JPH0216319A - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine

Info

Publication number
JPH0216319A
JPH0216319A JP63165070A JP16507088A JPH0216319A JP H0216319 A JPH0216319 A JP H0216319A JP 63165070 A JP63165070 A JP 63165070A JP 16507088 A JP16507088 A JP 16507088A JP H0216319 A JPH0216319 A JP H0216319A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
trap
valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63165070A
Other languages
Japanese (ja)
Other versions
JPH0715243B2 (en
Inventor
Yoshiki Sekiya
関谷 芳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16507088A priority Critical patent/JPH0715243B2/en
Publication of JPH0216319A publication Critical patent/JPH0216319A/en
Publication of JPH0715243B2 publication Critical patent/JPH0715243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To heighten the collection efficiency of exhaust corpuscles, by providing an exhaust bypass passage so as to bypass a trap within an exhaust passage, and making control possible so that exhaust may be circulated to the side of the trap at part of an exhaust return operation sphere and at the time of a speed reduction operation from a predetermined revolution sphere. CONSTITUTION:An exhaust bypass passage D is provided so as to bypass a trap C which is interveniently provided at an engine exhaust passage B and compensates corpuscles in exhaust. The selective introduction of exhaust into this exhaust bypass D and the trap C is made possible in accordance with the operation of an opening/ closing valve E. Also, an engine operation state detecting means F is provided, and its output is inputted into a valve drive control means G. And the opening/closing valve E is controlled in drive by means of this valve drive control means G so that exhaust may flow to the trap C at least part of an exhaust return operation sphere and at the time of a speed reduction operation from a predetermined revolution sphere. Also, the operation of an exhaust return device A is stopped by means of an exhaust return stopping means H at the time of the speed reduction operation from this predetermined revolution sphere.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は排気浄化装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an exhaust gas purification device.

〈従来の技術〉 排気浄化装置の従来例として第9図に示すようなものが
ある(特開昭57−159908号公報及び特公昭62
−30816号公報参照)。
<Prior art> As a conventional example of an exhaust gas purification device, there is one as shown in FIG.
-Refer to Publication No. 30816).

すなわち、ディーゼル機関1の吸気通路2には吸気絞弁
3が介装され、吸気絞弁3下流の吸気マニホールド4と
排気マニホールド5とが排気還流通路(EGR通路と称
す)6により連通接続されている。また、前記EGR通
路6には排気還流制御弁(以下、EGRバルブと称す)
7が介装されている。
That is, an intake throttle valve 3 is interposed in the intake passage 2 of the diesel engine 1, and an intake manifold 4 downstream of the intake throttle valve 3 and an exhaust manifold 5 are connected to each other by an exhaust gas recirculation passage (referred to as an EGR passage) 6. There is. Further, the EGR passage 6 includes an exhaust recirculation control valve (hereinafter referred to as an EGR valve).
7 is interposed.

そして、EGRバルブ7の開制御によりEGR通路6の
流路面積を制御し、機関中負荷運転時においては排気と
吸気との圧力差によって排気を吸気マニホールド3を介
して燃焼室に還流させるようにしている。また、低回転
・低負荷運転領域では、吸気絞弁3を閉駆動させて吸気
絞りを行うと共にEGRパルプ7を開制御させることに
より、前記圧力差を高めて排気を還流するようにしてい
る。
The flow area of the EGR passage 6 is controlled by controlling the opening of the EGR valve 7, and during engine medium load operation, the exhaust gas is recirculated to the combustion chamber via the intake manifold 3 due to the pressure difference between the exhaust gas and the intake air. ing. Further, in a low rotation/low load operating region, the intake throttle valve 3 is driven to close to throttle the intake air, and the EGR pulp 7 is controlled to open, thereby increasing the pressure difference and recirculating the exhaust gas.

〈発明が解決しようとする課題〉 しかしながら、このような従来の排気浄化装置において
は、排気浄化を目的として排気還流を行うようにしてい
るが、低速・低負荷運転領域で排気還流を行うと排気微
粒子特に可l容性存機成分(SOF)が多量に排出され
るという不具合があった。
<Problems to be Solved by the Invention> However, in such conventional exhaust gas purification devices, exhaust gas recirculation is performed for the purpose of exhaust gas purification, but if exhaust gas recirculation is performed in the low speed/low load operating region, the exhaust gas There was a problem in that a large amount of fine particles, particularly soluble fractions (SOF), were discharged.

本発明は、このような実状に鑑みてなされたもので、低
速低負荷運転領域において排気還流を行うことにより排
気微粒子が多量に発生してもその排気微粒子が大気中に
排出するのを抑制できる排気浄化装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and by performing exhaust gas recirculation in the low speed and low load operating region, even if a large amount of exhaust particulates are generated, it is possible to suppress the exhaust particulates from being emitted into the atmosphere. The purpose is to provide an exhaust purification device.

(課題を解決するための手段〉 このため、本発明は、第1図に示すように、排気を機関
吸気系に還流させる排気還流装置Aを、備えるものにお
いて、機関の排気通路Bに介装され排気中の微粒子を捕
集するトラップCと、該トラップCをバイパスする排気
バイパス通路りと、該リド気バイパス通路りと前記トラ
ップCとに排気を選択的に導入させる開閉弁Eと、機関
の運転状態を検出する運転状態検出手段Fと、検出され
た運転状態に基づいて前記排気還流装置Aの排気還流作
動領域の少なくとも一部領域と所定回転領域からの減速
運転時とに、前記l・ラップCに排気を流通させるべく
前記開閉弁Eを駆動制御する弁駆動制御手段Gと、前記
所定回転領域からの減速運転時には前記排気還流装置A
の作動を停止させる排気還流停止手段Hと、を備えるよ
うにした。
(Means for Solving the Problems) Therefore, as shown in FIG. a trap C that collects particulates in the exhaust gas, an exhaust bypass passage that bypasses the trap C, an on-off valve E that selectively introduces exhaust gas into the lid gas bypass passage and the trap C, and an engine. and an operating state detecting means F for detecting the operating state of the engine, and an operating state detecting means F that detects the operating state of the exhaust gas recirculating device A based on the detected operating state.・Valve drive control means G that drives and controls the opening/closing valve E to cause exhaust gas to flow through the wrap C, and the exhaust gas recirculation device A during deceleration operation from the predetermined rotation range.
The exhaust gas recirculation stop means H is provided to stop the operation of the exhaust gas recirculation.

く作用〉 このようにして、排気還流時には排気をトラップに流通
させ排気微粒子をトラップにより捕集し、また前記減速
運転時に排気をトラップに流通させ排気微粒子を処理す
るようにした。
In this way, during exhaust gas recirculation, the exhaust gas is caused to flow through the trap and exhaust particulates are collected by the trap, and during the deceleration operation, the exhaust gas is caused to flow through the trap and the exhaust particulates are processed.

〈実施例) 以下に、本発明の実施例を図面に基づいて説明する。尚
、各実施例において、従来例と同一要素には第9図と同
一符号を付して説明を省略する。
<Example> Below, an example of the present invention will be described based on the drawings. In each embodiment, the same elements as in the conventional example are designated by the same reference numerals as in FIG. 9, and their explanation will be omitted.

第2図及び第3図は本発明の第1実施例を示す。2 and 3 show a first embodiment of the invention.

第2図において、ディーゼルエンジンのIJI−%マニ
ホールド5の集合部下流の排気通路11には触媒付トラ
ップ12が介装され、この触媒付トラップ12は緩衝材
13を介してトラップケース14に収納されている。前
記触媒付トラップ12をバイパスする排気バイパス通路
15にはバタフライ式の開閉弁16が介装され、開閉弁
16の弁軸にはレバー17の一端が取代けられている。
In FIG. 2, a catalyst-equipped trap 12 is interposed in an exhaust passage 11 downstream of a gathering part of an IJI-% manifold 5 of a diesel engine, and this catalyst-equipped trap 12 is housed in a trap case 14 via a buffer material 13. ing. A butterfly-type on-off valve 16 is interposed in the exhaust bypass passage 15 that bypasses the catalyst trap 12, and one end of a lever 17 is attached to the valve shaft of the on-off valve 16.

前記レバー17の他端にはダイヤフラム装置18のロッ
ド18a先端部が回動自由に取付けられ、ダイアフラム
装置18の圧力室18bは三方電磁弁19の出力ポート
に連通接続れている。
A tip end of a rod 18a of a diaphragm device 18 is rotatably attached to the other end of the lever 17, and a pressure chamber 18b of the diaphragm device 18 is connected to an output port of a three-way solenoid valve 19.

前記三方電磁弁19は、通電されると真空ポンプ(図示
せず)から前記圧力室18bに負圧空気を導入し開閉弁
16を閉弁駆動する一方、非通電になると圧力室18b
に大気を導入し、開閉弁16を開弁駆動するようになっ
ている。
When energized, the three-way solenoid valve 19 introduces negative pressure air from a vacuum pump (not shown) into the pressure chamber 18b to close the on-off valve 16, while when de-energized, the three-way solenoid valve 19 closes the pressure chamber 18b.
Atmospheric air is introduced into the tank, and the on-off valve 16 is driven to open.

また、マイクロコンピュータ等からなる制御装置20に
は、エンジン回転センサ21からの検出信号と、噴射ポ
ンプ22のコントロールレバー23の開度を検出するレ
バー開度センサ24からの検出信号と、が入力されてい
る。
Furthermore, a detection signal from an engine rotation sensor 21 and a detection signal from a lever opening sensor 24 that detects the opening of the control lever 23 of the injection pump 22 are input to the control device 20 which is composed of a microcomputer or the like. ing.

制御装置20は、第3図のフローチャートに基づくプロ
グラムに従って動作し、前記三方電磁弁19と吸気絞弁
制窃1装置25と排気還流制御装置26とに、作動信号
を出力するようになっている。
The control device 20 operates according to a program based on the flowchart in FIG. 3, and outputs operating signals to the three-way solenoid valve 19, the intake throttle valve stealing device 25, and the exhaust recirculation control device 26. .

ここでは、エンジン回転センサ21とレバー開度センサ
24とが運転状態検出手段を構成し、ダイアフラム装置
18と三方電磁弁19と制御装置20とが弁駆動制御手
段を構成する。また、制御装置20と排気還流制御装置
26とが排気還流停止手段を構成する。さらに、EGR
通路6とEGRバルブ7とが排気還流装置を構成する。
Here, the engine rotation sensor 21 and the lever opening sensor 24 constitute an operating state detection means, and the diaphragm device 18, the three-way solenoid valve 19, and the control device 20 constitute a valve drive control means. Further, the control device 20 and the exhaust gas recirculation control device 26 constitute an exhaust gas recirculation stopping means. Furthermore, E.G.R.
The passage 6 and the EGR valve 7 constitute an exhaust gas recirculation device.

次に作用を第3図のフローチャートに従って第4図を参
照しつつ説明する。
Next, the operation will be explained according to the flowchart of FIG. 3 and with reference to FIG. 4.

Slでは、検出されたエンジン回転速度及び負荷■、の
各種検出信号を読込む。
At Sl, various detection signals of the detected engine speed and load (2) are read.

S2では、検出されたエンジン回転速度と負荷■、とに
基づいて、マツプから現在の運転状態が白煙発生領域(
第4図中破線で囲む領域)か否かを判定し、YESのと
きにはS3に進みNOのときにはS8に進む。
In S2, based on the detected engine speed and load, the current operating state is displayed on the map in the white smoke generation area (
If the answer is YES, the process proceeds to S3, and if the answer is NO, the process proceeds to S8.

S3では、検出されたエンジン回転速度と負荷■1 と
に基づいて、現在の運転状態がアイドル運転か否かを判
定し、YESのときにはS4に進みNOのときにはS5
に進む。
In S3, it is determined whether the current operating state is idling based on the detected engine speed and load ■1. If YES, the process advances to S4, and if NO, the process advances to S5.
Proceed to.

S5では、検出されたエンジン回転速度と負荷■、とに
基づいて、現在の運転状態がエンジンブレーキ作動(第
4図中スマッシュ領域)中(減速運転時)か否かを判定
し、YESのときにはS6に進みNoのときにはS6を
通過することなくS8に進む。
In S5, it is determined whether the current operating state is under engine braking (smash region in Fig. 4) (during deceleration operation) based on the detected engine speed and load. The process proceeds to S6, and when the answer is No, the process proceeds to S8 without passing through S6.

S6では、検出されたエンジン回転速度に基づいて低速
〜高速運転域である所定回転領域(1500r、p、m
、〜4000r、p、m、 )からのエンジンブレーキ
作動か否かを判定し、¥ E SのときにはS7に進み
NOのときにはS8に進む。
In S6, based on the detected engine rotation speed, a predetermined rotation range (1500 r, p, m
, ~4000r, p, m, ) is determined, and if the result is ¥ES, the process proceeds to S7, and if NO, the process proceeds to S8.

S7では、EGR領域(第4図中斜線領域)か否かを判
定し、YESのときすなわちE G R2H域における
所定回転領域からのエンジンブレーキ作動時にはS9に
進みNOのときにはS4に進む。
In S7, it is determined whether or not the EGR region (shaded region in FIG. 4) is reached, and when YES, that is, when the engine brake is activated from a predetermined rotation range in the EGR2H region, the process proceeds to S9, and when NO, the process proceeds to S4.

S9では、排気還流装置26にEGRカット信号を出力
し、EGRバルブ7によりEGR通路6を閉路させて排
気還流を停止させた後、S4に進む。
In S9, an EGR cut signal is output to the exhaust gas recirculation device 26, the EGR passage 6 is closed by the EGR valve 7, and exhaust gas recirculation is stopped, and then the process proceeds to S4.

S4では、三方電磁弁19に通電し、ダイアフラム装置
18の圧力室18bに三方電磁弁19を介して大気を導
入する。これにより、開閉弁16が第2図中実線示の如
く閉弁され、排気の全量は触媒付トラップ12を通過し
て大気中に排出される。
In S4, the three-way solenoid valve 19 is energized to introduce atmospheric air into the pressure chamber 18b of the diaphragm device 18 via the three-way solenoid valve 19. As a result, the on-off valve 16 is closed as shown by the solid line in FIG. 2, and the entire amount of exhaust gas passes through the catalyst trap 12 and is discharged into the atmosphere.

一方、S8では、三方電磁弁19を非通電とし、ダイア
フラム装置18の圧力室18bに三方電磁弁19を介し
て負圧空気を導入する。これにより、開閉弁16が第2
図中破線示の如く開弁され、排気の全量若しくは大部分
は前記触媒付トラップ12を通過することなく前記排気
バイパス通路15を介して大気中に排出される。
On the other hand, in S8, the three-way solenoid valve 19 is de-energized, and negative pressure air is introduced into the pressure chamber 18b of the diaphragm device 18 via the three-way solenoid valve 19. This causes the on-off valve 16 to switch to the second
The valve is opened as shown by the broken line in the figure, and all or most of the exhaust gas is discharged into the atmosphere through the exhaust bypass passage 15 without passing through the catalyst trap 12.

ここで、通常運転時には、第4図に示す巳GR領域にお
いて、EGRバルブ7が開弁されE G R通路6を介
して排気の一部が吸気絞弁3下流の吸気マニホールド4
に導入された後燃焼室に導入されて排気還流が行われ、
前記E G R領域以外においてはEGRバルブ7が閉
弁され排気還流が停止される。
Here, during normal operation, the EGR valve 7 is opened in the Snake GR region shown in FIG.
After being introduced into the combustion chamber, exhaust gas is recirculated.
Outside the EGR region, the EGR valve 7 is closed and exhaust gas recirculation is stopped.

このようにすると、第4図に示すように、アイドル運転
時と白煙発生領域(低速低負荷運転領域)とで開閉弁1
6が閉弁され排気が触媒付トラップ12を通過するよう
になる。また、前記運転状態以外の運転状態であっても
、第4図に示すように、所定回転領域からのエンジンブ
レーキ作動時には、開閉弁16が閉弁されて排気を触媒
付トラップ12を通過させて捕集された排気微粒子を再
生処理する。
In this way, as shown in Fig. 4, the on-off valve 1 is
6 is closed, and the exhaust gas begins to pass through the trap 12 with catalyst. In addition, even in operating states other than the above-mentioned operating states, as shown in FIG. 4, when the engine brake is applied from a predetermined rotation range, the on-off valve 16 is closed to allow the exhaust gas to pass through the catalyst trap 12. The collected exhaust particulates are regenerated.

このとき、EGR領域に運転状態が入っても排気還流が
停止される。また、上記以外の運転領域ではエンジンブ
レーキ作動の有無に拘わらず、開閉弁16は開弁され排
気は触媒付トラップ12を通過することなく大気中に排
出される。
At this time, even if the operating state enters the EGR region, exhaust gas recirculation is stopped. Further, in an operating range other than the above, the on-off valve 16 is opened regardless of whether or not the engine brake is activated, and the exhaust gas is discharged into the atmosphere without passing through the catalyst trap 12.

このため、低速・低負荷運転領域で排気還流を行うこと
により排気微粒子特に可溶性有機成分が多量に発生して
も、触媒付トラップ12によりそれらが捕集されるので
、それらが大気中に放出されるのを抑制できる。
Therefore, even if a large amount of exhaust particulates, especially soluble organic components, are generated due to exhaust gas recirculation in the low-speed/low-load operating range, they will be collected by the catalyst trap 12 and will not be released into the atmosphere. It is possible to suppress the

ところで、触媒付トラップ12においては排気の圧力損
失があるので、前記触媒トラップ12に排気を流通させ
かつ排気還流を行うと吸気マニホールド4と排気マニホ
ールド5とにおける圧力差が増大して排気還流率が増大
する。このため、エンジンの燃焼状態が悪化して未燃燃
料(HC)及び白煙が増大するので、排気還流を停止さ
せるのである。また、エンジンブレーキ作動時には、−
C的にエンジンへの燃料供給を停止するようにしている
ので、未燃燃料、NoX等の排出量が極めて少なくなる
ため、エンジンブレーキ作動時に触媒トラップ12に排
気を流通させれば排気還流量を増加させることなく、触
媒付トラップ12に捕集された可溶性有機成分等の排気
微粒子を処理できる。
By the way, since there is a pressure loss in the exhaust gas in the catalyst trap 12, when the exhaust gas is passed through the catalyst trap 12 and the exhaust gas is recirculated, the pressure difference between the intake manifold 4 and the exhaust manifold 5 increases, and the exhaust gas recirculation rate increases. increase For this reason, the combustion state of the engine deteriorates and unburnt fuel (HC) and white smoke increase, so exhaust gas recirculation is stopped. Also, when the engine brake is activated, -
Since the fuel supply to the engine is stopped in a C-like manner, the amount of unburned fuel, No Exhaust particles such as soluble organic components collected in the catalyst trap 12 can be treated without increasing the amount of exhaust particles.

第5図は本発明の第2実施例を示すフローチャートであ
る。尚、第5図において、第3図のステップ数と同一ス
テップには第3図と同一ステップ数を付して説明を省略
する。
FIG. 5 is a flowchart showing a second embodiment of the present invention. In FIG. 5, steps that are the same as the number of steps in FIG. 3 are given the same number of steps as in FIG. 3, and the explanation thereof will be omitted.

すなわち、S3にてアイドル運転時と判定されたときに
、SIOにおいて、吸気絞弁3を全開駆動させるべく吸
気絞制御装置25に作動信号を出力した後、S4にて開
閉弁16を閉弁駆動させる。このようにすると、触媒付
トラップ12に排気を流通させるときに、排気圧力が上
昇するので、吸気マニホールド4と排気マニホールド5
における圧力差が増大するため、吸気絞弁3を閉じるこ
となく排気還流を行え、アイドル運転時の未燃燃料の排
出量の増加を抑制できる。
That is, when it is determined in S3 that the operation is idling, the SIO outputs an actuation signal to the intake throttle control device 25 to drive the intake throttle valve 3 fully open, and then drives the on-off valve 16 to close in S4. let In this way, when the exhaust gas is passed through the catalyst trap 12, the exhaust pressure increases, so the intake manifold 4 and the exhaust manifold 5
Since the pressure difference increases, exhaust gas recirculation can be performed without closing the intake throttle valve 3, and an increase in the amount of unburned fuel discharged during idling operation can be suppressed.

第6図は本発明の第3実施例を示す。尚、第1実施例と
同一要素には、第2図と同一符号を付して説明を省略す
る。
FIG. 6 shows a third embodiment of the invention. Incidentally, the same elements as in the first embodiment are given the same reference numerals as in FIG. 2, and the explanation thereof will be omitted.

第6図において、EGR通路31の排気側端部を触媒付
トラップ12の下流側にて排気通路11と連通接続させ
るようにしている。また、機関の冷却水温度を検出する
水温センサ32からの検出信号が制?]n装置33に人
力されている。
In FIG. 6, the exhaust side end of the EGR passage 31 is connected to the exhaust passage 11 downstream of the catalyst trap 12. Also, is the detection signal from the water temperature sensor 32 that detects the engine cooling water temperature controlled? ] n The device 33 is operated manually.

制御装置33は、第7図のフローチャートに基づくプロ
グラムに従って動作し、後述の各種機器を1i’目卸す
るようになっている。
The control device 33 operates according to a program based on the flowchart of FIG. 7, and is designed to check various devices 1i', which will be described later.

次に作用を第7図のフローチャートに従って第8図を参
照しつつ説明する。
Next, the operation will be explained in accordance with the flowchart of FIG. 7 and with reference to FIG. 8.

Sllでは、エンジンの回転速度等の各種検出信号を読
込む。
Sll reads various detection signals such as engine rotational speed.

S12では、検出された冷却水温度T。が60°C以上
か否かを判定し、YESのときには暖機が完了したと判
定してS13に進みNoのときには325に進む。
In S12, the detected cooling water temperature T. It is determined whether or not the temperature is 60° C. or higher. If YES, it is determined that the warm-up has been completed and the process proceeds to S13; if NO, the process proceeds to 325.

S13では、検出されたエンジン回転速度と負荷■、と
に基づいて、現在の運転状態がエンジンブレーキ作動(
第8図中スマッシュ領域)中か否かを判定し、YESの
ときにはS14に進みNOのときには318に進む。
In S13, based on the detected engine speed and load, the current operating state is determined to be engine brake activation (
It is determined whether or not it is in the smash area (in FIG. 8), and if YES, the process advances to S14, and if NO, the process advances to 318.

S14では、EGRバルブ7を閉弁させて排気還流を停
止させた後、S15に進む。
In S14, the EGR valve 7 is closed to stop exhaust gas recirculation, and then the process proceeds to S15.

S15では、吸気絞弁3を全開させて吸気絞制御を停止
させた後、S16に進む。
In S15, the intake throttle valve 3 is fully opened to stop the intake throttle control, and then the process proceeds to S16.

S16では、検出されたエンジン回転速度に基づいて、
低速〜高速運転域である所定回転領域からのエンジンブ
レーキ作動中か否かを判定し、YESのときにはS22
に進みNoのときにはS17に進む。
In S16, based on the detected engine rotation speed,
It is determined whether or not engine braking is being applied from a predetermined rotation range that is a low speed to high speed driving range, and if YES, S22
If the answer is No, the process advances to S17.

S17では、三方電磁弁19を非通電とし、ダイアフラ
ム装置18の圧力室18bに三方電磁弁19を介して負
圧空気を導入し、開閉弁16を開弁させる。これにより
、排気を触媒付トラップ12を通過させることなく大気
中に排出する。
In S17, the three-way solenoid valve 19 is de-energized, negative pressure air is introduced into the pressure chamber 18b of the diaphragm device 18 via the three-way solenoid valve 19, and the on-off valve 16 is opened. Thereby, the exhaust gas is discharged into the atmosphere without passing through the catalyst trap 12.

一方、S18では、現在の運転状態がEGR領域(第8
図中斜線領域)か否かを判定し、YESのときにはS1
9に進みNoのときにはS23に進む。
On the other hand, in S18, the current operating state is in the EGR region (eighth
(shaded area in the figure), and if YES, S1
If the answer is No, the process advances to S23.

S19では、EGRパルプ7を開弁させて排気還流を開
始させた後、S20に進む。
In S19, the EGR pulp 7 is opened to start exhaust gas recirculation, and then the process proceeds to S20.

S20では、検出されたエンジン回転速度と負荷■、と
に基づいて、吸気絞り領域(第8図中格子状領域)か否
かを判定し、YESのときにはS21に進jj、 N 
OのときにはS21を通過することなくS22に進む。
In S20, it is determined whether or not the intake throttle area (lattice-shaped area in FIG. 8) is present based on the detected engine rotational speed and load (2), and if YES, the process proceeds to S21.
When the result is O, the process proceeds to S22 without passing through S21.

S21では、吸気絞弁3を所定量閉弁駆動し吸気絞り制
御を行った後、S22に進む。
In S21, the intake throttle valve 3 is driven to close by a predetermined amount to perform intake throttle control, and then the process proceeds to S22.

S22では、三方j:Lta弁19に通電し、ダイアフ
ラム装置18の圧力室18bに三方電磁弁19を介して
大気を導入し、開閉弁16を閉弁させる。これにより、
排気を触媒付トラップ12を通過させて大気中に排出さ
せる。
In S22, the three-way j:Lta valve 19 is energized, atmospheric air is introduced into the pressure chamber 18b of the diaphragm device 18 via the three-way solenoid valve 19, and the on-off valve 16 is closed. This results in
The exhaust gas is passed through a catalyst trap 12 and discharged into the atmosphere.

また、S23では、EGRバルブ7を閉弁させて排気還
流を停止させた後、S24に進む。
Further, in S23, the EGR valve 7 is closed to stop exhaust gas recirculation, and then the process proceeds to S24.

S24では、吸気絞弁3を全開させて吸気絞側?ff1
lを停止させた後、前記S17に進む。
In S24, the intake throttle valve 3 is fully opened to the intake throttle side? ff1
After stopping l, the process proceeds to S17.

また、Si2にて冷却水温度T、が60″C未満と判定
されたときには、325で、EGRバルブ7を閉弁させ
て排気還流を停止させた後、S26に進む。
Further, when it is determined in Si2 that the cooling water temperature T is less than 60''C, the EGR valve 7 is closed to stop exhaust gas recirculation in 325, and then the process proceeds to S26.

S26では、吸気絞弁3を全開させて吸気絞制御を停止
させた後、前記S17に進む。
In S26, the intake throttle valve 3 is fully opened to stop the intake throttle control, and then the process proceeds to S17.

このようにすると、暖機完了後に運転状態がEGR領域
に入ったときに開閉弁16が閉弁されて排気が触媒トラ
ップ12を通過し、排気微粒子特に可溶性有機成分を触
媒トラップ12により捕集でき、もってそれらの大気中
への排出を抑制できる。このとき、運転状態が吸気絞り
令貝域に入ると吸気絞弁3が閉駆動され排気還流率が高
められる。また、前記運転状態以外の運転状態であって
も、暖機完了後における所定回転領域からのエンジンブ
レ−手作動時には、開閉弁16が閉弁されて排気が触媒
付トラップ12を通過し、触媒付トラップ12に捕集さ
れた排気微粒子が処理される。このとき、排気還流は停
止される。
In this way, when the operating state enters the EGR region after warm-up is completed, the on-off valve 16 is closed and the exhaust gas passes through the catalyst trap 12, allowing the catalyst trap 12 to collect exhaust particulates, especially soluble organic components. , thereby suppressing their emissions into the atmosphere. At this time, when the operating state enters the intake throttle range, the intake throttle valve 3 is driven to close and the exhaust gas recirculation rate is increased. In addition, even in operating states other than the above-mentioned operating states, when the engine brake is operated from a predetermined rotation range after warm-up is completed, the on-off valve 16 is closed and the exhaust gas passes through the catalyst trap 12. The exhaust particulates collected in the attached trap 12 are processed. At this time, exhaust gas recirculation is stopped.

また、本実施例では、触媒付トラップ12下流の排気を
吸気マニホールド4に還流させるようにしたので、排気
微粒子が大巾に低減された排気が吸気系に導入される。
Furthermore, in this embodiment, the exhaust gas downstream of the catalyst trap 12 is recirculated to the intake manifold 4, so that exhaust gas with greatly reduced exhaust particulates is introduced into the intake system.

このため、機関の潤滑油の劣化を抑制できると共に燃焼
室内壁の摩耗及びピストンリングの膠着等を抑制できる
Therefore, it is possible to suppress the deterioration of the lubricating oil of the engine, and also to suppress the wear of the inner wall of the combustion chamber and the sticking of the piston rings.

〈発明の効果〉 本発明は、以上説明したように、排気還流作動時には排
気をトラップに流通させるようにしたので、排気還流時
に発生する可溶性有機成分等の排気微粒子が大気中に排
出されるのを抑制でき、また所定回転領域からの減速運
転時にその排気微粒子を効率良く処理できる。
<Effects of the Invention> As explained above, the present invention allows exhaust gas to flow through the trap during exhaust gas recirculation operation, thereby preventing exhaust particulates such as soluble organic components generated during exhaust gas recirculation from being discharged into the atmosphere. In addition, the exhaust particulates can be efficiently processed during deceleration operation from a predetermined rotation range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の第
1実施例を示す構成図、第3図は同上のフローチャート
、第4図は同上の作用を説明するための図、第5図は本
発明の第2実施例を示すフローチャート、第6図は本発
明の第3実施例を示す構成図、第7図は同上のフローチ
ャー1−1第8図は同上の作用を説明するための図、第
9図は内燃機関の排気浄化装置の従来例を示す構成図で
ある。 1・・・ディーゼルエンジン  6・・・EGR通路7
・・・巳GRバルブ  11・・・排気通路  12・
・・触媒トラップ  15・・・排気バイパス通路  
16・・・開閉弁  18・・・ダイアフラム  20
.33・・・制御装置21・・・エンジン回転センサ 
 24・・・レバー開度センサ  25・・・吸気絞制
御装置  26・・・排気還流制御装置 特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  冨二がt 第6図 第9図
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a configuration diagram showing a first embodiment of the invention, Fig. 3 is a flowchart of the same, Fig. 4 is a diagram for explaining the operation of the above, 5 is a flowchart showing a second embodiment of the present invention, FIG. 6 is a configuration diagram showing a third embodiment of the present invention, FIG. 7 is a flowchart 1-1 of the same as above, and FIG. FIG. 9 is a configuration diagram showing a conventional example of an exhaust purification device for an internal combustion engine. 1...Diesel engine 6...EGR passage 7
... Snake GR valve 11 ... Exhaust passage 12.
...Catalyst trap 15...Exhaust bypass passage
16... Opening/closing valve 18... Diaphragm 20
.. 33...Control device 21...Engine rotation sensor
24... Lever opening sensor 25... Intake throttle control device 26... Exhaust recirculation control device Patent applicant Nissan Motor Co., Ltd. Representative Patent attorney Tomiji Sasashima t Figure 6 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 排気を機関吸気系に還流させる排気還流装置を、備える
内燃機関において、機関の排気通路に介装され排気中の
微粒子を捕集するトラップと、該トラップをバイパスす
る排気バイパス通路と、該排気バイパス通路と前記トラ
ップとに排気を選択的に導入させる開閉弁と、機関の運
転状態を検出する運転状態検出手段と、検出された運転
状態に基づいて前記排気還流装置の排気還流作動領域の
少なくとも一部領域と所定回転領域からの減速運転時と
に、前記トラップに排気を流通させるべく前記開閉弁を
駆動制御する弁駆動制御手段と、前記所定回転領域から
の減速運転時には前記排気還流装置の作動を停止させる
排気還流停止手段と、を備えたことを特徴とする内燃機
関の排気浄化装置。
In an internal combustion engine equipped with an exhaust gas recirculation device that recirculates exhaust gas to an engine intake system, there is provided a trap that is interposed in an exhaust passage of the engine to collect particulates in the exhaust gas, an exhaust bypass passage that bypasses the trap, and an exhaust bypass passage that bypasses the trap. an on-off valve that selectively introduces exhaust gas into the passage and the trap; an operating state detection means that detects the operating state of the engine; and at least one of the exhaust recirculation operating ranges of the exhaust recirculation device based on the detected operating state. valve drive control means for driving and controlling the opening/closing valve to cause exhaust gas to flow through the trap during deceleration operation from the predetermined rotation region and the predetermined rotation region; and actuation of the exhaust gas recirculation device during deceleration operation from the predetermined rotation region. An exhaust gas purification device for an internal combustion engine, comprising: exhaust gas recirculation stopping means for stopping.
JP16507088A 1988-07-04 1988-07-04 Exhaust gas purification device for internal combustion engine Expired - Lifetime JPH0715243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16507088A JPH0715243B2 (en) 1988-07-04 1988-07-04 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16507088A JPH0715243B2 (en) 1988-07-04 1988-07-04 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0216319A true JPH0216319A (en) 1990-01-19
JPH0715243B2 JPH0715243B2 (en) 1995-02-22

Family

ID=15805299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16507088A Expired - Lifetime JPH0715243B2 (en) 1988-07-04 1988-07-04 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0715243B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155667A (en) * 2014-02-20 2015-08-27 ヤンマー株式会社 Egr device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155667A (en) * 2014-02-20 2015-08-27 ヤンマー株式会社 Egr device
WO2015125576A1 (en) * 2014-02-20 2015-08-27 ヤンマー株式会社 Egr device
US10634074B2 (en) 2014-02-20 2020-04-28 Yanmar Co., Ltd. EGR device

Also Published As

Publication number Publication date
JPH0715243B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
KR20020019559A (en) Device and method for exhaust gas circulation of internal combustion engine
JPH07259654A (en) Exhaust gas circulating device of diesel engine
JPH05187329A (en) Exhaust gas circulation device for engine with supercharger
JPS58187512A (en) Method to regenerate particle collector for diesel engine
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPH0431614A (en) Exhaust gas treatment system
JPS63134810A (en) Regenerative apparatus of particulate trap
JPH0431613A (en) Exhaust treatment system for internal combustion engine
JPH0988569A (en) Exhaust emission control system for internal combustion engine
JPH0216319A (en) Exhaust purification device for internal combustion engine
JPH1047112A (en) Exhaust emission control device for internal combustion engine
JP3371520B2 (en) Engine exhaust recirculation control device
JP3416687B2 (en) Exhaust gas purification device for internal combustion engine
JPS6067732A (en) Internal-combustion engine controlled for operation of divided group of cylinders
JPH0544439A (en) Exhaust gas purifying device for diesel engine
JPH1061429A (en) Exhaust emission control device for internal combustion engine
JPH0330571Y2 (en)
JPH07233761A (en) Exhaust reflux device for engine
JPH0544483A (en) Exhaust emission control system for internal combustion engine
JPH0544448A (en) Exhaust gas purifying device for diesel engine
JPS6233939Y2 (en)
JPH0223804Y2 (en)
JPS63988Y2 (en)
JP2008057378A (en) Diesel engine
JP3003213B2 (en) Engine exhaust purification device