JPH02163388A - Tunnel microscope-type fine working device - Google Patents

Tunnel microscope-type fine working device

Info

Publication number
JPH02163388A
JPH02163388A JP31896688A JP31896688A JPH02163388A JP H02163388 A JPH02163388 A JP H02163388A JP 31896688 A JP31896688 A JP 31896688A JP 31896688 A JP31896688 A JP 31896688A JP H02163388 A JPH02163388 A JP H02163388A
Authority
JP
Japan
Prior art keywords
probe
sample
holder
gas
microprobe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31896688A
Other languages
Japanese (ja)
Inventor
Taku Yamamoto
卓 山本
Mayumi Fujimura
藤村 まゆみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31896688A priority Critical patent/JPH02163388A/en
Publication of JPH02163388A publication Critical patent/JPH02163388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently supply a gaseous reactant to the minute region in the vicinity of the tip of a microprobe by supplying the gaseous reactant to the gas passage in a probe holder through a flexible tube, and discharging the gaseous reactant from the tip of the hollow microprobe. CONSTITUTION:The microprobe 1 is fixed to the holder 2, and a voltage is impressed from a voltage source 3 through the holder 2. The tunnel current flowing between a sample 4 and the probe 1 is monitored by an ammeter 5, a piezoelectric actuator 7 is driven by the feedback of a probe position controller 6 to keep the distance between the sample 4 and the probe 1 constant, and the tunnel current value is held at a specified value. Meanwhile, the gaseous reactant is supplied to the holder 2 set in a vacuum vessel 11 from a supply source 8 through a passage 16, a valve 9, and the flexible tube 13, and discharged onto the surface of the sample 4 from the tip of the probe 1. By this method, the minute region on the surface of the sample 4 is tine-worked as specified, the contamination and corrosion of every part of the device with the gaseous reactant are controlled, and the load of a vacuum pump 12 is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、走査型トンネルw4微鏡を利用し、試料の
加工領域に有機金属ガスやハロゲンガスなどの反応ガス
を流出して微細加工を施すように用いられるトンネル顕
微鏡型微細加工装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention utilizes a scanning tunnel W4 microscope to perform microfabrication by flowing a reactive gas such as an organometallic gas or a halogen gas into the processing area of a sample. The present invention relates to a tunneling microscope type microfabrication device used to perform microfabrication.

[従来の技術] 第4図は、たとえばAmerican In5titu
te orPhysjcs  Appl、Phys、L
ett、51(4)、27  July1987に開示
されている従来のトンネル顕微鏡型微細加工装置の構成
国である。同図において、(1)は微小探針、(2)は
上記微小探針(1)を保持するホルダ、(3)は電圧源
、(4)は試料、(5)はトンネル電流をモニタするた
めの電流計、(6)は探針位ご制御装置、(7)は上記
探針位置制御装置(6)からの駆動信号により駆動され
るピエゾアクチュエータ、(8)は反応ガスの供給源、
(9)は反応ガス供給通路(16)に介装した流量調節
用バルブ、(10)は反応ガス供給通路(16)の先端
部に接続した反応ガス流出用ノズル、 (II)は真空
槽、(12)は真空排気用ポンプである。
[Prior Art] FIG. 4 shows, for example, the American
te orPhysjcs Appl, Phys, L
ett, 51(4), 27 July 1987. In the figure, (1) is a microprobe, (2) is a holder that holds the microprobe (1), (3) is a voltage source, (4) is a sample, and (5) is a tunnel current monitor. (6) is a probe position control device, (7) is a piezo actuator driven by the drive signal from the probe position control device (6), (8) is a reactant gas supply source,
(9) is a flow rate adjustment valve installed in the reaction gas supply passage (16), (10) is a reaction gas outlet nozzle connected to the tip of the reaction gas supply passage (16), (II) is a vacuum chamber, (12) is a pump for vacuum evacuation.

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

ホルダ(2)に取り付けられている微小探針(りには電
気的に導通状態にあるホルダ(2)を通じて、電圧源(
3)より電圧が印加されている。このとき、電流計(5
)によって測定されたトンネル電流値か所定の値を保持
するように、探針位置制御′!A21(5)のフィード
バック制御により、ビエゾアクチュエータ(7)を介し
て試料(4)と微小探針(1)との距離か一定に保持さ
れる。
A voltage source (
3) More voltage is applied. At this time, ammeter (5
) The probe position is controlled so as to maintain the tunnel current value measured by or a predetermined value! By feedback control of A21 (5), the distance between the sample (4) and the micro probe (1) is maintained constant via the Viezo actuator (7).

また、供給源(8)から通路(15)に供給された有機
金属ガスやハロゲンガスなどの反応ガス#午はバルブ(
9)によって流量調節されて、ノズル(lO)から微小
探針(りに対向する試料(4)の表面に流出される。こ
こで、試料(4)や微小探針(1)は真空m(11)内
にあり、真空排気用ポンプ(12)の排気量と上記バル
ブ(9)による反応ガスの流量調節とにより1反応ガス
のガス分圧が一定に保たれている。こうして、微小探針
(1)と試料(4)との間のトンネル電流や高電界の作
用により、試料(4)の表面の微小領域か微細加工され
る。
In addition, the reactant gas such as organometallic gas or halogen gas supplied from the supply source (8) to the passage (15) is connected to the valve (
9), the flow rate is adjusted by the nozzle (lO) and flows out onto the surface of the sample (4) facing the microtip (1).Here, the sample (4) and the microtip (1) 11), and the gas partial pressure of one reaction gas is kept constant by the displacement of the vacuum evacuation pump (12) and the flow rate adjustment of the reaction gas by the valve (9).In this way, the microprobe Due to the tunnel current and high electric field between the sample (1) and the sample (4), a micro region on the surface of the sample (4) is microfabricated.

[発明が解決しようとする課題] 従来のトンネル顕微鏡型微細加工装置は、以上のように
構成されているので、実際の微細加工に関与する領域か
微小探針と試料の表面との間の非常に微小な空間、たと
えば0.1終−以下に限定されているにもかかわらず、
ノズルな探針の先端付近に近づけるにも自ずと限界かあ
る。そのため、不必要な部分への反応ガスの流出か多く
なり、そのような不要なガスによって、装置各部の汚染
や腐食をまねき、また真空排気用ポンプの負荷の増加、
装置の小形化、簡素化を図るうえて不利となる問題があ
った。
[Problems to be Solved by the Invention] Since the conventional tunneling microscope type microfabrication device is configured as described above, it is difficult to remove the area that is involved in actual microfabrication or the area between the microprobe and the surface of the sample. Although it is limited to a minute space, for example, less than 0.1,
There is naturally a limit to how close you can get to the tip of the nozzle probe. As a result, a large amount of reaction gas flows out to unnecessary parts, and such unnecessary gas causes contamination and corrosion of various parts of the equipment, and increases the load on the vacuum evacuation pump.
There is a problem in that it is disadvantageous in attempting to downsize and simplify the device.

この発明は上記のような問題点を解消するためになされ
たもので、不必要な反応ガスの流出による装置各部の汚
染や腐食を抑制できるとともに、真空排気用ポンプの負
荷の低減および装置の小形化、簡素化を図りやすいトン
ネルm微鏡型微細加工装置を提供することを目的とする
This invention was made to solve the above-mentioned problems, and it is possible to suppress contamination and corrosion of various parts of the equipment due to unnecessary leakage of reaction gas, reduce the load on the vacuum pump, and make the equipment more compact. An object of the present invention is to provide a tunnel m-microscopic microfabrication device that can be easily simplified.

[課題を解決するための手段] この発明にかかるトンネルjl11微鏡型微細加工装置
は、内部にガス流路に設けた探針ホルダの上記ガス流路
に中空の微小探針を接続するとともに。
[Means for Solving the Problems] The tunnel jl11 microscopic microfabrication device according to the present invention connects a hollow microprobe to the gas flow path of a probe holder provided inside the gas flow path.

反応ガスを可撓性のガス供給用チューブを通して上記ガ
ス流路に供給するように構成したことを特徴とする。
The present invention is characterized in that the reactant gas is supplied to the gas flow path through a flexible gas supply tube.

[作用] この発明によれば1反応ガスが可撓性チューブを通して
探針ホルダの内部のガス流路に供給されたのち、中空の
微小探針の先端部から流出されるので、反応ガスが微小
探針の先端付近の微小領域に効率よく供給されることに
なる。これにより。
[Function] According to the present invention, one reaction gas is supplied to the gas flow path inside the probe holder through the flexible tube, and then flows out from the tip of the hollow micro probe, so that the reaction gas is It is efficiently supplied to the minute area near the tip of the probe. Due to this.

不必要な反応ガスの流出が抑えられる。Unnecessary outflow of reaction gas is suppressed.

[発明の実施例] 以下、この発明の一実施例を図面にもとづいて説明する
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described based on the drawings.

第1図はこの発明の一実施例にトンネル顕微鏡型微細加
工装置を示す構成図である。同図において、第4図で示
す従来例と同一または相当部分には同一の符号を付して
、それらの説明を省略している。ここては、第4図の従
来例と相違する点のみを説明する。
FIG. 1 is a block diagram showing a tunneling microscope type microfabrication apparatus according to an embodiment of the present invention. In the figure, the same or corresponding parts as in the conventional example shown in FIG. 4 are given the same reference numerals, and their explanations are omitted. Here, only the points that are different from the conventional example shown in FIG. 4 will be explained.

第2図は微小探針(1)および探針ホルダ(2)の詳細
な構成を示す断面図であり、上記微小探針(1)は中空
で、その内部に反応ガス(G)を先端部から流出するた
めのガス流出孔(I5)を有しており、探針ホルダ(2
)はその内部に反応ガス流路(14)を有している。ま
た、この探針ホルダ(2)の内部の反応ガス流路(14
)は可撓性のガス供給用チューブ(13)を介して反応
ガス供給通路(I6)に接続されている。
FIG. 2 is a sectional view showing the detailed structure of the microprobe (1) and the probe holder (2). The microprobe (1) is hollow and has a reactive gas (G) inside it at the tip. It has a gas outflow hole (I5) for gas outflow from the probe holder (2).
) has a reaction gas flow path (14) therein. In addition, the reaction gas flow path (14) inside this probe holder (2)
) is connected to the reaction gas supply passage (I6) via a flexible gas supply tube (13).

つぎに、上記構成の動作について説明する。Next, the operation of the above configuration will be explained.

微小探針(1)は探針ホルダ(2)に固定され、電気的
に導通状態にあるホルダ(2)を通して、電圧源(3)
より電圧が印加される。このとき、試料(4)と探針(
1)との間を流れるトンネル電流は電流計(5)でモニ
タされ、このトンネル電流、値か所定の値に保持される
ように、探針位置制御装置(6)のフィードバックによ
りピエゾアクチュエータ(7)を11効することで、試
料(4)と探針(1)との間の距離が一定に保持される
。また、供給源(8)から通路(l&)に供給され、バ
ルブ(g)によって流i*節された有機金属ガスやハロ
ゲンガスなどの反応ガス(G)は可撓性チューブ(13
)を経て、真空槽(11)内に設置されている探針ホル
ダ(2)に供給される。ついで1反応ガス(G)はホル
ダ(2)内のガス流路(14)を経て、微小探針(1)
内のガス流出孔(15)内に供給されたのち、微小探針
(1)の先端部から試料(4)の表面へ流出される。こ
のようにして、微小探針(1)と試料(4)との間の微
小空間に供給された反応ガス(G)は、微小探針(1)
と試料(4)との間のトンネル電流や高電界の作用によ
り試料(4)と反応し、表面の微小領域を所定どおりに
微細加工する。ここにおいて、反応ガスの分圧は、真空
排気用ポンプ(12)の排気値と反応ガスCG)の流量
で調節され保持される。
The micro probe (1) is fixed to a probe holder (2), and is connected to a voltage source (3) through the electrically conductive holder (2).
More voltage is applied. At this time, the sample (4) and the probe (
1) is monitored by an ammeter (5), and the piezo actuator (7) is controlled by feedback from the probe position control device (6) so that this tunnel current is maintained at a predetermined value. ), the distance between the sample (4) and the probe (1) is kept constant. In addition, a reactive gas (G) such as an organometallic gas or a halogen gas is supplied from the supply source (8) to the passageway (l&) and is routed through the valve (g) through a flexible tube (13
) and is supplied to the probe holder (2) installed in the vacuum chamber (11). Next, 1 reaction gas (G) passes through the gas flow path (14) in the holder (2) and reaches the micro probe (1).
After being supplied into the gas outflow hole (15) inside, it flows out from the tip of the micro probe (1) to the surface of the sample (4). In this way, the reaction gas (G) supplied to the microspace between the microprobe (1) and the sample (4) is transferred to the microprobe (1).
It reacts with the sample (4) due to the tunnel current and high electric field between the sample (4) and the sample (4), and the minute area on the surface is microfabricated into a predetermined shape. Here, the partial pressure of the reaction gas is adjusted and maintained by the exhaust value of the evacuation pump (12) and the flow rate of the reaction gas CG).

以−Lによって、反応ガス(G)はプロセスに関与する
微小空間に効率よく供給されるため、不必要な反応ガス
による装置各部の汚染や腐食が抑えられ、また真空排気
用ポンプ(12)の負荷も軽減される。さらに、装置構
成か簡素化され、小形化も可濠となる。
By L-L, the reaction gas (G) is efficiently supplied to the minute space involved in the process, so contamination and corrosion of various parts of the equipment by unnecessary reaction gas are suppressed, and the evacuation pump (12) is The load is also reduced. Furthermore, the device configuration is simplified and miniaturization is possible.

なお、上記実施例では、微小探針(1)の内部にガス流
出孔(15)を設けたが、これに変えて、第3図に示す
ように、中空の探針(1)として、比較的口径の大きな
ものを用い、その中空部(15A)内に、さらに微小探
針(IA)を挿通すことによっても、上記実施例と同様
な効果を奏する。この場合、微小探針(IA)の固定に
は、導電性の接着剤を用いてもよいし、図示したように
、微小探針(1^)自身の屈曲を利用して固定してもよ
い。
In the above example, the gas outflow hole (15) was provided inside the micro probe (1), but instead of this, a hollow probe (1) was used as shown in Fig. 3 for comparison. The same effect as in the above embodiment can be obtained by using a probe with a large target diameter and further inserting a minute probe (IA) into the hollow portion (15A). In this case, the microprobe (IA) may be fixed using a conductive adhesive, or, as shown in the figure, may be fixed using the bending of the microprobe (1^) itself. .

[発明の効果] 以上のように、この発明によれば、微小探針の先端部付
近からのみ反応ガスを流出できるようにしたので、反応
ガスか反応に関与する領域に効率的に供給され利用され
るようになり、不必要な部分への反応ガスの流出による
*2各部の汚染や腐食を十分に抑制できるとともに、真
空排気用ポンプの負荷を軽減でき、また装置構成の簡素
化、小形化を図りやすい効果を奏する。
[Effects of the Invention] As described above, according to the present invention, since the reactive gas can flow out only from the vicinity of the tip of the microprobe, the reactive gas can be efficiently supplied to the region involved in the reaction and utilized. This makes it possible to sufficiently suppress contamination and corrosion of various parts due to reaction gas leaking into unnecessary parts, reduce the load on the vacuum pump, and simplify and downsize the device configuration. The effect is easy to achieve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるトンネル顕微鏡型微
細加工装置を示す構成図、第2図は微小探針部の詳細な
構成を示す断面図、第3図はこの発明の他の実施例を示
す微小探針部の詳細な構成を示す断面図、第4図は従来
のトンネル顕微鏡型微細加工装置を示す構成図である。 (1)−・・微小探針、(2)−・・探針ホルダ、(8
) −・・反応ガスの供給源、(13)・・・可撓性の
ガス供給用チューブ、(14)・・・反応ガス流路、(
G)−・・反応ガス。 なお、図中の同一符号は同一または相当部分を示す。
FIG. 1 is a configuration diagram showing a tunneling microscope type microfabrication device according to an embodiment of the present invention, FIG. 2 is a sectional view showing the detailed configuration of a microprobe, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a cross-sectional view showing the detailed configuration of a microprobe section, and FIG. 4 is a configuration diagram showing a conventional tunneling microscope type microfabrication device. (1) --- Micro probe, (2) --- Probe holder, (8
) - Reactant gas supply source, (13) Flexible gas supply tube, (14) Reactant gas flow path, (
G) - Reactant gas. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)内部にガス流路を設けた探針ホルダと、上記ガス
流路に接続されその先端部から反応ガスを流出する中空
の微小探針と、反応ガスの供給源と、この供給源から上
記探針ホルダのガス流路に反応ガスを供給する可撓性の
ガス供給用チューブとを備えたことを特徴とするトンネ
ル顕微鏡型微細加工装置。
(1) A probe holder with a gas flow path inside, a hollow micro probe connected to the gas flow path and from which a reactive gas flows out from its tip, a reactant gas supply source, and a reactant gas supply source; A tunneling microscope type microfabrication device comprising: a flexible gas supply tube for supplying a reactive gas to the gas flow path of the probe holder.
JP31896688A 1988-12-16 1988-12-16 Tunnel microscope-type fine working device Pending JPH02163388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31896688A JPH02163388A (en) 1988-12-16 1988-12-16 Tunnel microscope-type fine working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31896688A JPH02163388A (en) 1988-12-16 1988-12-16 Tunnel microscope-type fine working device

Publications (1)

Publication Number Publication Date
JPH02163388A true JPH02163388A (en) 1990-06-22

Family

ID=18104985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31896688A Pending JPH02163388A (en) 1988-12-16 1988-12-16 Tunnel microscope-type fine working device

Country Status (1)

Country Link
JP (1) JPH02163388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538855A (en) * 2002-09-09 2005-12-22 ジェネラル ナノテクノロジー エルエルシー Fluid delivery of a scanning probe microscope
WO2006004064A1 (en) * 2004-07-02 2006-01-12 Honda Motor Co., Ltd. Scanning probe microscope system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538855A (en) * 2002-09-09 2005-12-22 ジェネラル ナノテクノロジー エルエルシー Fluid delivery of a scanning probe microscope
WO2006004064A1 (en) * 2004-07-02 2006-01-12 Honda Motor Co., Ltd. Scanning probe microscope system
US7578853B2 (en) 2004-07-02 2009-08-25 Honda Motor Co., Ltd. Scanning probe microscope system

Similar Documents

Publication Publication Date Title
US8512474B2 (en) Apparatus for precursor delivery system for irradiation beam instruments
EP2741075B1 (en) Method of processing a workpiece in a vacuum chamber
US6419752B1 (en) Structuring device for processing a substrate
JP3457855B2 (en) FIB assist gas introduction device
JPH02163388A (en) Tunnel microscope-type fine working device
JP3921347B2 (en) How to inspect and / or change the surface structure of a specimen
JPH06267940A (en) Fine processor
Xie et al. Microfabrication of plasma nanotorch tips for localized etching and deposition
JPH09251979A (en) Minute working device
JPH10112279A (en) Ionization analysis device
JP7353054B2 (en) Manufacturing method of mounting table and mounting table
JP3823050B2 (en) Paste applicator
JP2832724B2 (en) Object processing equipment
JP4407100B2 (en) Plasma discharge treatment equipment
JP4699748B2 (en) Fine processing apparatus and fine processing method
JP3706414B2 (en) Processing apparatus and processing method using radical reaction
JP2653575B2 (en) Cantilever body and surface modification device using the same
JPH06318567A (en) Plasma pressure control device
JPS61171127A (en) Plasma etching method
JP3579244B2 (en) Nozzle mechanism for gas polishing, gas polishing chamber and polishing apparatus using the mechanism
JP2008066135A (en) Plasma treatment device
JP3429104B2 (en) Plasma low temperature etching equipment
JP2000058512A (en) Device and method for plasma treatment
JP3914826B2 (en) Probe manufacturing method and probe
JPH08306499A (en) High voltage environmental micro-electrode-gap plasma generator