JPH021615B2 - - Google Patents

Info

Publication number
JPH021615B2
JPH021615B2 JP17865481A JP17865481A JPH021615B2 JP H021615 B2 JPH021615 B2 JP H021615B2 JP 17865481 A JP17865481 A JP 17865481A JP 17865481 A JP17865481 A JP 17865481A JP H021615 B2 JPH021615 B2 JP H021615B2
Authority
JP
Japan
Prior art keywords
machining
flow
light
sensor
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17865481A
Other languages
Japanese (ja)
Other versions
JPS5882628A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP17865481A priority Critical patent/JPS5882628A/en
Publication of JPS5882628A publication Critical patent/JPS5882628A/en
Publication of JPH021615B2 publication Critical patent/JPH021615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/101Supply of working media

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はワイヤカツト放電加工装置の特に加工
液の供給制御の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wire-cut electric discharge machining apparatus, particularly to an improvement in machining fluid supply control.

〔従来の技術〕[Conventional technology]

ワイヤカツトは細線を走行移動させ、これを電
極として対向する被加工体との加工間隙に加工液
を供給し、この加工液を介し、放電を行なつて加
工する。
The wire cut runs a thin wire, uses this as an electrode to supply machining liquid to the machining gap between the workpiece and the object to be machined, and performs machining by generating electric discharge through the machining liquid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

加工液は通常加工部分に向けて対向するノズル
から噴流し、微小な、常に変化している加工間隙
部分に流動させるから、常に充分な量の液を充分
な流速をもつて安定して流通させることが難し
い。
Machining fluid is normally jetted from opposing nozzles toward the machining area and flows into the tiny, constantly changing machining gap, so that a sufficient amount of fluid is always stably distributed at a sufficient flow rate. It's difficult.

この加工間隙に噴流する加工液は放電の媒体と
なり冷却手段となるが、流量流速が低下すると放
電は気中アークになつて加工が行なわれなかつた
り、加工屑、発生ガスの排除が行なわれず、放電
加工が不安定になり、又細線のワイヤ電極が断線
したりして安定加工が行なわれなくなる。
The machining fluid jetted into the machining gap becomes a discharge medium and serves as a cooling means, but if the flow rate decreases, the discharge becomes an air arc and machining is not performed, and machining debris and generated gas are not removed. Electric discharge machining becomes unstable, and the thin wire electrode may break, making stable machining impossible.

本発明はこの点を改良するために提案されたも
のである。
The present invention has been proposed to improve this point.

〔課題を解決するための手段〕[Means to solve the problem]

この発明のワイヤカツト放電加工装置は、ワイ
ヤ電極と被加工体間の加工間隙に対向するノズル
から加工液を噴流供給しながら放電加工する装置
に於て、前記ノズルから噴流する加工液流に対し
て光を照射する光源と、透過光若しくは反射光線
を検出するセンサと、該センサが検出する噴流す
る加工液流の乱れに対する検出信号と記憶してい
る安定した平行流に対する検出信号とを比較判別
して信号を出力する制御回路と、該制御回路が出
力する信号によつて加工液流量を安定した平行流
になるように制御する流量制御装置とを設けたも
のである。
The wire cut electrical discharge machining apparatus of the present invention is an apparatus that performs electrical discharge machining while supplying a jet of machining fluid from a nozzle facing a machining gap between a wire electrode and a workpiece, and in which the machining fluid flow jetted from the nozzle is A light source that irradiates light, a sensor that detects transmitted light or reflected light, and a detection signal detected by the sensor for turbulence in the jetting machining fluid flow and a memorized detection signal for stable parallel flow are compared and determined. This system is provided with a control circuit that outputs a signal, and a flow rate control device that controls the flow rate of machining fluid to a stable parallel flow based on the signal output from the control circuit.

〔作用〕[Effect]

加工間隙にノズルから噴流供給する加工液が、
安定した平行流のときはセンサが検出する受光量
は最大であり、液流が乱れれば乱れる程受光量は
減少する。センサは受光量に応じて出力する検出
信号を制御回路で比較判別してその結果を流量制
御装置に送ると流量制御装置はセンサが検出する
受光量が安定した平行流に近付けるように加工液
の流量、流速を制御する。
The machining fluid that is jetted from the nozzle into the machining gap is
When there is stable parallel flow, the amount of light received by the sensor is the maximum, and the more the liquid flow is disturbed, the more the amount of light received decreases. The sensor compares and discriminates detection signals output according to the amount of light received by the control circuit, and sends the results to the flow control device.The flow control device adjusts the processing fluid so that the amount of light received by the sensor approaches a stable parallel flow. Control flow rate and flow rate.

〔実施例〕〔Example〕

以下図面の一実施例により本発明を説明すれ
ば、第1図に於て、1はワイヤ電極で、線径0.1
〜0.5mmφ程度の銅、黄銅、その他の合金線が用
いられ、図示しないが通常一方のリールから他方
のリールに巻取り移動をし、上下ガイド2間を所
定の張力を保持して上(下)方向に走行する。3
はガイド2間のワイヤ電極1に対向して加工され
る被加工体で、図示しないが加工テーブルに固定
され、加工テーブルにNC制御の加工形状送り装
置が設けられ、被加工体3ワイヤ電極1との間に
加工形状の相対送りを与えて加工する。4はワイ
ヤ電極1と被加工体3の対向加工間隙部分に向け
て被加工体上に設けられた加工液供給ノズル、加
工液には通常水道水をイオン交換樹脂の処理によ
つて比抵抗を102〜105Ωcm程度とした蒸溜水を使
うが、勿論水に他の物質を混合したものとか、油
との混合水が用いられる。加工液は図外ポンプに
より所要の流量流速をもつて供給され、途中流量
制御装置5により制御される。加工液を供給しな
がらワイヤ電極1と被加工体3との間にパルス放
電を行なつて加工するが、パルス電源は直流をス
イツチ素子のオン・オフにより発生するもの、コ
ンデンサの充放電を用いたもの、直流パルスによ
りコンデンサを充放電する方式等任意に利用され
るが、図示しない。6はノズル4から噴流する加
工液の噴流状態を検査するための光を照射するレ
ーザ発振器、7はノズル4から噴流する液流部分
に光を当てる反射鏡、8は液流を通過した光を次
のセンサ9に導く反射鏡、10は光センサ9の検
出信号を判別する制御回路で、この出力信号を前
記流量制御装置5に加えて自動制御を行なう。セ
ンサ9には第2図、第3図で説明するものを用い
ることができる。これはレーザ光を用いてフラウ
ンホーフア回折等の回折像の原理を利用するもの
である。レーザ発振器6から出る光を噴流加工液
の流水に当て透過光をセンサ9で検出するが、セ
ンサ9は走行するワイヤ電極1に垂直な方向に複
数個の光電素子91,92,93……9nを回折像
に等しい間隔dをもつて等間隔で配列してなる。
即ち、ワイヤ電極1の線径をφ、ワイヤ電極1か
らセンサ9までの距離をxレーザ光の波長をλと
すれば、回折像の間隔d=λ/φ・xとして求めら れるから、これにより、各光電素子91,92,9
……9nを間隔dをもつて配設する。そしてこ
の各光電素子を配置したセンサ9には第3図に示
す如き間隔dを有するフラウンホーフア回折像が
現われる。この解析像は波高値がワイヤ電極1の
軸と平行で、ワイヤ電極の投影位置を中心に左右
対象に水平座標上に干渉縞が分布する。この干渉
縞間隔はdで前記光電素子9の間隔と等しい。従
つて各光電素子91,92,93……9nは全てが
フラウンホーフア回折像の干渉縞が現われる位置
に配置されるので回折像のみを受光し信号を発生
することになる。
The present invention will be explained below with reference to an embodiment of the drawings. In Fig. 1, 1 is a wire electrode, and the wire diameter is 0.1.
Copper, brass, or other alloy wire with a diameter of ~0.5 mm is used, and although not shown, it is normally wound and moved from one reel to the other, and the upper (lower) ) direction. 3
is a workpiece to be machined facing the wire electrode 1 between the guides 2, which is fixed to a processing table (not shown), and the processing table is equipped with an NC-controlled processing shape feeding device, and the workpiece 3 is connected to the wire electrode 1. Machining is performed by giving a relative feed of the machining shape between. 4 is a machining fluid supply nozzle provided on the workpiece toward the facing machining gap between the wire electrode 1 and the workpiece 3, and the machining fluid is usually tap water and is treated with an ion exchange resin to reduce the specific resistance. Distilled water of about 10 2 to 10 5 Ωcm is used, but of course water mixed with other substances or water mixed with oil can also be used. The machining fluid is supplied at a required flow rate by a pump (not shown), and is controlled by a flow rate control device 5 midway. Machining is performed by creating a pulse discharge between the wire electrode 1 and the workpiece 3 while supplying machining fluid.The pulse power source is one that generates direct current by turning on and off a switch element, or one that uses charging and discharging of a capacitor. A method of charging and discharging a capacitor using DC pulses may be used as desired, but this method is not shown. Reference numeral 6 denotes a laser oscillator that irradiates light for inspecting the jet state of the machining fluid jetted from the nozzle 4, 7 a reflector that irradiates the part of the liquid flow jetted from the nozzle 4, and 8 a reflector that emits light that passes through the liquid flow. A reflecting mirror 10 leading to the next sensor 9 is a control circuit that discriminates the detection signal of the optical sensor 9, and this output signal is applied to the flow rate control device 5 for automatic control. The sensor 9 described in FIGS. 2 and 3 can be used. This utilizes the principle of diffraction images such as Fraunhofer diffraction using laser light. The light emitted from the laser oscillator 6 is applied to the flowing water of the jet machining fluid, and the transmitted light is detected by the sensor 9. The sensor 9 has a plurality of photoelectric elements 9 1 , 9 2 , 9 3 arranged in a direction perpendicular to the running wire electrode 1 . ...9n are arranged at regular intervals with an interval d equal to the diffraction image.
That is, if the wire diameter of the wire electrode 1 is φ, the distance from the wire electrode 1 to the sensor 9 is x and the wavelength of the laser beam is λ, then the distance between the diffraction images can be obtained as d=λ/φ・x. , each photoelectric element 9 1 , 9 2 , 9
3 ...9n are arranged with an interval d. A Fraunhofer diffraction image having an interval d as shown in FIG. 3 appears on the sensor 9 in which each photoelectric element is arranged. In this analytical image, the wave height value is parallel to the axis of the wire electrode 1, and interference fringes are distributed on horizontal coordinates symmetrically about the projected position of the wire electrode. This interference fringe spacing is d, which is equal to the spacing of the photoelectric elements 9. Therefore, the photoelectric elements 9 1 , 9 2 , 9 3 . . . 9n are all arranged at positions where the interference fringes of the Fraunhofer diffraction image appear, so that they receive only the diffraction image and generate a signal.

ノズル4から噴流する液流は、走行するワイヤ
電極1を中心にして平行流であり、安定した平行
流が得られているときは各光電素子91,92,9
……9nの受光量は最大であるが、液流に乱れ
が生じると干渉縞に影響し透過光量を減少させ
る。従つて、液流が乱れれば乱れる程光電素子の
検出信号は低下するようになり、これを判別回路
10で判別することより容易に液流状態を検出す
ることができる。
The liquid flow jetted from the nozzle 4 is a parallel flow centered on the running wire electrode 1, and when a stable parallel flow is obtained, each photoelectric element 9 1 , 9 2 , 9
The amount of light received at 3 ...9n is the maximum, but if turbulence occurs in the liquid flow, it will affect the interference fringes and reduce the amount of transmitted light. Therefore, the more the liquid flow is disturbed, the more the detection signal of the photoelectric element decreases, and by discriminating this with the discrimination circuit 10, the liquid flow state can be easily detected.

即ち、判別回路内10には通常の正常加工中の
各光電素子91,92,93……9nの検出信号値
を基準値として入力設定しておき、各光電素子の
受光素子の受光信号を入力した基準値と比較判別
して信号を発生するようにする。各光電素子91
2,93……9nの検出信号を各別に判別して
も、又検出信号の和を判別してもよい。
That is, the detection signal value of each photoelectric element 9 1 , 9 2 , 9 3 . A signal is generated by comparing and determining a signal with an input reference value. Each photoelectric element 9 1 ,
The detection signals of 9 2 , 9 3 . . . 9n may be determined individually, or the sum of the detection signals may be determined.

しかしてノズル4から噴流する液の流量が減少
し周りから空気を巻き込み乱流が生じているよう
なときはセンサ9の検出信号が低下し、これを判
別制御回路10で記憶している安定した平行流の
基準値と比較し判別して制御信号を流量制御装置
5に加えて流量、流速を制御し、安定した平行流
になるように制御を行なう。乱流を生じたときの
光電素子による検出信号の変化は水を加工液と
し、アルゴンレーザを用いたとき正常加工時の約
80〜90%程度となり容易に異常を検出することが
できた。
However, when the flow rate of the liquid jetted from the nozzle 4 decreases and air is drawn in from the surroundings to create a turbulent flow, the detection signal of the sensor 9 decreases, and this is stored in the discrimination control circuit 10. A control signal is applied to the flow rate control device 5 based on the comparison with a reference value for parallel flow to control the flow rate and flow velocity so as to provide stable parallel flow. When turbulent flow occurs, the change in the detection signal by the photoelectric element is approximately equal to that during normal machining when water is used as the machining fluid and an argon laser is used.
It was around 80-90%, and abnormalities could be easily detected.

尚、前記実施例は、噴流液の光検出を上下ノズ
ルの和の信号をもつて検出判別すると共に制御信
号を出力して上下ノズルを同時に制御するように
したが、上ノズル及び下ノズルの噴流液の検出及
び制御を各々独立して行なうように構成すること
ができる。
In the above embodiment, the light detection of the jet liquid is detected and determined based on the signal of the sum of the upper and lower nozzles, and a control signal is output to control the upper and lower nozzles at the same time. The liquid detection and control can be configured to be performed independently.

尚、光照射によつて噴流加工液の乱れを検出す
るには透過光又は反射光散乱光等も同時に利用で
きる。しかし前記したフラウンホーフア回折像を
利用する方式は回折像に散乱光とか屈折光等が含
まれないから検出角度は高められる効果が得られ
る。又光源にはレーザ発振器を用いることによつ
て容易に平行光線が得られるが、他のランプの光
をスリツト・レンズ等を用いて利用してもよいこ
とは勿論である。
Note that transmitted light, reflected light, scattered light, etc. can also be used at the same time to detect disturbances in the jet machining fluid by light irradiation. However, in the method using the Fraunhofer diffraction image described above, the detection angle can be increased because the diffraction image does not include scattered light or refracted light. Further, parallel light beams can be easily obtained by using a laser oscillator as the light source, but it goes without saying that light from another lamp may be used using a slit lens or the like.

〔発明の効果〕〔Effect of the invention〕

ワイヤ電極と被加工体間の加工間隙に対向する
ノズルから加工液を噴流供給しながら放電加工す
る際に、加工間隙にノズルから噴流供給する加工
液が、安定した平行流のときは設置した本発明の
センサが検出する受光量は最大となる。そして、
液流が乱れれば乱れる程受光量は減少する。セン
サはこの受光量に応じて検出信号を出力して制御
回路に送ると、制御回路には安定した平行流のと
きの検出信号を基準値として記憶してあり、加工
液流の乱れによつてセンサが受光する受光量が減
少したときは、その検出信号を判別回路の基準値
と比較判別して、その結果を流量制御装置に送
る。この信号を受けた流量制御装置はセンサが検
出する受光量が安定した平行流れに近付けるよう
に加工液の流量、流速を制御することができる。
When performing electric discharge machining while supplying a jet of machining fluid from a nozzle facing the machining gap between the wire electrode and the workpiece, if the machining fluid supplied jet from the nozzle to the machining gap is a stable parallel flow, the installed book The amount of light received by the sensor of the invention is maximum. and,
The more the liquid flow is disturbed, the more the amount of light received decreases. The sensor outputs a detection signal according to the amount of light received and sends it to the control circuit.The control circuit has the detection signal for stable parallel flow stored as a reference value, and the detection signal for stable parallel flow is stored as a reference value. When the amount of light received by the sensor decreases, the detection signal is compared with a reference value of a discrimination circuit and the result is sent to the flow rate control device. Upon receiving this signal, the flow rate control device can control the flow rate and flow velocity of the machining fluid so that the amount of light received by the sensor approaches a stable parallel flow.

このようにして噴流加工液の検出制御によりワ
イヤ電極1と被加工体3の加工部分に一定流量の
平行流を流すことにより狭い間隙にも安定して加
工液を流通させることができ、加工屑等の排除を
良くし、冷却効果を高め、アーク・短絡等の発生
を少なくして安定加工を行なうことができ、ワイ
ヤ電極の断線もなく、高速度で高能率の放電加工
を行なうことができる。
In this way, by controlling the detection of the jet machining fluid, a parallel flow of a constant flow is caused to flow between the wire electrode 1 and the machining part of the workpiece 3, so that the machining fluid can be stably distributed even in a narrow gap, and the machining debris can be removed. It is possible to perform stable machining by improving the cooling effect, reducing the occurrence of arcs and short circuits, etc., and performing high-speed, high-efficiency electrical discharge machining without wire electrode breakage. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例構成図、第2図は一
部拡大詳細図、第3図はその説明図である。 1……ワイヤ電極、3……被加工体、4……ノ
ズル、5……流量制御装置、6……光源、9……
センサ、10……判別制御回路。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a partially enlarged detailed diagram, and FIG. 3 is an explanatory diagram thereof. DESCRIPTION OF SYMBOLS 1... Wire electrode, 3... Workpiece, 4... Nozzle, 5... Flow rate control device, 6... Light source, 9...
Sensor, 10...Discrimination control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 ワイヤ電極と被加工体間の加工間隙に対向す
るノズルから加工液を噴流供給しながら放電加工
する装置に於て、前記ノズルから噴流する加工液
流に対して光を照射する光源と、透過光若しくは
反射光線を検出するセンサと、該センサが検出す
る噴流する加工液流の乱れに対する検出信号と記
憶している安定した平行流に対する検出信号とを
比較し判別して信号を出力する制御回路と、該制
御回路が出力する信号によつて加工液流量を安定
した平行流になるように制御する流量制御装置と
を設けたことを特徴とするワイヤカツト放電加工
装置。
1. In an apparatus that performs electrical discharge machining while supplying a jet of machining fluid from a nozzle facing a machining gap between a wire electrode and a workpiece, a light source that irradiates light to the machining fluid flow jetting from the nozzle; A sensor that detects light or reflected light, and a control circuit that compares and discriminates between a detection signal for turbulence in a jetting machining liquid flow detected by the sensor and a stored detection signal for a stable parallel flow, and outputs a signal. and a flow rate control device for controlling the flow rate of machining fluid so that it becomes a stable parallel flow based on a signal output from the control circuit.
JP17865481A 1981-11-07 1981-11-07 Wire-cut electric discharge machining device Granted JPS5882628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17865481A JPS5882628A (en) 1981-11-07 1981-11-07 Wire-cut electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17865481A JPS5882628A (en) 1981-11-07 1981-11-07 Wire-cut electric discharge machining device

Publications (2)

Publication Number Publication Date
JPS5882628A JPS5882628A (en) 1983-05-18
JPH021615B2 true JPH021615B2 (en) 1990-01-12

Family

ID=16052235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17865481A Granted JPS5882628A (en) 1981-11-07 1981-11-07 Wire-cut electric discharge machining device

Country Status (1)

Country Link
JP (1) JPS5882628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423611U (en) * 1990-06-21 1992-02-26
JPH0713791U (en) * 1993-08-06 1995-03-07 岸本産業株式会社 Cup-shaped pudding container made of synthetic resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273580A (en) * 2013-06-05 2013-09-04 英利能源(中国)有限公司 Fretsaw and tray thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423611U (en) * 1990-06-21 1992-02-26
JPH0713791U (en) * 1993-08-06 1995-03-07 岸本産業株式会社 Cup-shaped pudding container made of synthetic resin

Also Published As

Publication number Publication date
JPS5882628A (en) 1983-05-18

Similar Documents

Publication Publication Date Title
US4701591A (en) Apparatus for processing multiple workpieces utilizing a single laser beam source
US5866872A (en) Plasma arc torch position control
US6311099B1 (en) Apparatus for regulating welding parameters during laser beam welding
WO1994026458A1 (en) Method and apparatus for monitoring weld quality
US6274841B1 (en) Controlled plasma arc cutting
JP2004283968A (en) Controller for wire electric discharge machine
JPH027772B2 (en)
JPH021615B2 (en)
KR100468810B1 (en) Method for guiding arc by laser, and arc guiding welding and device by the method
JPH0126807B2 (en)
US6437281B1 (en) Apparatus, system, and related method for sensing a characteristic of a workpiece in an automated process
JPS5828430A (en) Electrical discharge machining method for wire cut
JPH06238474A (en) Laser beam machine
JP2946666B2 (en) EDM control device
RU2205096C1 (en) Method for keeping predetermined distance between nozzle and worked surface at laser working and apparatus for performing the same
SU1320037A1 (en) Apparatus for laser machining of metals
JPS59102527A (en) Spark erosion machine for wire-cut
JP2003290947A (en) Fusion machining device and method using laser beam and arc
JPH0710864Y2 (en) Laser output control device for laser processing machine
JPS63245328A (en) Wire-cut electric discharge machining device
JPH1043951A (en) Wire electric discharge machining device
JPH04500178A (en) Power supply for electrical discharge machining of metal workpieces with liquid or solid material electrodes
JPS6224885A (en) Laser beam machine
JPH0647183B2 (en) Beam welding device control device
JPS582011B2 (en) Wire