JPH0216355B2 - - Google Patents

Info

Publication number
JPH0216355B2
JPH0216355B2 JP9525181A JP9525181A JPH0216355B2 JP H0216355 B2 JPH0216355 B2 JP H0216355B2 JP 9525181 A JP9525181 A JP 9525181A JP 9525181 A JP9525181 A JP 9525181A JP H0216355 B2 JPH0216355 B2 JP H0216355B2
Authority
JP
Japan
Prior art keywords
fraction
reaction
oil
column
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9525181A
Other languages
Japanese (ja)
Other versions
JPS57209993A (en
Inventor
Juji Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP9525181A priority Critical patent/JPS57209993A/en
Publication of JPS57209993A publication Critical patent/JPS57209993A/en
Publication of JPH0216355B2 publication Critical patent/JPH0216355B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質油の水素化分解法に関し、詳しく
は複数基の反応塔を用いると共に反応塔からの水
素化分解油を次の反応塔へ導入する前に、該水素
化分解油中の中間留分を予め分離することによつ
て、中間留分の過分解を防止し、中間留分の収率
を高めるのに有効な重質油の水素化分解法に関す
る。 一般に重質油を水素化分解する場合、過酷な条
件で行なうことが必要とされている。しかし過酷
な条件にて水素化分解すると重質油が過分解され
てLPGやナフサ分の収率のみが増加し、灯油、
軽油等の中間留分の収率が低いという問題があつ
た。また逆に穏やかな条件下では残渣分が十分に
分解されず、有用な留分が得られないという問題
があつた。 そのため重質油を二段階あるいはそれ以上に分
けて水素化分解する方法が提案されているが、こ
の方法によつても中間留分の収率が十分なものと
は言い難い。 そこで本発明者は上記従来技術の欠点を克服
し、中間留分の収率の高い重質油の水素化分解法
を開発すべく鋭意研究を重ねた。その結果、複数
基の反応塔を用いて重質油の水素化分解を行なう
と共に、反応塔から出た水素化分解油を次の反応
塔へ導入する前、この水素化分解油中の中間留分
を分離しておき、一方では残油を次の反応塔でさ
らに水素化分解することにより、中間留分を大幅
に増産できることを見出し、本発明を完成するに
至つた。すなわち本発明は、重質油を複数基の反
応塔にて水素化分解する方法において、反応塔
(最終段の反応塔を徐く。)から得られる水素化分
解油を分離塔に導入してその75vol%以上が343℃
以下で沸騰する留分とその75vol%以上が343℃以
上で沸騰する留分に分離し、その75vol%以上が
343℃以上で沸騰する留分は次の反応塔に導入し
て水素化分解した後常圧蒸留塔に導入し、一方そ
の75vol%以上が343℃以下で沸騰する留分は直接
常圧蒸留塔に導入し、次いで常圧蒸留塔に導入さ
れた留分を常圧蒸留して各留分に分留すると共
に、その75vol%以上が343℃以上で沸騰する留分
を減圧蒸留塔に導入し、該減圧蒸留塔で減圧蒸留
して得られるその75vol%以上が525℃以下で沸騰
する留分を前記いずれかの反応塔に循環させるこ
とを特徴とする重質油の水素化分解法を提供する
ものである。 本発明の方法の対象となる重質油については、
特に制限はなく各種のものがあげられるが、一般
に沸点343℃以上の成分の含量が50%以上、好ま
しくは80%以上の重質油であり、常圧蒸留残渣
油、減圧蒸留残渣油が代表的であるが、そのほか
減圧軽油、ビスブレーキング油、タールサンド油
など、さらにはこれらの混合物などがあげられ
る。 本発明の方法は前述した如く重質油の水素化分
解を複数基の反応塔にて数段階に分けて行なう。
この場合の反応塔の数は二基以上であれば特に制
限はなく、各種条件あるいは所望する水素化分解
油組成などに応じて適宜定めればよい。しかし、
通常は二基あるいは三基程度の反応塔を用いれば
よく、それ以上用いてもよいが、あまり多くの反
応塔を用いると操作が複雑になり得策ではない。 次に本発明の方法を図面に基いてさらに詳しく
説明する。 第1図は本発明の方法に用いる装置の一例を示
す概略図であり、反応塔を二基用いた例である。
本発明の方法によれば、まず原料である重質油を
水素と共に第1反応塔1へ導入する。ここで重質
油を水素化分解し、得られた水素化分解油は直ち
に第2反応塔2へ導入することなく、いつたん分
離塔3に導かれる。この分離塔3において水素化
分解油はその75vol%以上が沸点343℃以下の留分
とその75vol%以上が沸点343℃以上の留分とに分
離される。そのうちその75vol%以上が沸点343℃
以上の留分は第2反応塔2へ導かれ、ここで水素
化分解され、その後、常圧蒸留塔4へ導入され
る。一方、前記分離塔3において分離されたその
75vol%以上が沸点約343℃以下の留分は、そのま
ま常圧蒸留塔4へ導かれる。かかる操作により、
第1反応塔1で得られた水素化分解油中の中間留
分の過分解による軽質化が有効に防止できる。続
いてこの常圧蒸留塔4に導入された留分は、常圧
蒸留によつて各留分、すなわちガスおよびLPG
分、ナフサ留分、灯油留分、軽油留分に分けてそ
れぞれ回収すると共に、その75vo1%以上が沸点
343℃以上の留分については減圧蒸留塔5へ導く。
ここで減圧蒸留を行ない、得られたその75vo1%
以上が沸点525℃以下の留分を再び第1反応塔1
あるいは第2反応塔2へ循環させる。この反応塔
への循環により、未反応の減圧軽油がさらに水素
化分解され、そのほとんど全量が中間留分として
回収できる。 上述の水素化分解反応において、用いる触媒お
よび反応条件等については適宜選定すればよい
が、次の如き触媒および反応条件を用いればより
効果的に本発明を達成できる。 まず反応塔において重質油を水素化分解する際
に用いる触媒としては、周期律表第族−第族
の金属を活性成分としてこれを各種担体に担持し
たものが好ましい。これをさらに具体的に説明す
ると、活性成分としてはニツケル、コバルト、モ
リブデン、タングステン、その中でもニツケル−
モリブデンまたはニツケル−タングステンの組合
せが特に好適に使用される。一方、担体としては
アルミナ−シリカ、アルミナ−ゼオライトまたは
アルミナ−ボリア−ゼオライトが用いられる。こ
こでアルミナ−ゼオライトのゼオライトとしては
X型、Y型、水素型および脱カチオン型ゼオライ
ト、ZSM型ゼオライトなどがあるが、特に超安
定結晶質アルミノケイ酸Y型ゼオライト(以下
「US−Y型ゼオライト」と称する。)が好適に使
用される。このUS−Y型ゼオライトの組成なら
びに性状は、Na2O含有量が0.5重量%以下、好ま
しくは0.3重量%以下であり、またSiO2/Al2O3
5〜150、好ましくは6〜30、さらに好ましくは
7〜10である。さらに単位格子寸法は23.00〜
24.60Å、好ましくは24.25〜24.50Åである。また
比表面積は200m2/g以上、好ましくは400〜800
m2/gである。 このようなUS−Y型ゼオライトを製造するに
は、例えぱ合成ホージヤサイトを原料にして、こ
れをNH4+交換して水洗、乾燥し、さらに力焼
又は水蒸気処理し、最後にアンモニウム塩又はア
ミン塩で処理した後、焼成するなどの方法(特公
昭42−8129号公報)によればよい。かかるUS−
Y型ゼオライトをゼオライトとして用いた担体と
してのアルミナ−ゼオライトの組成は特に制限は
ないが、通常はアルミナ−ゼオライト全体に対し
てUS−Y型ゼオライトを20〜80重量%、好まし
くは40〜60重量%含有させるべきである。またア
ルミナ−ボリア−ゼオライトの組成は、アルミナ
が15〜55wt%、好ましくは20〜50wt%、ボリア
がB2O3として5〜25wt%、好ましくは10〜20wt
%、ゼオライトが20〜80wt%、好ましくは30〜
70wt%である。 かかる性状の触媒は、各種の方法により製造す
ることができるが、代表的な方法としては、次の
如き方法がある。つまりマトリツクスとしてのア
ルミナ又はアルミナ−ボリアは、アルミン酸塩又
はアルミニウム塩に酸又はアルカリを入れ中和
し、アルミナとして、5wt%以上の濃度を有する
非晶質アルミナ水和物を調整し、この水和物をPH
8〜12の弱アルカリ性で撹拌しながら、50℃以上
に加温することによつて製造される。これに、シ
リカ又はゼオライトを混練分散させ、担体が得ら
れ、周期律表の−族金属が、公知の方法によ
り担持される。 上述の如き処理にて得られた触媒を用いて、本
発明の水素化分解を行なえば、比較的穏やかな条
件にて、重質油の水素化分解が進行する。この際
の反応塔における反応条件は、一般に前段階の反
応塔より後段階の反応塔になるほど厳しい条件と
なるものであるが、いずれにしても各反応塔内の
条件は、反応温度300〜500℃、好ましくは350〜
450℃、反応圧力50〜250Kg/cm2、好ましくは100
〜200Kg/cm2、供給水素/油比500〜3000Nm3
Kl、好ましくは70〜2000Nm3/Kl、液時空間速度
0.1〜3.0hr-1、好ましくは0.2〜1.0hr-1、供給水素
濃度75モル%以上、好ましくは85モル%以上の範
囲内で適宜定めればよい。 また分離塔3における分離操作は、分離塔3の
塔頂から出るガス流中の343℃以上の留分の容積
量と、分離塔3の塔底から出る液流中の343℃以
下の留分の容積比との和が最も小さくなるような
条件で行なう。すなわち塔頂留分中には、沸点
343℃以下の留分が75vo1%以上含まれ、塔底留
出分中には、沸点343℃以上の留分が75vo1%以
上含まれるようにすることが必要である。通常、
運転条件は、温度250〜500℃、好ましくは320〜
450℃、圧力50〜250Kg/cm2G、好ましくは100〜
200Kg/cm2Gとすべきである。なお分離塔3は反
応塔と反応塔の間にそれぞれ設けてもよい(この
場合、分離塔の数は反応塔の数より一つだけ少な
くなる。)が、一つだけとして各反応塔からの水
素化分解油のすべてを集中的に導いてもよい。 さらに常圧蒸留塔4における塔内の条件は適宜
定めればよく特に制限はない。通常広く用いられ
ている条件で十分である。 また減圧蒸留塔5における塔内条件は、これも
また制限はなく各種条件に応じて定めればよい
が、一般には温度300〜450℃、好ましくは360〜
400℃、圧力50mmHg以下、好ましくは35mmHg以
下とする。 叙上の如き本発明の方法によれば、中間留分の
過分解が起こらず、しかも高沸点留分を減圧蒸留
ならびに再度の水素化分解処理等の操作を行なう
ため、特に灯油、軽油等の収率が著しく大きい。 従つて本発明の方法は劣質な重質油から付加価
値の高い中間留分を効率よく得ることができる方
法として実用上極めて有効なものである。 次に本発明の実施例を参考例および比較例と共
に示す。 参考例 (触媒の調製) Al2O3としての濃度5.0wt%のアルミン酸ソー
ダ溶液に、50%グリコン酸水溶液を加え、次いで
Al2O3としての濃度2.5wt%の硫酸アルミニウム
溶液を添加して、PH7.0のスラリーを得た。 このスラリーをろ別後0.2wt%のアンモニア水
で洗浄して擬ベーマイト含有アルミナ水和物を調
製した。 また、SiO2/Al2O3のモル比が、8.5であり、
Na2Oとして0.2wt%のアルカリ金属を含有し、
24.35Åの結晶格子定数を有し、しかも、740℃の
温度で、2時間焼成した場合の比表面積が、620
m2/gであるUS−Y型ゼオライトを用意した。 上記アルミナ水和物とUS−Y型ゼオライトを
混合し、ニーダーで加熱濃縮後、ペレツトに成形
し、空気中110℃で16時間乾燥後、550℃で3時間
焼成して、US−Y型ゼオライト50wt%の触媒担
体を得た。この担体に、パラタングステン酸アン
モニウム、硝酸ニツケルを含む水溶液を加えて含
浸させた後、250℃迄徐々に昇温しながら乾燥し、
次いで、550℃で2時間焼成してタングステン担
持量、ニツケル担持量がそれぞれ、13.3wt%,
4.1wt%である触媒を製造した。 実施例 1 第1図に示す装置を用い、この第1反応塔1お
よび第2反応塔2に前記参考例で調製した触媒を
充填した。このような装置において原料重質油と
してのクウエート常圧蒸留残渣油(比重0.965、
沸点343℃以上の留分92vo1%、粘度400cst(50
℃)、硫黄分3.9wt%、残留炭素10.6wt%、窒素分
2380ppm、バナジウム分46ppm、ニツケル分
16ppm)を第1反応塔1に導入し、ここで反応圧
力150Kg/cm2G、反応温度400℃、水素/油比
2000Nm3/Kl、液時空間速度(LHSV)0.6hr-1
水素濃度90モル%の条件にて水素化分解した。次
いでこの第1反応塔1を出た水素化分解油を分離
塔3に送り、そこでその80vol%以上が343℃以下
で沸騰する留分()とその80vol%以上が343℃
以上で沸騰する留分()とに分離した。この分
離塔3内の操作条件は温度400℃、圧力145Kg/cm2
とした。続いて上記分離塔3で分離された留分
()は第2反応塔2へ送ることなく直ちに常圧
蒸留塔4へ送つた。一方、留分()は第2反応
塔2に導き、ここで反応圧力145Kg/cm2、反応温
度410℃、水素/油比2000Nm3/Kl,LHSV
0.6hr-1、水素濃度90モル%の条件にて水素化分
解処理し、しかる後に常圧蒸留塔4に導いた。留
分()、および留分()の水素化分解したも
のを導入した常圧蒸留塔4では、炭素数1〜4の
留分(ガス、LPG)、炭素数5〜沸点200℃の留
分(ナフサ)、沸点171〜250℃の留分(灯油)、沸
点250〜343℃の留分(軽油)および常圧蒸留残渣
(沸点343℃以上のもの)に分離した。ここで得ら
れた常圧蒸留残渣は減圧蒸留塔5へ導き、そこで
その80vol%以上が525℃以下で沸騰する留分
()(減圧軽油)とその80vol%以上が約525℃以
上で沸騰する留分(減圧残渣)とに分離した。な
お前記減圧蒸留塔5における操作条件は390℃、
15mmHgに設定した。さらに、ここで得られた留
分()はその全量を第2反応塔2に導いて水素
化分解処理した。 叙上の操作における水素化分解後の油全体の組
成を第1表に示す。 比較例 1 第2図に示す装置(第1図の装置と比べて分離
塔が設けられていない。)を用い、第1反応塔1
から得られる水素化分解油の全量を第2反応塔に
導入したこと以外は実施例1と同様の条件で水素
化分解を行なつた。水素化分解後の油全体の組成
を第1表に示す。 比較例 2 第3図に示す装置(第1図の装置と比べて減圧
蒸留塔が設けられていない。)を用い、常圧蒸留
塔4からの常圧蒸留残渣を減圧蒸留塔へ導くこと
なく系外へ取出したこと以外は実施例1と同様の
条件で水素化分解を行なつた。水素化分解後の油
全体の組成を第1表に示す。 比較例 3 第4図に示す装置(第1図の装置と比べて分離
塔および減圧蒸留塔が設けられていない。)を用
い、第1反応塔1からの水素化分解油の全量を第
2反応塔2へ導入し、ここで得られた水素化分解
油を常圧蒸留塔4に導いて各留分に分離し、常圧
蒸留残渣は系外へ取出した。この際の原料重質
油、触媒、第1および第2反応塔の反応条件等は
すべて実施例1と同じものとした。水素化分解後
に得られた油全体の組成を第1表に示す。 実施例 2 参考例において、US−Y型ゼオライトの代わ
りに市販のY型ゼオライトを用い、その他は参考
例と同様の条件にて触媒を調整した。 続いてこの触媒を使用して、他は実施例1と同
様の条件で水素化分解を行なつた。水素化分解後
の油の全体の組成を第1表に示す。 比較例 4 実施例2で使用した触媒を用いたこと以外は、
比較例1と同様の条件で水素化分解を行なつた。
水素化分解後の油の全体の組成を第1表に示す。
The present invention relates to a method for hydrocracking heavy oil, and more specifically, a plurality of reaction towers are used, and before the hydrocracked oil from one reaction tower is introduced into the next reaction tower, an intermediate in the hydrocracked oil is The present invention relates to a method for hydrocracking heavy oil that is effective in preventing excessive decomposition of middle distillates and increasing the yield of middle distillates by separating the fractions in advance. Generally, when heavy oil is hydrocracked, it is necessary to carry out the process under harsh conditions. However, when hydrocracking under harsh conditions, heavy oil is overcracked and only the yield of LPG and naphtha increases, resulting in kerosene,
There was a problem that the yield of middle distillates such as light oil was low. On the other hand, there was a problem that under mild conditions, the residual fraction was not sufficiently decomposed and a useful fraction could not be obtained. Therefore, a method of hydrocracking heavy oil in two or more stages has been proposed, but even with this method, the yield of middle distillates cannot be said to be sufficient. Therefore, the present inventor has conducted extensive research in order to overcome the drawbacks of the above-mentioned conventional techniques and to develop a method for hydrocracking heavy oil with a high yield of middle distillates. As a result, in addition to hydrocracking heavy oil using multiple reaction towers, the intermediate distillate in this hydrocracked oil is The inventors have discovered that it is possible to significantly increase the production of middle distillates by separating the fractions and then further hydrocracking the residual oil in the next reaction column, leading to the completion of the present invention. That is, the present invention provides a method for hydrocracking heavy oil in a plurality of reaction towers, in which hydrocracked oil obtained from the reaction towers (excluding the final stage reaction tower) is introduced into a separation tower. More than 75vol% of it is 343℃
The fraction that boils at 343°C or higher is separated into the fraction that boils at 343°C or higher, and 75 vol% or more of that boils at 343°C or higher;
The fraction that boils above 343°C is introduced into the next reaction column, where it is hydrocracked and then introduced into the atmospheric distillation column.On the other hand, the fraction whose 75 vol% or more boils below 343°C is directly introduced into the atmospheric distillation column. Then, the fraction introduced into the atmospheric distillation column is distilled under atmospheric pressure to separate each fraction, and the fraction of which 75 vol% or more boils at 343°C or higher is introduced into the vacuum distillation column. , provides a method for hydrocracking heavy oil, characterized in that a fraction of which 75 vol% or more boils at 525° C. or lower, obtained by vacuum distillation in the vacuum distillation column, is circulated to any of the reaction columns. It is something to do. Regarding heavy oil that is subject to the method of the present invention,
There are no particular restrictions and various types can be mentioned, but in general, it is a heavy oil with a content of components with a boiling point of 343°C or higher at 50% or more, preferably 80% or more, and typical examples include atmospheric distillation residue oil and vacuum distillation residue oil. Other examples include vacuum gas oil, visbreaking oil, tar sand oil, and mixtures thereof. As described above, in the method of the present invention, the hydrogenolysis of heavy oil is carried out in several stages using a plurality of reaction towers.
In this case, the number of reaction columns is not particularly limited as long as it is two or more, and may be determined as appropriate depending on various conditions or desired hydrocracked oil composition. but,
Usually, it is sufficient to use about two or three reaction towers, and more may be used, but using too many reaction towers complicates the operation and is not a good idea. Next, the method of the present invention will be explained in more detail based on the drawings. FIG. 1 is a schematic diagram showing an example of an apparatus used in the method of the present invention, and is an example using two reaction towers.
According to the method of the present invention, first, heavy oil as a raw material is introduced into the first reaction column 1 together with hydrogen. Here, the heavy oil is hydrocracked, and the obtained hydrocracked oil is not immediately introduced into the second reaction tower 2, but is immediately introduced into the separation tower 3. In this separation column 3, the hydrocracked oil is separated into a fraction of which 75 vol% or more has a boiling point of 343°C or lower and a fraction whose boiling point of 75 vol% or more has a boiling point of 343°C or higher. More than 75 vol% of that has a boiling point of 343℃
The above fraction is led to the second reaction column 2, where it is hydrocracked, and then introduced to the atmospheric distillation column 4. On the other hand, the material separated in the separation column 3
The fraction, of which 75 vol% or more has a boiling point of about 343° C. or less, is directly led to the atmospheric distillation column 4. By such operation,
It is possible to effectively prevent the middle distillate in the hydrocracked oil obtained in the first reaction column 1 from becoming lighter due to excessive cracking. Subsequently, the fractions introduced into the atmospheric distillation column 4 are separated into gas and LPG by atmospheric distillation.
75VO1% or more of the boiling point
The fraction having a temperature of 343°C or higher is led to the vacuum distillation column 5.
Vacuum distillation is carried out here, resulting in 75vo1%
The fraction with a boiling point of 525°C or less is transferred to the first reaction column 1 again.
Alternatively, it is circulated to the second reaction tower 2. By circulating to this reaction column, unreacted vacuum gas oil is further hydrocracked, and almost all of it can be recovered as a middle distillate. In the above-mentioned hydrogenolysis reaction, the catalyst, reaction conditions, etc. to be used may be appropriately selected, but the present invention can be achieved more effectively by using the following catalyst and reaction conditions. First, as a catalyst used for hydrocracking heavy oil in a reaction tower, it is preferable to use a catalyst in which a metal from Group 1 to Group 3 of the periodic table is supported on various carriers as an active component. To explain this more specifically, the active ingredients include nickel, cobalt, molybdenum, and tungsten.
Molybdenum or nickel-tungsten combinations are particularly preferably used. On the other hand, alumina-silica, alumina-zeolite or alumina-boria-zeolite is used as the carrier. Examples of alumina-zeolite include X-type, Y-type, hydrogen-type and decationized zeolites, ZSM-type zeolite, and especially ultra-stable crystalline aluminosilicate Y-type zeolite (hereinafter referred to as "US-Y-type zeolite"). ) is preferably used. The composition and properties of this US-Y type zeolite are such that the Na 2 O content is 0.5% by weight or less, preferably 0.3% by weight or less, and the SiO 2 /Al 2 O 3 ratio is 5 to 150, preferably 6 to 30. , more preferably from 7 to 10. Furthermore, the unit cell size is 23.00 ~
24.60 Å, preferably 24.25 to 24.50 Å. In addition, the specific surface area is 200 m 2 /g or more, preferably 400 to 800
m 2 /g. In order to produce such US-Y type zeolite, for example, synthetic haujasite is used as a raw material, which is exchanged with NH 4 +, washed with water, dried, further calcined or steam treated, and finally treated with ammonium salt or amine. A method such as treating with salt and then firing (Japanese Patent Publication No. 8129/1983) may be used. Such US-
The composition of the alumina-zeolite as a carrier using Y-type zeolite as the zeolite is not particularly limited, but usually US-Y-type zeolite is used in an amount of 20 to 80% by weight, preferably 40 to 60% by weight based on the total alumina-zeolite. % should be included. The composition of the alumina-boria-zeolite is 15 to 55 wt% alumina, preferably 20 to 50 wt%, and 5 to 25 wt% boria as B2O3 , preferably 10 to 20 wt%.
%, zeolite is 20~80wt%, preferably 30~
It is 70wt%. Catalysts with such properties can be produced by various methods, and representative methods include the following methods. In other words, alumina or alumina-boria as a matrix is prepared by neutralizing aluminate or aluminum salt by adding acid or alkali to prepare amorphous alumina hydrate having a concentration of 5 wt% or more. Japanese product PH
It is produced by heating to 50°C or higher while stirring in a weakly alkaline solution of 8 to 12°C. This is kneaded and dispersed with silica or zeolite to obtain a carrier, on which a group - group metal of the periodic table is supported by a known method. If the hydrocracking of the present invention is carried out using the catalyst obtained by the above-described treatment, the hydrocracking of heavy oil will proceed under relatively mild conditions. The reaction conditions in the reaction towers at this time are generally more severe as the reaction towers in the later stages are more severe than the reaction towers in the earlier stage, but in any case, the conditions in each reaction tower are such that the reaction temperature is 300 to 500. ℃, preferably 350 ~
450℃, reaction pressure 50-250Kg/cm 2 , preferably 100
~200Kg/ cm2 , supply hydrogen/oil ratio 500~ 3000Nm3 /
Kl, preferably 70 to 2000Nm 3 /Kl, liquid hourly space velocity
It may be determined as appropriate within the range of 0.1 to 3.0 hr -1 , preferably 0.2 to 1.0 hr -1 , and the supplied hydrogen concentration is 75 mol% or more, preferably 85 mol% or more. In addition, the separation operation in the separation column 3 is performed to determine the volume of the fraction above 343°C in the gas stream exiting from the top of the separation tower 3 and the volume of the fraction below 343°C in the liquid stream exiting from the bottom of the separation tower 3. The conditions are such that the sum with the volume ratio of is the smallest. In other words, in the overhead fraction, the boiling point
It is necessary that the fraction with a boiling point of 343°C or higher is contained in an amount of 75vo1% or more, and the bottom distillate contains a fraction with a boiling point of 343°C or higher in an amount of 75vo1% or more. usually,
Operating conditions are temperature 250~500℃, preferably 320~
450℃, pressure 50~250Kg/ cm2G , preferably 100~
It should be 200Kg/cm 2 G. Note that the separation tower 3 may be provided between each reaction tower (in this case, the number of separation towers will be one less than the number of reaction towers), but only one separation tower 3 will be provided between each reaction tower. All of the hydrocracked oil may be directed centrally. Furthermore, the conditions within the atmospheric distillation column 4 may be determined as appropriate and are not particularly limited. Conditions commonly used are sufficient. The internal conditions in the vacuum distillation column 5 are also not limited and may be determined according to various conditions, but generally the temperature is 300 to 450°C, preferably 360 to 450°C.
The temperature is 400°C and the pressure is 50 mmHg or less, preferably 35 mmHg or less. According to the method of the present invention as described above, over-cracking of middle distillates does not occur, and high-boiling fractions are subjected to operations such as vacuum distillation and re-hydrocracking, so that especially kerosene, gas oil, etc. The yield is significantly higher. Therefore, the method of the present invention is extremely effective in practice as a method for efficiently obtaining high value-added middle distillates from inferior heavy oil. Next, examples of the present invention will be shown together with reference examples and comparative examples. Reference example (Catalyst preparation) A 50% aqueous glyconic acid solution was added to a sodium aluminate solution with a concentration of 5.0 wt% as Al 2 O 3 , and then
An aluminum sulfate solution with a concentration of 2.5 wt% as Al 2 O 3 was added to obtain a slurry with a pH of 7.0. This slurry was filtered and washed with 0.2 wt% ammonia water to prepare a pseudo-boehmite-containing alumina hydrate. Further, the molar ratio of SiO 2 /Al 2 O 3 is 8.5,
Contains 0.2wt% alkali metal as Na2O ,
It has a crystal lattice constant of 24.35 Å, and the specific surface area when fired at a temperature of 740°C for 2 hours is 620 Å.
m 2 /g US-Y type zeolite was prepared. The above alumina hydrate and US-Y type zeolite are mixed, heated and concentrated in a kneader, formed into pellets, dried in air at 110°C for 16 hours, and then calcined at 550°C for 3 hours to form US-Y type zeolite. A 50wt% catalyst support was obtained. This carrier was impregnated with an aqueous solution containing ammonium paratungstate and nickel nitrate, and then dried while gradually increasing the temperature to 250°C.
Next, by firing at 550°C for 2 hours, the amount of supported tungsten and the amount of nickel supported were 13.3 wt%, respectively.
A catalyst with a concentration of 4.1 wt% was produced. Example 1 Using the apparatus shown in FIG. 1, the first reaction tower 1 and the second reaction tower 2 were filled with the catalyst prepared in the above reference example. In such equipment, Kuwait atmospheric distillation residue oil (specific gravity 0.965,
Distillate with boiling point of 343℃ or above 92vo1%, viscosity 400cst (50
°C), sulfur content 3.9wt%, residual carbon 10.6wt%, nitrogen content
2380ppm, vanadium content 46ppm, nickel content
16 ppm) was introduced into the first reaction column 1, where the reaction pressure was 150 Kg/cm 2 G, the reaction temperature was 400°C, and the hydrogen/oil ratio was
2000Nm 3 /Kl, liquid hourly space velocity (LHSV) 0.6hr -1 ,
Hydrogenolysis was performed at a hydrogen concentration of 90 mol%. Next, the hydrocracked oil coming out of the first reaction tower 1 is sent to the separation tower 3, where 80 vol% or more of it boils at 343°C or lower and 80 vol% or more of it boils at 343°C.
It was separated into a boiling fraction (). The operating conditions in this separation column 3 are a temperature of 400℃ and a pressure of 145Kg/cm 2
And so. Subsequently, the fraction (2) separated in the separation column 3 was immediately sent to the atmospheric distillation column 4 without being sent to the second reaction column 2. On the other hand, the fraction () is led to the second reaction tower 2, where the reaction pressure is 145Kg/cm 2 , the reaction temperature is 410°C, and the hydrogen/oil ratio is 2000Nm 3 /Kl, LHSV
Hydrocracking treatment was carried out under conditions of 0.6 hr -1 and a hydrogen concentration of 90 mol %, and then introduced into the atmospheric distillation column 4. In the atmospheric distillation column 4 into which the fraction ( ) and the hydrocracked fraction ( (naphtha), a fraction with a boiling point of 171 to 250°C (kerosene), a fraction with a boiling point of 250 to 343°C (gas oil), and an atmospheric distillation residue (boiling point of 343°C or higher). The atmospheric distillation residue obtained here is led to the vacuum distillation column 5, where 80 vol% or more of it boils at 525°C or lower (vacuum gas oil) and 80 vol% or more of it boils at about 525°C or higher. It was separated into a fraction (vacuum residue). Note that the operating conditions in the vacuum distillation column 5 are 390°C;
It was set at 15mmHg. Further, the entire fraction (2) obtained here was introduced into the second reaction tower 2 and subjected to hydrocracking treatment. The composition of the entire oil after hydrocracking in the above operation is shown in Table 1. Comparative Example 1 Using the apparatus shown in Fig. 2 (no separation column is provided compared to the apparatus shown in Fig. 1), the first reaction column 1
Hydrocracking was carried out under the same conditions as in Example 1, except that the entire amount of the hydrocracked oil obtained from the above was introduced into the second reaction column. The overall composition of the oil after hydrocracking is shown in Table 1. Comparative Example 2 Using the apparatus shown in Figure 3 (which is not equipped with a vacuum distillation column compared to the apparatus shown in Figure 1), the atmospheric distillation residue from the atmospheric distillation column 4 was not introduced to the vacuum distillation column. Hydrocracking was carried out under the same conditions as in Example 1, except that the mixture was taken out of the system. The overall composition of the oil after hydrocracking is shown in Table 1. Comparative Example 3 Using the apparatus shown in Fig. 4 (which is not equipped with a separation column and a vacuum distillation column compared to the apparatus shown in Fig. 1), the entire amount of hydrocracked oil from the first reaction column 1 was transferred to the second reaction column. The hydrocracked oil obtained here was introduced into the reaction column 2, and the resulting hydrocracked oil was introduced into the atmospheric distillation column 4 to be separated into each fraction, and the atmospheric distillation residue was taken out of the system. At this time, the raw material heavy oil, the catalyst, the reaction conditions of the first and second reaction towers, etc. were all the same as in Example 1. The overall composition of the oil obtained after hydrocracking is shown in Table 1. Example 2 In a reference example, a commercially available Y-type zeolite was used instead of the US-Y-type zeolite, and a catalyst was prepared under the same conditions as in the reference example except for the use of a commercially available Y-type zeolite. Subsequently, using this catalyst, hydrogenolysis was carried out under the same conditions as in Example 1 except for the following conditions. The overall composition of the oil after hydrocracking is shown in Table 1. Comparative Example 4 Except for using the catalyst used in Example 2,
Hydrogenolysis was carried out under the same conditions as in Comparative Example 1.
The overall composition of the oil after hydrocracking is shown in Table 1.

【表】 (注) 表中の数値は原料油に対する各留
分の比率を示す。
[Table] (Note) The numbers in the table indicate the ratio of each fraction to the raw oil.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いる装置の一例を示
す概略図、第2〜4図はそれぞれ比較例1〜3で
用いた装置を示す概略図である。 1……第1反応塔、2……第2反応塔、3……
分離塔、4……常圧蒸留塔、5……減圧蒸留塔。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the method of the present invention, and FIGS. 2 to 4 are schematic diagrams showing apparatuses used in Comparative Examples 1 to 3, respectively. 1...First reaction tower, 2...Second reaction tower, 3...
Separation column, 4...Normal pressure distillation column, 5...Reduced pressure distillation column.

Claims (1)

【特許請求の範囲】 1 重質油を複数基の反応塔にて水素化分解する
方法において、反応塔(最終段の反応塔を除く。)
から得られる水素化分解油を分離塔に導入してそ
の75vol%以上が343℃以下で沸騰する留分とその
75vol%以上が343℃以上で沸騰する留分に分離
し、その75vol%以上が343℃以上で沸騰する留分
は次の反応塔に導入して水素化分解した後常圧蒸
留塔に導入し、一方その75vol%以上が343℃以下
で沸騰する留分は直接常圧蒸留塔に導入し、次い
で常圧蒸留塔に導入された留分を常圧蒸留して各
留分に分留すると共に、その75vol%以上が343℃
以上で沸騰する留分を減圧蒸留塔に導入し、該減
圧蒸留塔で減圧蒸留して得られるその75vol%以
上が525℃以下で沸騰する留分を前記いずれかの
反応塔に循環させることを特徴とする重質油の水
素化分解法。 2 重質油を二基の反応塔にて水素化分解する特
許請求の範囲第1項記載の方法。
[Scope of Claims] 1. In a method of hydrocracking heavy oil using a plurality of reaction towers, the reaction tower (excluding the final stage reaction tower)
The hydrocracked oil obtained from the hydrocracked oil is introduced into a separation column, and the fraction of which 75 vol% or more boils below 343°C and its
It is separated into a fraction in which 75 vol% or more boils at 343°C or higher, and the fraction whose 75 vol% or more boils at 343°C or higher is introduced into the next reaction column for hydrogenolysis and then introduced into the atmospheric distillation column. On the other hand, the fraction of which 75 vol% or more boils below 343°C is directly introduced into the atmospheric distillation column, and then the fraction introduced into the atmospheric distillation column is distilled under atmospheric pressure to be fractionated into each fraction. , more than 75vol% of which is 343℃
The fraction boiling above is introduced into a vacuum distillation column, and the fraction obtained by vacuum distillation in the vacuum distillation column, of which 75 vol% or more boils at 525°C or below, is circulated to any of the reaction columns. Features of heavy oil hydrocracking method. 2. The method according to claim 1, in which heavy oil is hydrocracked in two reaction towers.
JP9525181A 1981-06-22 1981-06-22 Hydrocracking of heavy oil Granted JPS57209993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9525181A JPS57209993A (en) 1981-06-22 1981-06-22 Hydrocracking of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9525181A JPS57209993A (en) 1981-06-22 1981-06-22 Hydrocracking of heavy oil

Publications (2)

Publication Number Publication Date
JPS57209993A JPS57209993A (en) 1982-12-23
JPH0216355B2 true JPH0216355B2 (en) 1990-04-16

Family

ID=14132532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9525181A Granted JPS57209993A (en) 1981-06-22 1981-06-22 Hydrocracking of heavy oil

Country Status (1)

Country Link
JP (1) JPS57209993A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288850B2 (en) * 2016-09-30 2023-06-08 ヒンドゥスタン ペトロリアム コーポレーション リミテッド Heavy hydrocarbon upgrade process

Also Published As

Publication number Publication date
JPS57209993A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
EP0095303B1 (en) Catalytic dewaxing process
US4429053A (en) Rare earth-containing Y zeolite compositions
AU637163B2 (en) Process for upgrading a sulphur-containing feedstock
US4565621A (en) Hydrocracking with rare earth-containing Y zeolite compositions
US4584287A (en) Rare earth-containing Y zeolite compositions
JPH0135873B2 (en)
US4788378A (en) Dewaxing by isomerization
US5139644A (en) Process for refractory compound conversion in a hydrocracker recycle liquid
US5609752A (en) Process for Cetane improvement of distillate fractions
KR100801120B1 (en) Method for two-step hydrocracking of hydrocarbon feedstocks
JP3909400B2 (en) Catalyst comprising faujasite-type zeolite and TON-type zeolite, and method for hydroconversion of petroleum hydrocarbon feedstock
JP4649068B2 (en) Method for simultaneous hydrogen treatment of two feedstocks
JP3994236B2 (en) Catalyst comprising at least two zeolites Y dealuminated and a conventional hydroconversion process for petroleum fractions using the catalyst
US4604187A (en) Hydrocracking with rare earth-containing Y zeolite compositions
JP2619701B2 (en) Method for converting hydrocarbonaceous feedstocks
JPH05132681A (en) Method of hydrocracking
JP3994237B2 (en) Mild hydrocracking process for petroleum fractions using a catalyst comprising dealuminated at least two zeolites Y
US4810356A (en) Process for treating gas oils
CA2113810C (en) Hydrocarbon upgrading process
JPH0149399B2 (en)
US3394074A (en) Single reactor hydrocracking process with mixed nonnoble metal catalyst for full boiling raw feed
JPH0216355B2 (en)
US4572779A (en) Process for the dewaxing of hydrocarbon fractions
JP2000351978A (en) Hydrogenation of heavy oil
JPH0462781B2 (en)