3 is a side view of the third embodiment, and Fig. 4 is a side view of the fourth embodiment. , FIG. 5 is a side view showing a conventional example, FIG. 6 is a sectional view of the STM detection section, and FIG. 7 (al is a plan view of the winding mechanism, and FIG. 7 Fbl is a sectional view of the winding mechanism. 1... STM detection unit 3... Nosepiece 4... Objective lens 5... Sample 1)... Wiring 12... T/V amplifier 20... -axis table (moving mechanism) Above

Claims (4)

【特許請求の範囲】[Claims] (1)光学的な観察手段で試料の測定位置を合わせて走
査型トンネル顕微鏡(STM)測定する装置で、対物レ
ンズとSTM検出部が位置決めできる移動機構に支持さ
れていることを特徴とする走査型トンネル顕微鏡。
(1) A scanning tunneling microscope (STM) device that performs scanning tunneling microscopy (STM) measurement by aligning the measurement position of a sample with optical observation means, characterized in that the objective lens and the STM detection unit are supported by a moving mechanism that can position them. type tunneling microscope.
(2)対物レンズを複数個固定できるレボルバ部が移動
機構に支持されていることを特徴とする請求項1記載の
走査型トンネル顕微鏡。
(2) The scanning tunneling microscope according to claim 1, characterized in that a revolver portion capable of fixing a plurality of objective lenses is supported by a moving mechanism.
(3)STM検出部が複数個、移動機構に支持されてい
ることを特徴とする請求項1、2記載の走査型トンネル
顕微鏡。
(3) The scanning tunneling microscope according to claim 1 or 2, wherein a plurality of STM detection sections are supported by a moving mechanism.
(4)STM検出部が複数個、移動機構にレボルバを介
し、回転、位置決め可能に支持されていることを特徴と
する請求項1〜3記載の走査型トンネル顕微鏡。
(4) The scanning tunneling microscope according to any one of claims 1 to 3, wherein a plurality of STM detection units are rotatably and positionably supported by the moving mechanism via a revolver.
JP32018488A 1988-08-31 1988-12-19 Scanning tunnel microscope Expired - Lifetime JP2696106B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32018488A JP2696106B2 (en) 1988-12-19 1988-12-19 Scanning tunnel microscope
US07/399,910 US4999495A (en) 1988-08-31 1989-08-29 Scanning tunneling microscope
KR1019890012385A KR0137474B1 (en) 1988-08-31 1989-08-30 Scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32018488A JP2696106B2 (en) 1988-12-19 1988-12-19 Scanning tunnel microscope

Publications (2)

Publication Number Publication Date
JPH02163601A true JPH02163601A (en) 1990-06-22
JP2696106B2 JP2696106B2 (en) 1998-01-14

Family

ID=18118638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32018488A Expired - Lifetime JP2696106B2 (en) 1988-08-31 1988-12-19 Scanning tunnel microscope

Country Status (1)

Country Link
JP (1) JP2696106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317153A (en) * 1991-08-08 1994-05-31 Nikon Corporation Scanning probe microscope
US5508517A (en) * 1991-03-15 1996-04-16 Nikon Corporation Scanning probe type microscope apparatus
JP2006106029A (en) * 2004-09-30 2006-04-20 Olympus Corp Compound microscope
JP2011237578A (en) * 2010-05-10 2011-11-24 Olympus Corp Composite microscope and cable support device for composite microscope
CN112229462A (en) * 2020-09-08 2021-01-15 兰州空间技术物理研究所 Be used for accurate coiling device of gaseous micro-flowmeter sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508517A (en) * 1991-03-15 1996-04-16 Nikon Corporation Scanning probe type microscope apparatus
US5317153A (en) * 1991-08-08 1994-05-31 Nikon Corporation Scanning probe microscope
JP2006106029A (en) * 2004-09-30 2006-04-20 Olympus Corp Compound microscope
JP2011237578A (en) * 2010-05-10 2011-11-24 Olympus Corp Composite microscope and cable support device for composite microscope
CN112229462A (en) * 2020-09-08 2021-01-15 兰州空间技术物理研究所 Be used for accurate coiling device of gaseous micro-flowmeter sensor
CN112229462B (en) * 2020-09-08 2023-09-26 兰州空间技术物理研究所 Be used for accurate coiling device of gas micro-flowmeter sensor

Also Published As

Publication number Publication date
JP2696106B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US4999495A (en) Scanning tunneling microscope
JP2815196B2 (en) Micro surface shape measuring device
US6747746B2 (en) System and method for finding the center of rotation of an R-theta stage
JP2012078330A (en) Method for adjusting movement of camera unit in lens inspection apparatus and focus check tool
JPH02163601A (en) Scanning type tunnel microscope
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
JP2696107B2 (en) Scanning tunnel microscope
US7397554B1 (en) Apparatus and method for examining a disk-shaped sample on an X-Y-theta stage
JP3560095B2 (en) Scanning probe microscope
JPH1068674A (en) Measuring device of lens system and mtf measuring method of lens system
JP3210827B2 (en) Prober alignment method and apparatus
JPH0540158A (en) Method and device for positioning probe for measuring electric field of integrated circuit
JP2906094B2 (en) Probe device
JP2000056231A (en) Error correcting device for measurement optical equipment
JPH034102A (en) Scanning type tunnel microscope
JP2665979B2 (en) Prober needle point measuring device
JP3348447B2 (en) Interferometer device
JP2004039752A (en) Probing apparatus
JPH05118843A (en) Scanning type probe microscope
JP2000136910A (en) Board inspection apparatus
TW202027227A (en) Method for positioning test substrate, probes and inspection unit relative to one another, and tester for carrying out the method
JPH11211611A (en) Eccentricity measuring apparatus
CN115615354A (en) Calibration method and calibration device for measuring instrument
JPS6250770B2 (en)
JPH0376844B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12