JPH0216320A - Cylinder head cooling structure for four-cycle engine - Google Patents

Cylinder head cooling structure for four-cycle engine

Info

Publication number
JPH0216320A
JPH0216320A JP13397889A JP13397889A JPH0216320A JP H0216320 A JPH0216320 A JP H0216320A JP 13397889 A JP13397889 A JP 13397889A JP 13397889 A JP13397889 A JP 13397889A JP H0216320 A JPH0216320 A JP H0216320A
Authority
JP
Japan
Prior art keywords
exhaust
cylinder head
intake
passages
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13397889A
Other languages
Japanese (ja)
Other versions
JP2675623B2 (en
Inventor
Isao Morishita
森下 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP1133978A priority Critical patent/JP2675623B2/en
Publication of JPH0216320A publication Critical patent/JPH0216320A/en
Application granted granted Critical
Publication of JP2675623B2 publication Critical patent/JP2675623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To uniformalize the temperature distribution of a cylinder head at an engine equipped with three air intake valves and two exhaust valves, by constituting exhaust passages with two independent exhaust passages, and forming a head side liquid cooled jacket between both independent exhaust passages. CONSTITUTION:At an engine in which three air intake valves 23-25 and two exhaust valves 26,27 are collected at one side of a combustion chamber and the other side thereof and also, are arranged so as to be along the perimeter wall of the combustion chamber, three air intake valve openings 17-18 are led out backward by means of three branching off air intake passages 31a-31c formed in parallel mutually, and are converged at one common air intake passage 31 within a cylinder head 11, and then, are led out to the back wall of the cylinder head. Also, two exhaust valve openings 20,21 are led out to the front wall of the engine by means of two independent exhaust passages 32,32 formed separately so as to extend to an oblique outer part. And a head side water cooled jacket 15 formed so that is may possess a front portion 15a which extends to a space between independent exhaust passages 32,32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動二輪車用水冷式4サイクルエンジ
ンに採用されるシリンダヘッドの冷却構造に関し、特に
吸気弁を3本、排気弁を2本設けた5パルプエンジンの
場合に、シリンダヘッド全体を均一に冷却できるように
した吸気通路、排気通路、及びウォータジャケットの配
置構造の改善に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a cooling structure for a cylinder head employed in, for example, a water-cooled four-stroke engine for motorcycles, and in particular, relates to a cooling structure for a cylinder head that has three intake valves and two exhaust valves. The present invention relates to an improvement in the arrangement structure of an intake passage, an exhaust passage, and a water jacket that can uniformly cool the entire cylinder head in the case of a 5-pulp engine.

〔従来の技術〕[Conventional technology]

一般に4サイクルエンジンの燃焼系統は、燃焼室の吸気
弁用開口を吸気通路でシリンダヘッド外側に導出し、該
外側開口に気化器等の燃料供給装置を接続するとともに
、排気弁用開口を排気通路で外側に導出し、該外側開口
に排気管を接続し、上記吸気通路を介して低温の混合気
を吸入し、排気通路を介して高温の排気を排出するよう
に構成されている。従って、上記吸気通路、及び排気通
路が形成されたシリンダヘッドの燃焼室付近は、温度分
布に大きな偏差が生し易い。この温度偏差があまり大き
くなると、熱歪等により各種のトラブルが生しる恐れが
ある。
In general, the combustion system of a four-stroke engine has an intake valve opening in the combustion chamber guided to the outside of the cylinder head through an intake passage, a fuel supply device such as a carburetor connected to the outside opening, and an exhaust valve opening connected to an exhaust passage. The exhaust pipe is connected to the outside opening, and the low-temperature air-fuel mixture is taken in through the intake passage, and the high-temperature exhaust gas is discharged through the exhaust passage. Therefore, large deviations in temperature distribution tend to occur near the combustion chamber of the cylinder head where the intake passage and exhaust passage are formed. If this temperature deviation becomes too large, various troubles may occur due to thermal distortion and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記温度偏差は、吸気弁、排気弁の本数が多(
なるほど増大する傾向があるので、弁を多数本、例えば
吸気弁3本、排気弁2本備えた5バルブエンジンの場合
は、シリンダヘッドの1度分布を均一化できるように、
吸気通路、排気通路ウォータジャケット等の配置を考慮
した冷却構造が要請される。しかしながら従来の5バル
ブエンジンにおいては、2バルブエンジンの場合と同様
の冷却構造が採用されており、十分な温度分布の均一化
は実現されていないのが実情である。
By the way, the above temperature deviation is due to the large number of intake valves and exhaust valves (
I see, it tends to increase, so in the case of a 5-valve engine with a large number of valves, for example, 3 intake valves and 2 exhaust valves, in order to equalize the 1 degree distribution of the cylinder head,
A cooling structure is required that takes into consideration the arrangement of intake passages, exhaust passage water jackets, etc. However, in the conventional five-valve engine, a cooling structure similar to that of the two-valve engine is adopted, and the reality is that a sufficiently uniform temperature distribution has not been achieved.

そこで本発明は、吸気弁を3本、排気弁を2木偵えた5
バルブエンジンにおいて、シリンダヘッドの温度分布を
均一化できるシリンダへ、ド冷却構造を提供することを
目的としている。
Therefore, the present invention has three intake valves and two exhaust valves.
The purpose of this invention is to provide a cooling structure for cylinders that can equalize the temperature distribution of the cylinder head in a valve engine.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、3本の吸気弁及び2本の吸気弁を燃焼室周壁
に沿うように配置した4サイクルエンジンのシリンダヘ
ッド冷却構造において、上記シリンダヘッドに形成され
た吸気通路を、燃料供給装置接続開口に連通ずる1つの
共用吸気通路と、該共用吸気通路から分岐されて上記各
吸気弁用開口に連通ずる3つの分岐吸気通路とで構成し
、上記排気通路を、上記各排気弁用開口を排気管接続開
口に別個に導出する2つの独立排気通路で構成し、上記
シリンダヘッドの、上記2つの独立排気通路間部分に液
冷ジャケットを形成したことを特徴としている。
The present invention provides a cylinder head cooling structure for a four-cycle engine in which three intake valves and two intake valves are arranged along the peripheral wall of a combustion chamber, and the intake passage formed in the cylinder head is connected to a fuel supply device. The exhaust passage is composed of one common intake passage that communicates with the opening, and three branch intake passages that are branched from the common intake passage and communicate with each of the intake valve openings, and the exhaust passage is connected to each of the exhaust valve openings. It is characterized in that it is composed of two independent exhaust passages that lead out separately to an exhaust pipe connection opening, and that a liquid cooling jacket is formed in a portion of the cylinder head between the two independent exhaust passages.

ここで本発明は、水冷エンジン以外に、油等の液体で冷
却するエンジンにも適用できる。
Here, the present invention is applicable not only to water-cooled engines but also to engines cooled with liquid such as oil.

〔作用〕[Effect]

本発明に係るシリンダヘッド冷却構造によれば、3つの
分岐吸気通路をシリンダヘッド内で1つの共用吸気通路
にまとめたので、シリンダヘッドの、吸気通路外表面を
構成する壁面の面積が、各分岐通路をそのまま外方に導
出する場合に比較して狭くなり、従ってシリンダヘッド
から低温の吸気(混合気)側に伝達される熱量が少なく
なり、それだけシリンダヘッドの吸気通路側部分の温度
低下が軽減される。またこの場合、中央の分岐吸気通路
は、両側の分岐吸気1ffi路によって挾まれているの
で、シリンダヘッドから該中央の分岐吸気通路側への熱
伝達量はさらに少なくなり、従ってこの点からもシリン
ダヘッドの吸気通路側部分の温度低下が軽減される。
According to the cylinder head cooling structure according to the present invention, since the three branch intake passages are combined into one common intake passage in the cylinder head, the area of the wall surface constituting the outer surface of the intake passage of the cylinder head is It is narrower than when the passage is led outward as it is, and therefore less heat is transferred from the cylinder head to the low temperature intake air (mixture) side, which reduces the temperature drop in the intake passage side of the cylinder head. be done. Furthermore, in this case, since the central branch intake passage is sandwiched between the branch intake 1ffi passages on both sides, the amount of heat transferred from the cylinder head to the central branch intake passage side is further reduced. The temperature drop in the intake passage side portion of the head is reduced.

一方、排気通路を、2つの独立排気通路で構成し、間に
液冷ジャケットを形成したので、高温の排気はこれに比
べて低温の冷却液によって冷却され、排気からシリンダ
ヘッド側に伝達される熱量が少なくなり、従ってシリン
ダヘッドの排気通路側部分の温度上昇が軽減される。
On the other hand, since the exhaust passage is composed of two independent exhaust passages, with a liquid cooling jacket formed between them, the high temperature exhaust gas is cooled by the coolant, which is lower in temperature than this, and is transmitted from the exhaust gas to the cylinder head side. The amount of heat is reduced, and therefore the temperature rise in the exhaust passage side portion of the cylinder head is reduced.

このようにシリンダヘッドの、吸気通路側部分の温度低
下が軽減され、かつ排気通路側部分の温度上昇が軽減さ
れるので、結果的にシリンダヘッドの温度分布が全体的
に均一となる。
In this way, the temperature drop in the intake passage side portion of the cylinder head is reduced, and the temperature rise in the exhaust passage side portion is reduced, so that as a result, the temperature distribution of the cylinder head becomes uniform as a whole.

またエンジンのカム軸方向の寸法(幅寸法)について見
れば、吸気側部分と排気側部分とで上記幅寸法のバラン
スが良好になる。即ち、一般には弁を3本設けた吸気側
が弁を2本設けた排気側より幅寸法が大きくなるが、本
発明では、排気通路を独立させて設けるとともに、該両
独立排気通路間に液冷ジャケットを配設したので、それ
だけ排気側の幅寸法が大きくなり、吸気側との差が小さ
くなる。
Furthermore, when looking at the dimension (width dimension) of the engine in the camshaft direction, the width dimension is well balanced between the intake side portion and the exhaust side portion. That is, generally speaking, the width of the intake side with three valves is larger than the exhaust side with two valves, but in the present invention, the exhaust passage is provided independently, and a liquid cooling system is installed between the two independent exhaust passages. Since the jacket is provided, the width on the exhaust side becomes larger and the difference from the intake side becomes smaller.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本発明の第1実施例による4サイ
クルエンジンの動弁装置を説明するための図である。
1 to 4 are diagrams for explaining a valve train for a four-stroke engine according to a first embodiment of the present invention.

図において、1は本実施例装置が適用された4サイクル
エンジンを搭載した自動二輪車であり、これの車体フレ
ーム2の前端には、下端で前輪3を軸支する前フオーク
4が軸支され、中央下端には、後端で後輪5を軸支する
後アーム6が上下に揺動自在に枢支されており、さらに
後部には大型の燃料タンク7が、その上側にはシート8
がそれぞれ搭載されている。なお、62〜64.58は
それぞれオイルタンク、ラジェータ、エアクリーナ、気
化器である。
In the figure, reference numeral 1 denotes a motorcycle equipped with a four-stroke engine to which the device of this embodiment is applied, and a front fork 4 that pivotally supports a front wheel 3 at its lower end is supported at the front end of a body frame 2 of this vehicle. At the lower center end, a rear arm 6 that pivotally supports the rear wheel 5 at the rear end is pivoted so as to be able to swing up and down.Furthermore, at the rear is a large fuel tank 7, and above it is a seat 8.
are installed in each. Note that 62 to 64.58 are an oil tank, a radiator, an air cleaner, and a carburetor, respectively.

そして上記車体フレーム2の前部には水冷式4サイクル
単気筒のエンジンユニット9が搭載されている。このエ
ンジンユニット9は、シリンダ10、シリンダヘッド1
1.及びヘッドカバー12をクランクケース14上に積
層した構成となっている。また、ヘッドカバー12の上
面中央部はブラケット61を介して車体フレーム2のテ
ンションパイプ2aに懸架されており、クランクケース
14の前側中央部は、ヘッドパイプ2bから下方に延び
るダウンチューブ2Cで懸架されている。
A water-cooled four-stroke single-cylinder engine unit 9 is mounted on the front portion of the vehicle body frame 2. This engine unit 9 includes a cylinder 10, a cylinder head 1
1. The head cover 12 is stacked on the crankcase 14. The center part of the upper surface of the head cover 12 is suspended from the tension pipe 2a of the body frame 2 via a bracket 61, and the center part of the front side of the crankcase 14 is suspended by a down tube 2C extending downward from the head pipe 2b. There is.

上記シリンダ10は水冷ジャケット10aが形成された
シリンダ本体10b内に円筒状のシリンダライナ10c
を圧入して構成されており、該)シリンダライナ10c
内にはピストン14が摺動自在に挿入されている。
The cylinder 10 has a cylindrical cylinder liner 10c inside a cylinder body 10b in which a water cooling jacket 10a is formed.
cylinder liner 10c.
A piston 14 is slidably inserted therein.

また、上記シリンダヘッド11の台面の略中央には上記
ピストン14の上面とで燃焼室Aを形成する燃焼室凹部
16が凹設されている。この燃焼室凹部16の周縁に沿
う略円周上に、3つの吸気弁開口17〜19及び2つの
排気弁開口20,21が形成されている。
Further, a combustion chamber recess 16 is formed substantially in the center of the base of the cylinder head 11 and forms a combustion chamber A with the upper surface of the piston 14. Three intake valve openings 17 to 19 and two exhaust valve openings 20 and 21 are formed approximately on the circumference along the periphery of the combustion chamber recess 16.

上記3つの吸気弁開口17〜19はシリンダヘッド1】
に車両後方に延びるよう、かつ相互に平行に形成された
3つの分岐吸気通路31a〜31bによって後方に導出
され、かつ該シリンダヘッド11内で1つの共用吸気通
路31に合流した後、シリンダヘッド後壁に導出されて
いる。この共用吸気通路31の外側開口31dにはキャ
ブジヨイント57を介して2つの気化器58.59が接
続されている。このキャブジヨイント57は隔壁57a
によって2つのジヨイント通路57b、57Cに画成さ
れている。
The above three intake valve openings 17 to 19 are the cylinder head 1]
It is led out rearward by three branch intake passages 31a to 31b that are formed parallel to each other so as to extend toward the rear of the vehicle, and after merging into one common intake passage 31 within the cylinder head 11, It is led out to the wall. Two carburetors 58 and 59 are connected to the outer opening 31d of the shared intake passage 31 via a carburetor joint 57. This cab joint 57 is a bulkhead 57a.
It is defined into two joint passages 57b and 57C.

ここで本実施例では、全吸気量のうち50%が中央の分
岐吸気通路31bを流れ、残25%、25%がそれぞれ
左、右の分岐吸気通路31a、31cを流れるように設
定されている。これは、後述のように、中央の吸気流量
を多くすることによって、シリンダヘッド11からの伝
熱量を可能な限り低減させるためである。
Here, in this embodiment, 50% of the total intake air flow is set to flow through the central branch intake passage 31b, and the remaining 25% and 25% flow through the left and right branch intake passages 31a and 31c, respectively. . This is because, as will be described later, the amount of heat transferred from the cylinder head 11 is reduced as much as possible by increasing the intake flow rate at the center.

また、上記2つの排気弁開口20.21は、このシリン
ダへフド11に車両前方に、かつ斜め外方に延びるよう
別個に形成された2つの独立排気通路32.32によっ
てエンジン前壁に導出されている。この各独立排気通路
32の外側開口32aには排気管33が接続されており
、該各排気管33は上述のダウンチューブ2Cの外側を
通って下方に折り曲げられ、エンジン底部から車両後端
まで延びている。
The two exhaust valve openings 20.21 are led out to the front wall of the engine by two independent exhaust passages 32.32 formed separately in the cylinder hood 11 so as to extend toward the front of the vehicle and diagonally outward. ing. An exhaust pipe 33 is connected to the outside opening 32a of each independent exhaust passage 32, and each exhaust pipe 33 passes through the outside of the down tube 2C, is bent downward, and extends from the bottom of the engine to the rear end of the vehicle. ing.

上記吸気弁開口17〜19、排気弁開口2021には、
各開口を開閉する吸気弁23〜25、排気弁26.27
の弁板部が配置されている。この各吸、排気弁23〜2
7の弁軸部は分岐吸気通路31a〜31C1独立排気通
路32.32の天井壁部を貫通してこのシリンダヘッド
11の上端開口内に突出している。この突出部の上端に
取り付けられたリテーナ34とシリンダヘッド11に装
着されたばね座ttaとの間には付勢ばね35が配設さ
れており、これにより答弁23〜27は各弁開口17〜
21を閉じるように付勢されている。
The intake valve openings 17 to 19 and the exhaust valve opening 2021 include
Intake valves 23 to 25 and exhaust valves 26 and 27 that open and close each opening
A valve plate portion is arranged. These intake and exhaust valves 23 to 2
The valve shaft portion of No. 7 penetrates the ceiling wall portion of the branch intake passages 31a to 31C1 and the independent exhaust passages 32, 32 and projects into the upper end opening of the cylinder head 11. A biasing spring 35 is disposed between a retainer 34 attached to the upper end of this protrusion and a spring seat tta attached to the cylinder head 11.
21 is biased to close.

そして上記燃焼室Aの中央上方にはカム軸36がこれを
横切るように配設されている。このカム軸36の左、右
両端及び中央はそれぞれ左、右軸受部及び中実軸受部で
支持されており、この左。
A camshaft 36 is disposed above the center of the combustion chamber A so as to cross it. The left and right ends and center of this camshaft 36 are supported by left and right bearings and solid bearings, respectively.

右軸受部及び中実軸受部は、シリンダへ/ド11側に形
成された下半部とヘッドカバー12側に形成された上半
部とからなる2分割構造になっている。また、このカム
軸36の一端はチェン室lIb内に突出しており、該突
出部に固着されたスブロケント、チェンを介してクラン
ク軸に連結されている。
The right bearing part and the solid bearing part have a two-part structure consisting of a lower half part formed on the cylinder/door 11 side and an upper half part formed on the head cover 12 side. Further, one end of this camshaft 36 projects into the chain chamber lIb, and is connected to the crankshaft via a chain and a chain fixed to the projecting portion.

そして上記シリンダへフド11の、上記燃焼室凹部16
を構成する天井壁部16aと、カム軸36等が収容され
たカム室との境界壁16bと、周壁とで囲まれた空間は
、ヘッド側水冷ジャケット15になっている。上記境界
壁16bの略中央にには上記燃焼室への中央に連通ずる
プラグ孔22が形成されており、このプラグ孔22はプ
ラグ挿入孔29によってエンジン外方に導出されている
And the combustion chamber recess 16 of the cylinder head 11
The head-side water cooling jacket 15 is a space surrounded by a ceiling wall 16a constituting the head, a boundary wall 16b between the cam chamber containing the cam shaft 36, etc., and a peripheral wall. A plug hole 22 is formed at approximately the center of the boundary wall 16b and communicates with the combustion chamber at the center, and the plug hole 22 is led out to the outside of the engine by a plug insertion hole 29.

このプラグ挿入孔29はシリンダヘッド11.ヘツドカ
バー12に直線状に形成された筒部29a929bで構
成された筒状のもので、上記排気弁25.26と略平行
に、該ヘッド側水冷ジャケット15を貫通して斜め上方
に延びている。また上記プラグ孔22には点火プラグ3
0が装着されている。
This plug insertion hole 29 is connected to the cylinder head 11. It is a cylindrical member composed of a linear cylindrical portion 29a929b formed on the head cover 12, and extends diagonally upward through the head side water cooling jacket 15, approximately parallel to the exhaust valves 25,26. In addition, the spark plug 3 is located in the plug hole 22.
0 is attached.

そして上記ヘッド側水冷ジャケット15の前部15aは
、上記両独室排気通路32.32間まで前方に延びてい
る。そしこのヘッド側水冷ジャケット15は、上記前部
15aに形成された中央流入口53a、及び該両道路3
2.32の左、右外側に形成された左、右流入口53b
、53Cによって上記シリンダ側水冷ジャケット10a
に連通している。またこの各流入口532〜53Cは上
記各分岐吸気通路312〜31Cと対向している。
The front portion 15a of the head side water cooling jacket 15 extends forward to between the two single room exhaust passages 32,32. The head-side water cooling jacket 15 has a central inlet 53a formed in the front portion 15a, and both roads 3.
2. Left and right inlet ports 53b formed on the left and right outer sides of 32
, 53C, the cylinder side water cooling jacket 10a
is connected to. Further, each of the inflow ports 532 to 53C faces each of the branch intake passages 312 to 31C.

また、上記共用吸気通路31の左、右両側位置には、該
ヘッド側水冷ジャケット15を外方に連通させる左、右
流出口54a、54bが貫通形成されており、またこの
流出口54a、54bの外側に締結ポル1−60が位置
している。また上記両流出口54a、54bの外部開口
部は、それぞれに装着された接続ジョイン)55a、5
5bを介してジヨイントパイプ56aで連結されている
In addition, left and right outlet ports 54a and 54b are formed through the shared intake passage 31 at both left and right positions to allow the head side water cooling jacket 15 to communicate with the outside. A fastening pole 1-60 is located outside. Further, the external openings of both the above-mentioned outflow ports 54a, 54b are connected to connection joints (55a, 5) attached to the respective outlets.
5b and a joint pipe 56a.

このジヨイントパイプ56aは上記キャブジヨイント5
7の上側に、つまりシリンダヘッド11と気化器58.
59との間に配索されており、さらに該ジヨイントパイ
プ56aは冷却水リターンパイプ56bによって該シリ
ンダヘッド11の左側を通ってラジェータに接続されて
いる。
This joint pipe 56a is connected to the above-mentioned cab joint 5.
7, that is, the cylinder head 11 and the carburetor 58.
59, and the joint pipe 56a is connected to the radiator through the left side of the cylinder head 11 by a cooling water return pipe 56b.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

先ず、冷却水はシリンダ10のシリンダ側水冷ジャケッ
ト10aの下部に供給され、該ジャケット10aから、
排気側の流入口532〜53cを通ってヘッド側水冷ジ
ャケット15の、上記両独室排気通路32.32間の前
部15a及びその百姓側部分に供給される。そしてこの
冷却水は、このヘッド側水冷ジャケッ)15内を、プラ
グ挿入孔29の両側を通って(第1図、第3図参照)、
かつカム軸36の中実軸受部39の下方を通って一様に
分岐吸気通路31’a〜31C側に流れ、該通路の壁面
に沿って左、右に別れ、左、右の流出孔54a、54b
から流出し、ジヨイントパイプ56a、リターンパイプ
56bを通ってラジェータに導かれる。
First, cooling water is supplied to the lower part of the cylinder side water cooling jacket 10a of the cylinder 10, and from the jacket 10a,
It is supplied to the front portion 15a of the head side water cooling jacket 15 between the two single room exhaust passages 32, 32 and the farmer side portion thereof through the exhaust side inflow ports 532 to 53c. The cooling water then passes through the head side water cooling jacket 15 on both sides of the plug insertion hole 29 (see Figures 1 and 3).
It passes below the solid bearing portion 39 of the camshaft 36 and flows uniformly toward the branched intake passages 31'a to 31C, and is divided into left and right sides along the wall surface of the passage, and left and right outflow holes 54a. , 54b
It flows out from the joint pipe 56a and the return pipe 56b and is led to the radiator.

次に、外気は気化器58.59で混合気となってキャブ
ジヨイント57から共用吸気通路31を通り、分岐吸気
通路312〜31eで分岐した後燃焼室A内に吸引され
、ここで爆発燃焼し、排気は各独立排気通路32を通っ
て各排気管33から車両後方に排出される。
Next, the outside air becomes a mixture in the carburetor 58, 59, passes through the common intake passage 31 from the carburetor joint 57, branches at branch intake passages 312 to 31e, and is sucked into the combustion chamber A, where it explodes and burns. Exhaust gas passes through each independent exhaust passage 32 and is discharged from each exhaust pipe 33 to the rear of the vehicle.

ここでシリンダヘッド11の温度分布を均一にするには
、上述のように、シリンダヘッド11の吸気側部分の、
低温の混合気による温度低下、及び排気側部分の、高温
の排気による温度上昇をできるだけ抑制することが必要
である。
Here, in order to make the temperature distribution of the cylinder head 11 uniform, as mentioned above, on the intake side portion of the cylinder head 11,
It is necessary to suppress as much as possible the temperature drop caused by the low-temperature air-fuel mixture and the temperature rise in the exhaust side portion caused by the high-temperature exhaust gas.

本実施例では、吸気側については、3つの分岐吸気通路
312〜31Cを1つの共用吸気通路31に合流させて
から外方に導出しているので、この吸気通路の外周壁(
シリンダヘッド11自体との境界壁であり、伝熱面とな
る)の面積が、3つの通路をそのまま外方に導出した場
合に比較して狭くなり、従ってシリンダヘッド11から
上記低温の混合気側に伝達される熱量がそれだけ減少す
る。
In this embodiment, on the intake side, the three branch intake passages 312 to 31C are merged into one common intake passage 31 and then led out to the outside, so the outer circumferential wall of this intake passage (
The area of the boundary wall with the cylinder head 11 itself (which becomes a heat transfer surface) is narrower than when the three passages are led out as they are, and therefore the area from the cylinder head 11 to the low-temperature air-fuel mixture The amount of heat transferred to is reduced accordingly.

また上記中央の分岐通路31bは、その左、右側が左、
右の分岐通路31a、31Cで挟まれているので、この
点からもシリンダヘッド11からの伝達熱量を軽減でき
る。即ち、本実施例では、中央の分岐通路31bを全吸
気量の50%が流れるように設定してあり、流量の点か
ら見れば該中央分岐通路31bによるシリンダへフド1
1の温度低下への影響力は左、右の各分岐通路による影
響力よりも大きい。しかし上述のように中央分岐通路3
1bは左、右分岐通路31a、31cで挾まれているの
で、吸気流量が多いにも関わらず、シリンダへソド11
からの伝熱を抑制できる。
In addition, the central branch passage 31b has a left side, a left side, and a right side.
Since it is sandwiched between the right branch passages 31a and 31C, the amount of heat transferred from the cylinder head 11 can be reduced from this point as well. That is, in this embodiment, 50% of the total intake air flow is set to flow through the central branch passage 31b, and from the viewpoint of flow rate, the central branch passage 31b supplies the cylinder with 50% of the intake air amount.
The influence of No. 1 on temperature reduction is greater than the influence of the left and right branch passages. However, as mentioned above, the central branch passage 3
1b is sandwiched between the left and right branch passages 31a and 31c, so even though the intake air flow rate is large, the intake air 11 is not connected to the cylinder.
It is possible to suppress heat transfer from

また、排気側については、2つの独立排気通路32を斜
め外側に拡げながら外方に導出するとともに、ヘッド側
水冷ジャケット15の前部15aを上記両独室排気通路
32.32間に延長したので、この両独室排気通路32
.32は周囲が水冷ジャケットによって囲まれることと
なり、高温の排気は水冷ジャケット内の冷却水によって
冷却されて温度が低下し、それだけ排気からシリンダヘ
ッド11の排気側部分への伝達熱量が減少する。
Regarding the exhaust side, the two independent exhaust passages 32 are expanded diagonally outward and led out, and the front part 15a of the head side water cooling jacket 15 is extended between the two single room exhaust passages 32, 32. , this double cabin exhaust passage 32
.. 32 is surrounded by a water-cooling jacket, and the high-temperature exhaust gas is cooled by the cooling water in the water-cooling jacket and its temperature is lowered, thereby reducing the amount of heat transferred from the exhaust gas to the exhaust side portion of the cylinder head 11.

このように本実施例ではシリンダヘッド11の吸気側部
分の吸気による温度低下が抑制され、かつ排気側部分の
排気による温度上昇が抑制され、その結果シリンダへソ
ド11の温度が均一化される。
As described above, in this embodiment, the temperature drop due to intake air on the intake side portion of the cylinder head 11 is suppressed, and the temperature rise due to exhaust air on the exhaust side portion is suppressed, and as a result, the temperature of the cylinder head 11 is made uniform.

また、本実施例では、吸気側、排気側部分のカム軸方向
に見た寸法(幅寸法)のバランスが良好である。即ち、
吸気弁3本、排気弁2本の5バルブエンジンでは、この
弁数に応じて吸気側が排気側より幅寸法が大きくなり、
両°者のバランスが悪くなる恐れがあるが、本実施例で
は排気通路を間隔の開いた2つの独立排気通路32.3
2で構成し、これを斜め外方に拡げながら前方に導出し
たので、幅寸法は吸気側、排気側とも略等しくなってい
る。そして上記両独立排気通路32間に上述のヘッド側
水冷ジャケット15の前部15aを設けたので、空きス
ペースの有効利用が図られており、また独立排気通路3
2を斜め外方に導出したので、排気管33をエンジンユ
ニットの前側中央に位置するダウンチューブ2Cに干渉
することなく接続できる。
Further, in this embodiment, the dimensions (width dimensions) of the intake side and exhaust side portions as seen in the camshaft direction are well balanced. That is,
In a 5-valve engine with 3 intake valves and 2 exhaust valves, the width of the intake side is larger than the exhaust side depending on the number of valves.
Although there is a risk that the balance between the two may deteriorate, in this embodiment, the exhaust passages are formed into two independent exhaust passages 32.3 with a gap between them.
2, which is extended diagonally outward and guided forward, so that the width dimension is approximately equal on both the intake side and the exhaust side. Since the front portion 15a of the head-side water cooling jacket 15 is provided between the two independent exhaust passages 32, the empty space can be used effectively.
2 is led out diagonally outward, so the exhaust pipe 33 can be connected to the down tube 2C located at the center of the front side of the engine unit without interfering with it.

また本実施例の冷却構造では、冷却水は排気側の3箇所
から流入し、吸気側の左、右2箇所から流出するので、
各部に冷却水が淀むことがなく、シリンダヘッド11の
燃焼室A近辺及び排気通路32.33廻りを均一に冷却
できる。
In addition, in the cooling structure of this embodiment, the cooling water flows in from three places on the exhaust side and flows out from two places on the left and right sides of the intake side.
Cooling water does not stagnate in any part, and the vicinity of the combustion chamber A of the cylinder head 11 and the exhaust passages 32 and 33 can be uniformly cooled.

さらにまた、左、右流出口54a、54bを連結するジ
ヨイントパイプ56aを、気化器58゜59とシリンダ
ヘッド11との間の隙間に配置したので、デッドスペー
スを有効利用でき、必要な配管スペースを確保できる。
Furthermore, the joint pipe 56a that connects the left and right outlets 54a and 54b is placed in the gap between the carburetor 58, 59 and the cylinder head 11, so dead space can be used effectively and the necessary piping space is saved. can be secured.

なお上記第1実施例では、水冷ジャケット15の中央に
1つのプラグ挿入孔29が形成されていたが、このプラ
グ挿入孔を2つ設けた場合にも勿論本発明を適用できる
In the first embodiment, one plug insertion hole 29 is formed in the center of the water cooling jacket 15, but the present invention can of course be applied to a case where two plug insertion holes are provided.

第5図及び第6図は、点火プラグを左、右側部に2本配
置した本発明の第2実施例であり、第5図は水冷ジャケ
ット部分の断面底面図である。
5 and 6 show a second embodiment of the present invention in which two spark plugs are arranged on the left and right sides, and FIG. 5 is a sectional bottom view of the water cooling jacket portion.

図において第1図と同一符号は同−又は相当部分を示し
、29d、29eはヘッド側水冷ジャケット15の左、
右両側に配設されたプラグ挿入孔である。また、該ヘッ
ド側水冷ジャケット15の前部15aは独立排気通路3
2,32間に延びている。
In the figure, the same symbols as in FIG. 1 indicate the same or corresponding parts, 29d and 29e are the left side of the head side water cooling jacket 15
These are plug insertion holes located on both right sides. Further, the front part 15a of the head side water cooling jacket 15 is connected to the independent exhaust passage 3.
It extends between 2 and 32.

本実施例の冷却構造では、冷却水が、独立排気通路32
間、及びその両側に形成された冷却水流入口53a〜5
3cから、ヘッド側水冷ジャケット15に上記前部15
a、及び左、右側部を通って流入し、独立排気通路32
部分を冷却しながら、カム軸36の中実軸受部、左、右
の点火プラグ3Qa、30bを均等に冷却した後、左、
右の流出口54a、54bから外方に流出することとな
る。
In the cooling structure of this embodiment, the cooling water flows through the independent exhaust passage 32.
cooling water inlets 53a to 5 formed between and on both sides thereof.
3c, the front part 15 is attached to the head side water cooling jacket 15.
a, and the left and right sides, and the independent exhaust passage 32
After uniformly cooling the solid bearing portion of the camshaft 36 and the left and right spark plugs 3Qa and 30b while cooling the left and right spark plugs 3Qa and 30b,
It flows outward from the right outlet ports 54a and 54b.

また本第2実施例においても、上記第1実施例と同様に
、シリンダヘッド11の温度分布を均一化できる効果が
あり、また幅寸法のバランスが良好になる効果がある。
Also, in the second embodiment, as in the first embodiment, there is an effect that the temperature distribution of the cylinder head 11 can be made uniform, and there is also an effect that the balance of the width dimension is improved.

また、上記第1.第2実施例では、1本のカム軸で吸気
弁、排気弁の両方を駆動する5oucエンジンについて
説明したが、本発明は別個のカム軸で吸、排気弁を駆動
するD OHCエンジンについても勿論通用できる。
Also, the above 1. In the second embodiment, a 5ouc engine in which both the intake valve and exhaust valve are driven by a single camshaft has been described, but the present invention is of course also applicable to a DOHC engine in which the intake and exhaust valves are driven by separate camshafts. It can be used.

第7図、第8図は直動式1)OHCエンジンに通用した
第3実施例を示し、図中、第1図ないし第6図と同一符
合は同−又は相当部分を示す。
7 and 8 show a third embodiment which is applicable to a direct drive type 1) OHC engine, and in the figures, the same reference numerals as in FIGS. 1 to 6 indicate the same or corresponding parts.

図において、シリンダヘッド11は下部ヘッド11bと
上部ヘッドIlcとから構成されており、吸気弁23〜
25はリフタ34aを介して吸気カム軸36aで駆動さ
れ、排気弁26.27はりフタ34aを介して排気カム
軸36bで駆動されるように構成されている。
In the figure, the cylinder head 11 is composed of a lower head 11b and an upper head Ilc, and includes intake valves 23 to 23.
25 is configured to be driven by an intake camshaft 36a via a lifter 34a, and the exhaust valve 26.27 is driven by an exhaust camshaft 36b via a flap 34a.

また、プラグ挿入孔29は、ヘッドカバー12゜上部ヘ
ッド11C1下部ヘッドllbにそれぞれ一体形成され
た挿入筒部29a〜29cによって筒状に形成されてお
り、上記排気弁26.27と平行になるよう傾斜してい
る。
The plug insertion hole 29 is formed into a cylindrical shape by insertion cylinder portions 29a to 29c integrally formed with the head cover 12°, the upper head 11C1, and the lower head Ilb, respectively, and is inclined so as to be parallel to the exhaust valve 26, 27. are doing.

さらにまた、ヘッド側水冷ジャケット15の前部15a
は両独室排気通路32.32間に延びており、冷却水流
入口53aによってシリンダ側水冷ジャケットlOaに
連通している。
Furthermore, the front portion 15a of the head side water cooling jacket 15
extends between the two chamber exhaust passages 32, 32, and communicates with the cylinder side water cooling jacket lOa through a cooling water inlet 53a.

本実施例においても、上記各実施例と同様に、シリンダ
へノド11の温度分布を均一化できるとともに、吸気側
、排気側の幅寸法バランスが良好になり、かつ独立排気
通路32間の空きスペースを存効利用できる。
In this embodiment as well, as in the above-mentioned embodiments, the temperature distribution of the throat 11 to the cylinder can be made uniform, the width dimensions of the intake side and the exhaust side are well balanced, and the free space between the independent exhaust passages 32 is improved. can be used effectively.

さらに本実施例では、プラグ挿入孔29を排気弁側に傾
斜させたので、吸気弁23〜25を垂直側に起こして配
置でき、それだけ燃焼室Aの容積を小さくでき、圧縮比
を高くして出力を増大できる効果もある。
Furthermore, in this embodiment, since the plug insertion hole 29 is inclined toward the exhaust valve side, the intake valves 23 to 25 can be arranged vertically, which reduces the volume of the combustion chamber A and increases the compression ratio. It also has the effect of increasing output.

第9図は上記第3実施例の変形例であり、これはスイン
グアーム式DOIICエンジンの例を示す。
FIG. 9 is a modification of the third embodiment, and shows an example of a swing arm type DOIIC engine.

図において、第1図ないし第8図と同一符合は同−又は
相当部分を示す、34bはスングアームであり、答弁は
各カム軸の回転により、このスイングアーム34bを介
して駆動される。そしてプラグ挿入孔29は左、右の排
気弁26.27間にその一部が位置するように1頃斜し
ており、またヘッド側水冷ジャケット15の前部15a
は左、右の独立排気通路32.32間に延びている。
In the drawings, the same reference numerals as in FIGS. 1 to 8 indicate the same or equivalent parts. Reference numeral 34b is a swing arm, and the response is driven via this swing arm 34b by the rotation of each camshaft. The plug insertion hole 29 is inclined at about 1 so that a part thereof is located between the left and right exhaust valves 26 and 27, and the front part 15a of the head side water cooling jacket 15 is
extends between the left and right independent exhaust passages 32.32.

本実施例においても上記第1ないし第3実施例と同様の
効果が得られる。
In this embodiment as well, the same effects as in the first to third embodiments described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る4サイクルエンジンのシリン
ダヘッド冷却構造によれば、吸気通路を、1つの共用吸
気通路と3つの分岐吸気通路とで構成するとともに、排
気通路を、2つの独立排気通路で構成し、咳両独立排気
通路間にヘッド側液冷ジャケットを形成したので、シリ
ンダヘッドの吸気通路側部分の温度低下が軽減されると
ともに、排気通路側部分の温度上昇が軽減され、その結
果、シリンダヘッドの温度分布を全体的に均一にできる
効果があり、かつ吸気側、排気側の幅寸法のバランスを
良好にできる効果がある。
As described above, according to the cylinder head cooling structure for a four-stroke engine according to the present invention, the intake passage is composed of one shared intake passage and three branched intake passages, and the exhaust passage is composed of two independent exhaust passages. Since a head side liquid cooling jacket is formed between the two independent exhaust passages, the temperature drop in the intake passage side part of the cylinder head is reduced, and the temperature rise in the exhaust passage side part is reduced. This has the effect of making the temperature distribution of the cylinder head uniform as a whole, and also has the effect of making the width dimensions of the intake side and the exhaust side well balanced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の第1実施例によるシリン
ダヘッド冷却構造を説明するための図であり、第1図は
ヘッド側水冷ジャケット部分の断面平面図、第2図は断
面側面図、第3図は第2図のm−m線断面図、第4図は
本実施例装置が適用された自動二輪車の左側面図、第5
図、第6図は本発明の第2実施例を説明するための図で
、第5図は第6図のV−V線断面図、第6図は断面側面
図、第7図、第8図は本発明の第3実施例を説明するた
めの図であり、第7図はその断面側面図、第8図は第7
図の■−■線断面図、第9図は上記第3実施例の変形例
を説明するため断面側面図である。 図において、11はシリンダヘッド、15aはヘッド側
水冷ジャケットの前部(液冷ジャケット)、17〜19
は吸気弁開口、20.21は排気弁開口、23〜25は
吸気弁、26.27は排気弁、31は共用吸気通路、3
1a〜31cは分岐吸気通路、31dは接続開口、32
は独立排気通路、58.59は気化器(燃料供給装置)
、Aは燃焼室である。
1 to 4 are diagrams for explaining a cylinder head cooling structure according to a first embodiment of the present invention, in which FIG. 1 is a cross-sectional plan view of the head-side water cooling jacket portion, and FIG. 2 is a cross-sectional side view. , FIG. 3 is a sectional view taken along line mm in FIG. 2, FIG. 4 is a left side view of the motorcycle to which the device of this embodiment is applied, and FIG.
6 are diagrams for explaining the second embodiment of the present invention, FIG. 5 is a sectional view taken along the line V-V in FIG. 6, FIG. 6 is a sectional side view, and FIGS. The figures are diagrams for explaining the third embodiment of the present invention, FIG. 7 is a cross-sectional side view thereof, and FIG.
FIG. 9 is a cross-sectional side view for explaining a modification of the third embodiment. In the figure, 11 is the cylinder head, 15a is the front part of the water cooling jacket on the head side (liquid cooling jacket), 17 to 19
is an intake valve opening, 20.21 is an exhaust valve opening, 23 to 25 are intake valves, 26.27 is an exhaust valve, 31 is a shared intake passage, 3
1a to 31c are branch intake passages, 31d is a connection opening, 32
is an independent exhaust passage, 58.59 is a carburetor (fuel supply device)
, A is the combustion chamber.

Claims (1)

【特許請求の範囲】[Claims] (1)3本の吸気弁、2本の排気弁をそれぞれ燃焼室の
一側、他側にまとめて、かつ燃焼室周壁に沿うように配
置した4サイクルエンジンのシリンダヘッド冷却構造に
おいて、上記シリンダヘッドに形成された吸気通路を、
燃料供給装置接続開口に連通する1つの共用吸気通路と
、該共用吸気通路から分岐されて上記各吸気弁用開口に
連通する3つの分岐吸気通路とで構成し、シリンダヘッ
ドに形成された排気通路を、上記各排気弁用開口を各排
気管接続開口に別個に導出する2つの独立排気通路で構
成し、上記シリンダヘッドの、上記2つの独立排気通路
間部分に液冷ジャケットを形成したことを特徴とする4
サイクルエンジンのシリンダヘッド冷却構造。
(1) In a cylinder head cooling structure for a four-cycle engine in which three intake valves and two exhaust valves are grouped together on one side and the other side of a combustion chamber, and are arranged along the peripheral wall of the combustion chamber, the above-mentioned cylinder The intake passage formed in the head,
An exhaust passage formed in the cylinder head, consisting of one common intake passage communicating with a fuel supply device connection opening, and three branch intake passages branching from the common intake passage and communicating with each of the above-mentioned intake valve openings. is composed of two independent exhaust passages that lead out each exhaust valve opening separately to each exhaust pipe connection opening, and a liquid cooling jacket is formed in a portion of the cylinder head between the two independent exhaust passages. Features 4
Cycle engine cylinder head cooling structure.
JP1133978A 1989-05-26 1989-05-26 Cylinder head cooling structure for 4-cycle engine Expired - Fee Related JP2675623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133978A JP2675623B2 (en) 1989-05-26 1989-05-26 Cylinder head cooling structure for 4-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133978A JP2675623B2 (en) 1989-05-26 1989-05-26 Cylinder head cooling structure for 4-cycle engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63134053A Division JP2575807B2 (en) 1988-05-30 1988-05-30 Cylinder head cooling structure for 4-cycle engine

Publications (2)

Publication Number Publication Date
JPH0216320A true JPH0216320A (en) 1990-01-19
JP2675623B2 JP2675623B2 (en) 1997-11-12

Family

ID=15117525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133978A Expired - Fee Related JP2675623B2 (en) 1989-05-26 1989-05-26 Cylinder head cooling structure for 4-cycle engine

Country Status (1)

Country Link
JP (1) JP2675623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861660A (en) * 1995-08-21 1999-01-19 Stmicroelectronics, Inc. Integrated-circuit die suitable for wafer-level testing and method for forming the same
US7270091B2 (en) * 2004-10-12 2007-09-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cooling water passage structure for an engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216013A (en) * 1984-04-11 1985-10-29 Yamaha Motor Co Ltd Intake valve mechanism in internal-combustion engine
JPS6174648U (en) * 1984-10-23 1986-05-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216013A (en) * 1984-04-11 1985-10-29 Yamaha Motor Co Ltd Intake valve mechanism in internal-combustion engine
JPS6174648U (en) * 1984-10-23 1986-05-20

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861660A (en) * 1995-08-21 1999-01-19 Stmicroelectronics, Inc. Integrated-circuit die suitable for wafer-level testing and method for forming the same
US5883008A (en) * 1995-08-21 1999-03-16 Stmicroelectronics, Inc. Integrated circuit die suitable for wafer-level testing and method for forming the same
US7270091B2 (en) * 2004-10-12 2007-09-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Cooling water passage structure for an engine

Also Published As

Publication number Publication date
JP2675623B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP2575807B2 (en) Cylinder head cooling structure for 4-cycle engine
US6295963B1 (en) Four cycle engine for a marine propulsion system
JP4791305B2 (en) Water-cooled multi-cylinder engine
JPH0719106A (en) Cooling structure for four-cycle engine
JP2000161129A (en) Cylinder head structure for multiple-cylinder engine
JP2615134B2 (en) 4-cycle engine intake system
JP2000161131A (en) Cylinder head structure for multiple-cylinder engine
US6510823B2 (en) Two-cylinder overhead-valve V-engine
JP2000161132A (en) Cylinder head construction of multiple cylinder engine
JPH10220285A (en) Water-cooled engine
JP2008075507A (en) Water cooled multi-cylinder engine
JP3824832B2 (en) Cylinder head of internal combustion engine
JPH0216320A (en) Cylinder head cooling structure for four-cycle engine
JP3686972B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPS61138862A (en) Four-valve engine
JP2000205042A (en) Multicylinder engine
JPH10220280A (en) Engine for outboard motor
JP2715307B2 (en) Liquid-cooled engine cooling structure
JPH07139421A (en) Oil path structure of oil-cooled engine
US6520126B2 (en) Cylinder head cooling passage structure of overhead cam type engine
JP4514637B2 (en) Water-cooled internal combustion engine
JPH08326597A (en) Internal combustion engine with intake manifold integral type locker cover
JPH0329571Y2 (en)
JP4083905B2 (en) Cylinder head of internal combustion engine
JPH08218941A (en) Internal combustion engine with intake manifold integrated type rocker cover

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees