JPH02162295A - Neutron shielding material - Google Patents

Neutron shielding material

Info

Publication number
JPH02162295A
JPH02162295A JP31629288A JP31629288A JPH02162295A JP H02162295 A JPH02162295 A JP H02162295A JP 31629288 A JP31629288 A JP 31629288A JP 31629288 A JP31629288 A JP 31629288A JP H02162295 A JPH02162295 A JP H02162295A
Authority
JP
Japan
Prior art keywords
poly
manufactured
parts
weight
olefinic resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31629288A
Other languages
Japanese (ja)
Inventor
Nobuyuki Toyomasu
信之 豊増
Hiroaki Furukawa
博章 古川
Nobuyuki Fukumoto
福本 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP31629288A priority Critical patent/JPH02162295A/en
Publication of JPH02162295A publication Critical patent/JPH02162295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve a processability without a deterioration of material characteristics and to improve a moisture absorption characteristic of an inorganic boronic compound by applying a thermal treatment to a neutron absorbing material which is a mixture of one of poly-olefinic resins and an inorganic boronic compound. CONSTITUTION:In case that, as an inorganic boronic compound, a boron carbide compound, for example, can be selected, a mixing ratio to poly-olefinic resins is made to be 1 to 500 weight parts against 100 weight parts of poly-olefinic resins, although the ratio differs according to material characteristics of selected boron carbide compound. The poly-olefinic resins are a high density poly-ethylene, a low density poly-ethylene and the like, and these are used singularly or as a mixture of two or more kinds of the ethylenes. Neutron absorbing materials are thermally processed in an oven and the like, previously. With the reason that the neutron absorbing materials and an anti-oxidation agent are hard to be mixed uniformly when the neutron absorbing materials are directly melted and mixed with the anti-oxidation agent and the poly- olefinic resins, the neutron absorbing materials, the anti-oxidation agent and the poly- olefinic resins are pelletized at the same time by a melting kneader such as an extruding machine after dispersing the three materials previously by using a ribbon blender and the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は成形加工性が容易で優れた外観を持ちつつ、中
性子線を吸収し、尚かつ二次放射線を発生しにくい中性
子線遮蔽材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a neutron beam shielding material that is easy to mold, has an excellent appearance, absorbs neutron beams, and does not easily generate secondary radiation. It is something.

[従来の技術] 近年の原子力産業の発展に伴い、原子炉、高速増殖炉等
の原子力施設及び粒子加速器、核融合炉などから発生す
る中性子線の遮蔽は安全上重要な課題となっている。そ
こで、安全且つ確実な中性子線の遮蔽方法の開発が急が
れる。
[Background Art] With the recent development of the nuclear power industry, shielding of neutron beams generated from nuclear facilities such as nuclear reactors and fast breeder reactors, particle accelerators, and nuclear fusion reactors has become an important safety issue. Therefore, there is an urgent need to develop a safe and reliable method for shielding neutron beams.

従来から使用されている放射線吸収材料としては、水、
重コンクリ−1・、ポリエチレン樹脂などの水素含有化
合物及び鉛、鉄、カドミウム、ホウ素、リチウムなどの
金属がある。この金属の中でも安価なため一般に使用さ
れてきた鉛、カドミウム等は中性子線に暴露されると強
い二次放射線を発生するため安全性の問題が指摘されて
いる。
Conventionally used radiation absorbing materials include water,
These include heavy concrete, hydrogen-containing compounds such as polyethylene resin, and metals such as lead, iron, cadmium, boron, and lithium. Among these metals, lead, cadmium, etc., which are commonly used because they are cheap, have been pointed out to be a safety problem because they generate strong secondary radiation when exposed to neutron beams.

このため二次放射線の発生が少なく安価で且つ成形加工
性が良好な中性子線吸収材料として無機ホウ素化合物や
無機リチウム化合物等が用いられている。これらの化合
物はポリオレフィン系樹脂等の樹脂に配合混練して用い
る場合が多いが、特に無機ホウ素化合物は吸湿性及び潮
解性を有しており成型品とした際、表面の劣化即ち中性
子線吸収材料のブリードが生じ中性子線吸収遮蔽能力を
低下させるという問題があった。特に中性子線吸収材料
の中でも酸化ホウ素等は人体に有害な物質であり、取扱
い及び施工状態にもよるが、これらの物質のブリードは
安全性及び衛生面からも問題が指摘されていた。
For this reason, inorganic boron compounds, inorganic lithium compounds, and the like are used as neutron beam absorbing materials that generate less secondary radiation, are inexpensive, and have good moldability. These compounds are often mixed and kneaded with resins such as polyolefin resins, but inorganic boron compounds in particular have hygroscopic and deliquescent properties, so when molded products are made, surface deterioration or neutron beam absorbing materials may occur. There was a problem in that bleeding occurred and the neutron beam absorption and shielding ability was reduced. In particular, among neutron beam absorbing materials, boron oxide and the like are harmful to the human body, and bleeding of these substances has been pointed out to be a problem from a safety and hygiene perspective, depending on handling and construction conditions.

[発明が解決しようとする課題] 本発明は材料の特性を低下させることなく、加工性に優
れ、従来発生していた無機ホウ素化合物の吸湿性乃至潮
解性を改良した中性子線吸収遮蔽材を提供することを目
的とする。
[Problems to be Solved by the Invention] The present invention provides a neutron beam absorbing shielding material that has excellent workability without deteriorating the material properties and has improved hygroscopicity and deliquescent properties of conventionally generated inorganic boron compounds. The purpose is to

[課題を解決するための手段] 上記のような現状に鑑み、本発明者らは鋭意検討を重ね
た結果、無機ホウ素化合物を熱処理することにより成型
品表面のブリードを改良できることを見出し発明を完成
するに至った。
[Means for Solving the Problems] In view of the above-mentioned current situation, the inventors of the present invention have conducted extensive studies and have completed the invention by discovering that bleeding on the surface of a molded product can be improved by heat treating an inorganic boron compound. I ended up doing it.

即ち本発明はポリオレフィン系樹脂に無機ホウ素化合物
を混合してなる中性子線遮蔽材において、中性子線吸収
材料が予め熱処理されていることを特徴とする中性子線
遮蔽材に関する。
That is, the present invention relates to a neutron beam shielding material made of a polyolefin resin mixed with an inorganic boron compound, wherein the neutron beam absorbing material is heat-treated in advance.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でいう、無機ホウ素化合物としては例えば炭化ホ
ウ素、窒化ホウ素、ホウ素鉄、灰ホウ石、正ホウ酸、メ
タホウ酸、四ホウ酸、酸化ホウ素等を挙げる事ができる
。これらの中性子線吸収材料の中で吸湿性乃至潮解性物
質として例えば正ホウ酸、メタホウ酸、四ホウ酸、酸化
ホウ素等は加熱コンディショニングすることで水分を除
去して用いることが好ましい。特に酸化ホウ素は吸湿に
より四ホウ酸、メタホウ酸、正ホウ酸に変化し著しい潮
解性を示す。特に上記加熱コンディショニングは各物質
の最適な脱水条件にて乾燥する必要がある。即ち物質中
に取り込まれた水分が脱離する温度でも必ずしもブリー
ドの抑制に効果がある訳ではない。酸化ホウ素の熱処理
条件は140℃以上が好ましい。即ち100〜140℃
未満での加熱ではブリードの抑制の効果は望めない。又
、熱処理時間は通常の加熱乾燥装置では、1〜4時間程
度が好ましく、それ以上の時間の処理を行っても、更な
る効果の向上はない。
Examples of the inorganic boron compound used in the present invention include boron carbide, boron nitride, iron boron, perovskite, orthoboric acid, metaboric acid, tetraboric acid, boron oxide, and the like. Among these neutron beam absorbing materials, hygroscopic or deliquescent substances such as orthoboric acid, metaboric acid, tetraboric acid, boron oxide, etc. are preferably used after removing moisture by heat conditioning. In particular, boron oxide changes into tetraboric acid, metaboric acid, and orthoboric acid upon absorption of moisture, and exhibits remarkable deliquescent properties. In particular, the heating conditioning described above requires drying under optimal dehydration conditions for each substance. That is, even at a temperature at which water taken into a substance is desorbed, it is not necessarily effective in suppressing bleeding. The heat treatment conditions for boron oxide are preferably 140° C. or higher. i.e. 100-140℃
Heating at a temperature lower than that cannot be expected to be effective in suppressing bleeding. Further, the heat treatment time is preferably about 1 to 4 hours using a normal heating drying device, and even if the treatment is performed for a longer time, the effect will not be further improved.

無機ホウ素化合物の配合量は、使用する材料によって異
なるが、ポリオレフィン系樹脂100重量部に対して1
〜50Offlfm部である。例えば、酸化ホウ素では
1〜80重量部が好ましい。
The blending amount of the inorganic boron compound varies depending on the material used, but it is 1 part by weight per 100 parts by weight of the polyolefin resin.
~50 Offlfm portions. For example, for boron oxide, 1 to 80 parts by weight is preferable.

本発明でいうポリオレフィン系樹脂とは高密度ポリエチ
レン、低密度ポリエチレン、直鎖状低密度ポリエチレン
等のポリエチレン、エチレン−酢酸ビニル共重合体、ポ
リプロピレン等のことであり、これらを単独あるいは二
種以上混合して用いる。特に水素の量が多い程中性子の
遮蔽効果が向上するため、高密度ポリエチレン又は低密
度ポリエチレンを使用することが好ましい。その際、成
形加工性を改良するためエチレン−酢酸ビニル共重合体
等を加える場合には、その配合割合は、水素の含有量と
耐熱性の関係からポリオレフィン系樹脂の全重量に対し
、50ff1m部以下に押さえることが好ましい。
In the present invention, the polyolefin resin refers to polyethylene such as high-density polyethylene, low-density polyethylene, and linear low-density polyethylene, ethylene-vinyl acetate copolymer, polypropylene, etc., and these may be used alone or in combination of two or more. and use it. In particular, it is preferable to use high-density polyethylene or low-density polyethylene because the greater the amount of hydrogen, the better the neutron shielding effect. At that time, when adding ethylene-vinyl acetate copolymer, etc. to improve moldability, the mixing ratio should be 50 ff 1 m part based on the total weight of the polyolefin resin due to the relationship between hydrogen content and heat resistance. It is preferable to keep it below.

又、ポリオレフィン系樹脂の酸化防止の為に通常用いら
れる酸化防止剤としてフェノール系及びホスファイト系
添加剤を用いることが望ましい。
Furthermore, it is desirable to use phenolic and phosphite additives as antioxidants that are commonly used to prevent oxidation of polyolefin resins.

本発明の中性子線遮蔽材を製造する方法の一例を以下に
示す。予め中性子線吸収材料はオーブン等で熱処理を行
う。また中性子線吸収材料を、酸化防止剤、ポリオレフ
ィン系樹脂と共に、そのまま、押出機を用いて直接溶融
混練すると、中性子線吸収材料と酸化防止剤が均一に分
散した混合物を得ることが難しい。この為、予め中性子
線吸収材料と酸化防止剤とをポリオレフィン系樹脂と共
にリボンブレンダー或いはヘンシェルミキサー等のトラ
イブレンド装置を用いて予め分散させた後、押出機又は
バンバリーミキサ−等の溶畿混練装置で一度ペレット化
する。このようにして得た中性子線遮蔽材料ペレットは
圧縮成型機、射出成型機、押出成型機等の装置を用いて
所望の形状のものを得る事ができる。
An example of a method for manufacturing the neutron beam shielding material of the present invention is shown below. The neutron beam absorbing material is heat-treated in advance in an oven or the like. Furthermore, when a neutron beam absorbing material is directly melt-kneaded together with an antioxidant and a polyolefin resin using an extruder, it is difficult to obtain a mixture in which the neutron beam absorbing material and the antioxidant are uniformly dispersed. For this purpose, the neutron beam absorbing material and the antioxidant are predispersed together with the polyolefin resin using a tri-blend device such as a ribbon blender or Henschel mixer, and then a melt kneading device such as an extruder or Banbury mixer is used to disperse the neutron beam absorbing material and the antioxidant. Pelletize once. The neutron beam shielding material pellets thus obtained can be shaped into a desired shape using a compression molding machine, an injection molding machine, an extrusion molding machine, or the like.

[実施例] 以下実施例によって本発明を更に詳細に説明するが本発
明はこれらに限定されるものではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1 直鎖状低密度ポリエチレン(東ソー(株)製、商品名「
ニボロンーLJ 、M−50)60重量部とエチレン−
酢酸ビニル共重合体(東ソー(株)製、商品名「ウルト
ラセンJ 、EVA−9210)40重量部と中性子線
吸収材として酸化ホウ素(日本電工(株)製)80重量
部とホスファイト系酸化防止剤(アデカ・アーガス化学
(株)製、AO−18)0.28重量部とフェノール系
酸化防止剤(アデカ・アーガス化学(株)製、PEP−
36)0.28重量部とを用いた。酸化ホウ素は予め1
40℃〜150℃のギヤオーブン中で4時間熱処理を施
した。この酸化ホウ素と、フェノール系酸化防止剤とホ
スファイト系酸化防止剤とエチレン−酢酸ビニル共重合
体とを110℃のオーブンロール中にて予備混練した後
ポリエチレンを添加して140℃〜150℃のオーブン
ロール中にて5分間混練し、シート状成形体を得た。こ
こで得たシート状成形体を190℃で圧縮成型機により
成型した。この成型品を室温にて空気中に3ケ月間放置
し、ブリードが生じるかどうか経時的な変化を試験した
(耐久性試験)結果、殆ど変化しないことを確認した。
Example 1 Linear low-density polyethylene (manufactured by Tosoh Corporation, trade name:
Nibolon-LJ, M-50) 60 parts by weight and ethylene-
40 parts by weight of vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name: "Ultracene J, EVA-9210"), 80 parts by weight of boron oxide (manufactured by Nippon Denko Corporation) as a neutron beam absorbing material, and phosphite-based oxide. 0.28 parts by weight of inhibitor (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.) and phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP-
36) 0.28 parts by weight was used. Boron oxide is 1 in advance
Heat treatment was performed for 4 hours in a gear oven at 40°C to 150°C. This boron oxide, phenolic antioxidant, phosphite antioxidant, and ethylene-vinyl acetate copolymer were pre-kneaded in an oven roll at 110°C, then polyethylene was added and the mixture was heated at 140°C to 150°C. The mixture was kneaded in an oven roll for 5 minutes to obtain a sheet-like molded product. The sheet-like molded product obtained here was molded at 190° C. using a compression molding machine. This molded product was left in the air at room temperature for 3 months and tested for changes over time to see if bleeding occurred (durability test). As a result, it was confirmed that there was almost no change.

実施例2 高密度ポリエチレン(東ソー(株)製、商品名「ニボロ
ンーハードJ 、5600)60tJ量部とエチレン−
酢酸ビニル共重合体(東ソー(株)製、商品名「ウルト
ラセン」、EvA−9210)40重量部と中性子線吸
収材として酸化ホウ素(8本電工(株)製)80ffl
量部とホスファイト系酸化防止剤(アデカ・アーガス化
学(株)製、AO−18)0.28fflf量部とフェ
ノール系酸化防止剤(アデカ・アーガス化学(株)製、
PEP−36)0.28重量部とを用いた。実施例1と
同様の加工を行った後、シート状成形体を圧縮成型機に
より成型し耐久性試験に用いた。実施例1と同様の耐久
性試験の結果殆ど変化しなかった。
Example 2 60 tJ parts of high-density polyethylene (manufactured by Tosoh Corporation, trade name "Niboron-Hard J, 5600") and ethylene-
40 parts by weight of vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultrasen", EvA-9210) and 80 ffl of boron oxide (manufactured by 8hon Denko Corporation) as a neutron beam absorbing material.
0.28fflf parts of phosphite antioxidant (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.) and 0.28 fflf part of phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd.,
PEP-36) 0.28 parts by weight was used. After performing the same processing as in Example 1, a sheet-like molded body was molded using a compression molding machine and used for a durability test. As a result of the same durability test as in Example 1, there was almost no change.

実施例3 高密度ポリエチレン(東ソー(株)製、商品名「ニボロ
ンーハードJ 、4010)60重量部とエチレン−酢
酸ビニル共重合体(東ソー(株)製、商品名「ウルトラ
セン」、EvA−9210)40重量部と中性子線吸収
材として酸化ホウ素([1本電工(株)製)80fff
fii部とホスファイト系酸化防止剤(アデカ・アーガ
ス化学(株)製、AO−18)0.28重量部とフェノ
ール系酸化防止剤(アデカ・アーガス化学(株)製、P
EP−36)r)、28重量部とを用いた。実施例1と
同様の加工を行った後、シート状成形体を圧縮成型機に
より成型し耐久性試験に用いた。実施例1と同様の耐久
性試験の結果殆ど変化しなかった。
Example 3 60 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, trade name "Niboron-Hard J", 4010) and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultracene", EvA-9210) 40 parts by weight and 80 fff of boron oxide (manufactured by Ippon Denko Co., Ltd.) as a neutron beam absorbing material.
fii part, 0.28 parts by weight of phosphite antioxidant (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.), and 0.28 part by weight of phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., P
EP-36)r), 28 parts by weight was used. After performing the same processing as in Example 1, a sheet-like molded body was molded using a compression molding machine and used for a durability test. As a result of the same durability test as in Example 1, there was almost no change.

実施例4 高密度ポリエチレン(東ソー(株)製、商品名「ニポロ
ンーハードJ 、2300)60重量部とエチレン−酢
酸ビニル共重合体(東ソー(株)製、商品名「ウルトラ
セン」、EvA−9210)40重量部と中性子線吸収
材として酸化ホウ素(日本電工(株)製)807110
部とホスファイト系酸化防!に剤(アデカ・アーガス化
学(株)製、AO−18)0.28重量部とフェノール
系酸化防止剤(アデカ・アーガス化学(株)製、PEP
−36)0.28重量部とを用いた。実施例1と同様の
加工を行った後、シート状成形体を圧縮成型機により成
型し耐久性試験に用いた。実施例1と同様の耐久性試験
の結果殆ど変化しなかった。
Example 4 60 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, trade name "Nipolon Hard J, 2300") and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultrasen", EvA-9210) 40 parts by weight and boron oxide (manufactured by Nippon Denko Corporation) 807110 as a neutron beam absorbing material.
Part and phosphite-based oxidation protection! 0.28 parts by weight of garlic agent (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.) and phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP)
-36) 0.28 parts by weight was used. After performing the same processing as in Example 1, a sheet-like molded body was molded using a compression molding machine and used for a durability test. As a result of the same durability test as in Example 1, there was almost no change.

比較例1 直鎖低密度ポリエチレン(東ソー(株)製、商品名「ニ
ボロンーLJ 、M−50)60重量部とエチレン−酢
酸ビニル共重合体(東ソー(株)製、商品名r’フル)
う(’ンJ 、EVA−9210)40重量部と中性子
線吸収材として酸化ホウ素(8本電工(株)製)80重
量部とホスファイト系酸化防止剤(アデカ・アーガス化
学(株)製、AO−18)0.28重量部とフェノール
系酸化防止剤(アデカ・アーガス化学(株)製、PEP
−36)0.28重量部とを用いた。酸化ホウ素は予め
120℃のギヤオーブン中で4時間熱処理を施したこと
を除いて実施例1と同様の加工を行った後圧縮成型機に
より成型したものは耐久性試験に用いた。実施例1と同
様の耐久性試験の結果成形直後の成形品表面状態は若干
ブリードする程度だが3ケ月放置後では顕著なブリード
を確認した。
Comparative Example 1 60 parts by weight of linear low-density polyethylene (manufactured by Tosoh Corporation, trade name "Niboron-LJ, M-50") and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "r'Full")
40 parts by weight of U ('N J, EVA-9210), 80 parts by weight of boron oxide (manufactured by Yasuhon Denko Co., Ltd.) as a neutron beam absorbing material, and a phosphite-based antioxidant (manufactured by Adeka Argus Chemical Co., Ltd.). AO-18) 0.28 parts by weight and phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP
-36) 0.28 parts by weight was used. The boron oxide was processed in the same manner as in Example 1 except that it was previously heat treated in a gear oven at 120° C. for 4 hours, and then molded using a compression molding machine and used for the durability test. As a result of a durability test similar to that in Example 1, the surface condition of the molded product immediately after molding showed slight bleeding, but significant bleeding was confirmed after being left for three months.

比較例2 直鎖低密度ポリエチレン(東ソー(株)製、商品名「ニ
ボロンーLJ 、M−50)60ffl量部とエチレン
−酢酸ビニル共重合体(東ソー(株)製、商品名「ウル
トラセン」、EvA−9210)40重量部と中性子線
吸収材として酸化ホウ素(日本電工(株)製)80重量
部とホスファイト系酸化防止剤(アデカ・アーガス化学
(株)製、Ao  18)0.28′mEi1gと7エ
/ −ル系酸化防止剤(アデカ・アーガス化学(株)製
、PEP−36)0.28重量部とを用いた。酸化ホウ
素の熱処理をしなかったことを除いて実施例1と同様の
加工を行った後、シート状成形体を圧縮成型機により成
型し耐久性試験に用いた。実施例1と同様の耐久性試験
の結果、成型直後の状態で既に成形品表面はブリードに
よるザラツキが生じていた。又、3ケ月後の表面状態は
著しいブリードが確認された。
Comparative Example 2 60 ffl parts of linear low-density polyethylene (manufactured by Tosoh Corporation, trade name "Niboron-LJ, M-50") and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultracene", EvA-9210) 40 parts by weight, 80 parts by weight of boron oxide (manufactured by Nippon Denko Co., Ltd.) as a neutron beam absorbing material, and 0.28' phosphite-based antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., Ao 18). 1 g of mEi and 0.28 parts by weight of a 7-el antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP-36) were used. After performing the same processing as in Example 1 except that the boron oxide heat treatment was not performed, a sheet-like molded product was molded using a compression molding machine and used for a durability test. As a result of the same durability test as in Example 1, the surface of the molded product was already rough due to bleeding immediately after molding. In addition, significant bleeding was confirmed on the surface after 3 months.

比較例3 高密度ポリエチレン(東ソー(株)製、商品名「ニボロ
ンーハードJ 、5600)60重量部とエチレン−酢
酸ビニル共重合体(東ソー(株)製、商品名[ウルトラ
センJ 、EVA−9210)40重量部と中性子線吸
収材として酸化ホウ素(111本電工(株)製)80重
量部とホスファイト系酸化防止剤(アデカ・アーガス化
学(株)製、AO−18)0.28重量部とフェノール
系酸化防止剤(アデカ・アーガス化学(株)製、PEP
−36)0.28ffl量部とを用いた。酸化ホウ素は
予め120℃のギヤオーブン中で4時間熱処理を施した
ことを除いて実施例1と同様の加工を行った後、シート
状成形体を圧縮成型機により成型し耐久性試験に用いた
。実施例1と同様の耐久性試験の結果顕著なブリードを
確認した。
Comparative Example 3 60 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, trade name "Niboron-Hard J, 5600") and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultracene J, EVA-9210") 40 parts by weight, 80 parts by weight of boron oxide (manufactured by 111 Hondenko Co., Ltd.) as a neutron beam absorbing material, and 0.28 parts by weight of a phosphite-based antioxidant (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.). Phenolic antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP
-36) 0.28ffl parts were used. Boron oxide was processed in the same manner as in Example 1, except that it was heat-treated in a gear oven at 120°C for 4 hours, and then a sheet-shaped molded product was molded using a compression molding machine and used for a durability test. . As a result of the same durability test as in Example 1, significant bleeding was confirmed.

比較例4 高密度ポリエチレン(東ソー(株)製、商品名[ニボロ
ンーハードJ 、5600)60重量部とエチレン−酢
酸ビニル共重合体(東ソー(株)製、商品名「ウルトラ
セン」、EvA−9210)40重量部と中性子線吸収
材として酸化ホウ素(日本電工(株)製)80fff量
部とホスファイト系酸化防止剤(アデカ・アーガス化学
(株)製、AO−18)0.28重量部とフェノール系
酸化防止剤(アデカ・アーガス化学(株)製、PEP−
36)0.28重量部とを用いた。酸化ホウ素は熱処理
をしなかったことを除いて実施例1と同様の加工を行っ
た後、シート状成形体を圧縮成型機により成型し耐久性
試験に用いた。実施例1と同様の耐久性試験の結果、成
型直後の状態で既に成形品表面はブリードによるザラツ
キが生じていた。又、3ケ月後の表面状態は著しいブリ
ードが確認された。
Comparative Example 4 60 parts by weight of high-density polyethylene (manufactured by Tosoh Corporation, trade name [Niboron-Hard J, 5600) and ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, trade name "Ultracene", EvA-9210) 40 parts by weight, 80 parts by weight of boron oxide (manufactured by Nippon Denko Corporation) as a neutron beam absorbing material, 0.28 parts by weight of a phosphite antioxidant (AO-18, manufactured by Adeka Argus Chemical Co., Ltd.), and phenol. Antioxidant (manufactured by Adeka Argus Chemical Co., Ltd., PEP-
36) 0.28 parts by weight was used. The boron oxide was processed in the same manner as in Example 1 except that it was not heat-treated, and then a sheet-like molded product was molded using a compression molding machine and used for a durability test. As a result of the same durability test as in Example 1, the surface of the molded product was already rough due to bleeding immediately after molding. In addition, significant bleeding was confirmed on the surface after 3 months.

[発明の効果] 本発明の方、法によれば、比較例に示す従来法で問題で
あった耐久性が改良できる。
[Effects of the Invention] According to the method of the present invention, the durability, which was a problem with the conventional method shown in the comparative example, can be improved.

Claims (1)

【特許請求の範囲】[Claims] 1)ポリオレフィン系樹脂に無機ホウ素化合物を混合し
てなる中性子線遮蔽材において、無機ホウ素化合物が予
め熱処理されていることを特徴とする中性子線遮蔽材。
1) A neutron beam shielding material made by mixing an inorganic boron compound with a polyolefin resin, wherein the inorganic boron compound is heat-treated in advance.
JP31629288A 1988-12-16 1988-12-16 Neutron shielding material Pending JPH02162295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31629288A JPH02162295A (en) 1988-12-16 1988-12-16 Neutron shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31629288A JPH02162295A (en) 1988-12-16 1988-12-16 Neutron shielding material

Publications (1)

Publication Number Publication Date
JPH02162295A true JPH02162295A (en) 1990-06-21

Family

ID=18075487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31629288A Pending JPH02162295A (en) 1988-12-16 1988-12-16 Neutron shielding material

Country Status (1)

Country Link
JP (1) JPH02162295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867557A (en) * 2012-10-09 2013-01-09 哈尔滨工业大学 Boron nitride-polyethylene space radiation protection composite material and preparation method of composite material
US8664630B1 (en) * 2011-03-22 2014-03-04 Jefferson Science Associates, Llc Thermal neutron shield and method of manufacture
CN107880362A (en) * 2017-12-07 2018-04-06 四川义结科技有限责任公司 A kind of preparation method of neutron irradiation shielding composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664630B1 (en) * 2011-03-22 2014-03-04 Jefferson Science Associates, Llc Thermal neutron shield and method of manufacture
CN102867557A (en) * 2012-10-09 2013-01-09 哈尔滨工业大学 Boron nitride-polyethylene space radiation protection composite material and preparation method of composite material
CN102867557B (en) * 2012-10-09 2015-08-05 哈尔滨工业大学 A kind of preparation method of boron nitride-polyethylenespace space radiation protection compound substance
CN107880362A (en) * 2017-12-07 2018-04-06 四川义结科技有限责任公司 A kind of preparation method of neutron irradiation shielding composite

Similar Documents

Publication Publication Date Title
JP2003347106A (en) Ptc composition, thermistor element, and their manufacturing methods
GB1585085A (en) Polyamide compositions
JPS63305169A (en) Flame-retarding synthetic resin composition
EP0143545B1 (en) Masterbatch composition containing a resin and a foaming agent
JPS61155451A (en) Electrically conductive resin composition
JPH10316803A (en) Flame-retardant resin composition
CN108250787A (en) A kind of Wood-plastic material and preparation method thereof
JPH02162295A (en) Neutron shielding material
US4522957A (en) Process for preparing curable polyolefin polymers
JP2956064B2 (en) Neutron shielding material
JPH05163485A (en) Heat storage material
JPS627941B2 (en)
JP3129423B2 (en) Composition for synthetic resin magnet
EP3533578A1 (en) Cleaning agent and method for cleaning resin processing machine
EP0481564A2 (en) Oily matter containing heat storage material and manufacturing method thereof
JPH0266499A (en) Neutron ray shielding material
JPS6249305B2 (en)
KR0122075B1 (en) Polyolefin composition with stabilized carbon black
JPS6144092B2 (en)
CA1065989A (en) Polyolefin composition and method for minimizing migration of u.v. absorber therein
RU2196788C2 (en) Process of preparation of boron-carrying composition
JP3503665B2 (en) Polyolefin resin composition
RU2008730C1 (en) Neutron radiation protection material
JP4640537B2 (en) Waste paper material for resin blending and its manufacturing method
JPH0680120B2 (en) Method for producing water-absorbent plastic composite material