JPH02161380A - Radio wave distance detecting device - Google Patents

Radio wave distance detecting device

Info

Publication number
JPH02161380A
JPH02161380A JP31546688A JP31546688A JPH02161380A JP H02161380 A JPH02161380 A JP H02161380A JP 31546688 A JP31546688 A JP 31546688A JP 31546688 A JP31546688 A JP 31546688A JP H02161380 A JPH02161380 A JP H02161380A
Authority
JP
Japan
Prior art keywords
signal
distance
frequency
wave
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31546688A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kamiya
剛志 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP31546688A priority Critical patent/JPH02161380A/en
Publication of JPH02161380A publication Critical patent/JPH02161380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To correct an error and to understand a true value by modulating a transmission wave by a prescribed frequency, varying a frequency of the transmission wave itself between prescribed values, calculating an obtained value and deriving a distance. CONSTITUTION:An oscillator 12 is brought to oscillation by frequencies (f0 - f1) based on a carrier wave frequency adjusting signal outputted from a data processor 13, and brought to AM modulation by a modulator 15 by a signal fm of a modulation signal generator 14. The modulated signal is sent out of a transmission antenna 10, reflected by the ground and reaches a reception antenna 11 by being delayed by the time (2l/c second, (c) denotes a velocity of light) determined by altitude (distance (l)) of an unmanned helicopter 1. An output signal passes through an amplifier 16 and detected by a detector 17, and only a modulation component is fetched. Subsequently, phases of the detected signal and a signal from the generator 14 are compared by a detector 18, inputted to the processor 13, and the distance (l) is derived by calculating it. By varying and measuring the wavelength lambda and averaging all the measured values, the true value can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電波を用い送信波と、被測定物からの反射
する受信波との位相差により距離を測定する電波距離検
出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a radio distance detection device that uses radio waves to measure distance based on the phase difference between a transmitted wave and a received wave reflected from an object to be measured.

[従来の技術] 電波を用いて距離を測定する方法として、送信波を所定
の周波数で変調し、被測定物までの距離の2倍の経路を
伝搬するために生じる時間遅れによって、その変調した
受信波の信号の位相が遅れ、送信と受信の変調波の位相
差により、距離を算出できることが知られている。
[Prior art] A method of measuring distance using radio waves involves modulating a transmitted wave at a predetermined frequency, and using the time delay caused by propagation along a path twice the distance to the object to be measured to reduce the modulated frequency. It is known that the phase of the received wave signal is delayed and the distance can be calculated based on the phase difference between the transmitted and received modulated waves.

[発明が解決しようとする課題] ところで、受信波の位相を検知するとき、被測定物から
反射する受信波の信号の他、送信アンテナから直接受信
アンテナに入力される電波やその他送受信回路内での電
磁的結合により、反射する受信波を受信する受信器では
送信信号の入力を完全に排除することは困難であり、送
信信号が合成した受信波を検知することになる。
[Problems to be Solved by the Invention] By the way, when detecting the phase of a received wave, in addition to the received wave signal reflected from the object to be measured, radio waves directly input from the transmitting antenna to the receiving antenna and other signals within the transmitting/receiving circuit are detected. Due to the electromagnetic coupling, it is difficult for a receiver that receives reflected received waves to completely eliminate the input of the transmitted signal, and instead detects a received wave that is a combination of the transmitted signals.

この場合、送信波の位相により、同位相の場合は強く、
逆位相の場合は打消し合ってしまう、このため、第6図
に示すように距離1が送信波の波長λに対して、λ/2
ずっ変化する毎に(往復距離でλ)検知できる位相情報
は繰り返し誤差を生じる。
In this case, depending on the phase of the transmitted waves, if they are in the same phase, it will be strong.
In the case of opposite phases, they cancel each other out. Therefore, as shown in Figure 6, the distance 1 is λ/2 for the wavelength λ of the transmitted wave.
Phase information that can be detected every time it changes (λ in round trip distance) causes a repeat error.

この発明は上記従来の課題を解決するためになされたも
ので、誤差を補正し、真の値の把握を可能とする電波距
離検出装置を提供することを目的としている。
The present invention was made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a radio wave distance detection device that corrects errors and makes it possible to grasp the true value.

[課題を解決するための手段] 前記課題を解決するために、この発明は送信波と受信波
との位相差により測距する電波距離検出装置において、
前記送信波を所定の周波数で変調し、送信波自体の周波
数も所定の値の間にて変化させ、得られた値を演算して
距離を求めることを特徴としている。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a radio distance detection device that measures distance based on a phase difference between a transmitted wave and a received wave,
It is characterized in that the transmitted wave is modulated at a predetermined frequency, the frequency of the transmitted wave itself is also varied between predetermined values, and the obtained value is calculated to determine the distance.

[作用] この発明の電波距離検出装置では、送信波と受信波との
位相差により測距し、このとき誤差はサイン波の合成に
よって生じているため、送信波の周波数を所定の値の量
変化させた場合の誤差自体もサインカーブとなる。従っ
て、このサインカーブ中の最大値と最小値の平均、また
は1波長中のすべてのデータの平均、或いは半波長の始
点と終了点の平均を算出等の演算することにより、真の
値を求めることができる。
[Function] In the radio distance detection device of the present invention, distance is measured based on the phase difference between the transmitted wave and the received wave. At this time, since the error is caused by the synthesis of sine waves, the frequency of the transmitted wave is adjusted by a predetermined amount. The error itself when changed also becomes a sine curve. Therefore, the true value can be found by calculating the average of the maximum and minimum values in this sine curve, the average of all data in one wavelength, or the average of the starting and ending points of a half wavelength. be able to.

[実施例] 以下、この発明の実施例を図面に基づいて詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図はこの発明を搭載した遠隔操縦式へりコブタの側
面図、第2図は遠隔)桑縦式ヘリコプタを後方から見た
図である。
FIG. 1 is a side view of a remote-controlled helicopter equipped with the present invention, and FIG. 2 is a view of the remote-controlled mulberry vertical helicopter seen from the rear.

図において符号1は裏薬散布用の無線操縦式無人のヘリ
コプタであり、このヘリコプタ1の機体2には着地する
ための脚部3が設けられている。
In the figure, reference numeral 1 denotes a radio-controlled unmanned helicopter for dispersing medicine, and a body 2 of the helicopter 1 is provided with legs 3 for landing.

この脚部3の支持部3aは機体2から両側に湾曲して下
方へ延び、この支持部3aに着地部3bが取付けられて
いる。この着地部3bは機体2の前後方向へ延びている
The support portion 3a of the leg portion 3 extends downward from the body 2 by being curved on both sides, and a landing portion 3b is attached to the support portion 3a. This landing portion 3b extends in the longitudinal direction of the aircraft body 2.

機体2の前部内方には図示しないエンジン、受信器、制
御装置、サーボ機構等が配置されている。エンジンから
略垂直上方に延びる出力軸4にはメインロータ5が取付
けられており、また機体2の後端にはテールロータ6が
取り付けられている。このテールロータ6はメインロー
タ5による反転トルクを打ち消すためのものであり、水
平方向でかつ進行方向に向かりて、左側に延びる回転軸
7を介して機体2の後方へ設けられている。
An engine, a receiver, a control device, a servo mechanism, etc. (not shown) are arranged inside the front part of the fuselage 2. A main rotor 5 is attached to an output shaft 4 extending substantially vertically upward from the engine, and a tail rotor 6 is attached to the rear end of the fuselage 2. This tail rotor 6 is for canceling the reversal torque produced by the main rotor 5, and is provided toward the rear of the fuselage 2 via a rotating shaft 7 that extends horizontally and to the left in the direction of travel.

メインロータ5とテールロータ6との間の機体2には尾
翼8が機体の下方に設けられている。
A tail fin 8 is provided on the fuselage 2 between the main rotor 5 and the tail rotor 6 below the fuselage.

この機体2の後方位置にはワイヤやロープ等で形成され
る図示しない係留体が固定され、この係留体の他端は地
上に設けられた図示しないロープ巻回装置に接続される
A mooring body (not shown) made of wire, rope, etc. is fixed to the rear of the body 2, and the other end of the mooring body is connected to a rope winding device (not shown) provided on the ground.

橋体2の下部で、脚部3の間に電波距離検出装置9が備
えられている。この電波距離検出装置9は送信アンテナ
10と受信アンテナ11とを有しており、例えば前側に
送信アンテナ!0が、後側に受信アンテナ11が設けら
れる。
A radio range detection device 9 is provided between the legs 3 at the lower part of the bridge body 2. This radio wave distance detection device 9 has a transmitting antenna 10 and a receiving antenna 11, for example, a transmitting antenna on the front side! 0, a receiving antenna 11 is provided on the rear side.

この電波距離検出装置9の回路図を第3図に示し、第4
図にこの回路の波形口を示す、ヘリコプタ1の高度1.
5mから15mまでの高度を測定するものについて説明
する。
A circuit diagram of this radio wave distance detection device 9 is shown in FIG.
The figure shows the waveform opening of this circuit, altitude 1 of helicopter 1.
A device that measures altitudes from 5 m to 15 m will be explained.

まず、発振器12はデータ処理装置13の出力する搬送
波周波数調整信号に基づいた周波数(fo〜f+)で発
撮し、変調信号発生器14の信号fmで変調器15でA
M変調する。変調された信号は送信アンテナ10から送
出され、大地に反射して無人のヘリコプタ1の高度(距
離L)によりて定まる時間(2j2/C秒 C:光速)
遅れて、受信アンテナ11に到達する。受信した信号は
微少電力なので、アンプ16で増幅した後、検波器17
で検波し、変調信号成分のみ取り出す。
First, the oscillator 12 emits an image at a frequency (fo to f+) based on the carrier frequency adjustment signal output from the data processing device 13, and the modulator 15 uses the signal fm from the modulation signal generator 14 to
M modulates. The modulated signal is sent out from the transmitting antenna 10 and reflected on the ground for a time determined by the altitude (distance L) of the unmanned helicopter 1 (2j2/C seconds C: speed of light)
The signal reaches the receiving antenna 11 with a delay. Since the received signal has very low power, it is amplified by the amplifier 16 and then sent to the detector 17.
Detect and extract only the modulated signal component.

ここで検波された信号と変調信号発生器14の位相を移
送検出器18で比較し、出力する。このように、搬送波
をf0〜f1へと変化させると、搬送波の干渉によって
生じる誤差が増加状態から減少状態まで変化し、第4図
のように位相出力の最小値θ0、最大値θ1が得られる
The phase of the detected signal and the modulated signal generator 14 are compared by a transfer detector 18 and output. In this way, when the carrier wave is changed from f0 to f1, the error caused by carrier wave interference changes from an increasing state to a decreasing state, and the minimum value θ0 and maximum value θ1 of the phase output are obtained as shown in Fig. 4. .

このように、測定誤差は距+!1J2と搬送波の波長λ
との特定の関係により生ずるので、波長λを変化させる
ことにより送受信の位相の状態を変えることができる位
相をOから2πまで変化すれば、その全ての状態での情
報を平均することにより、誤差なく測定することができ
るようになる。このため、波長λを21寓λon≧λ、
(n+1)の関係になるλ。からλ1まで変化させ測定
を行なう、この時λ。n!λ、’(n+1)の関係が成
り立つようにすれば、測定したデータ全ての平均を測定
値とし、λ。n〉λ1  (n+1)の時は最大値と最
小値の平均を測定値とすればよい。
In this way, the measurement error is distance +! 1J2 and carrier wavelength λ
This is caused by a specific relationship with You will be able to measure without any problems. For this reason, the wavelength λ is set to 21λon≧λ,
λ that has a relationship of (n+1). At this time, λ is varied from λ1 to λ1 and measured. n! If the relationship λ,'(n+1) is established, the average of all measured data is taken as the measured value, and λ. When n>λ1 (n+1), the average of the maximum value and minimum value may be used as the measured value.

出力値はθ。とθ1の平均をとり、θ−(θ。The output value is θ. and θ1, and θ−(θ.

+θl)/2とし、常に干渉によって生じる誤差のない
出力が得られる。
+θl)/2, and an output without errors caused by interference can always be obtained.

ここで、flは最大測定高度15mよりfo、f+は最
小測定高度1.5mより、まずfoを10GHzとする
と (nは整数) f 410. 1GHz とすることにより、1.5mより15mの範囲で測定可
能となる。
Here, fl is fo from the maximum measurement altitude of 15 m, and f+ is from the minimum measurement altitude of 1.5 m. First, if fo is 10 GHz (n is an integer) f 410. By setting the frequency to 1 GHz, measurements can be made in the range of 1.5 m to 15 m.

また、測定誤差は距離1と搬送波の波長λとの特定の関
係により生ずるもので、λを変化さ・せることにより送
受信の位相の状態を変えることができる0位相差によっ
て生じる誤差はサイン波の合成によりて生じているため
、その誤差も位相差に応じてサインカーブとなり、1波
長分の全データの平均を演算により求めて真の値とする
ことができる。
Furthermore, measurement errors are caused by a specific relationship between the distance 1 and the wavelength λ of the carrier wave, and the error caused by a 0 phase difference that can change the phase state of transmission and reception by changing λ is the error caused by the sine wave. Since it is generated by synthesis, the error also becomes a sine curve depending on the phase difference, and the true value can be obtained by calculating the average of all data for one wavelength.

また、搬送波の周波数を1波長以゛上変化させて、デー
タの最大、最小の平均を取る方法が誤差を減少させる方
法としであるが、近距離においては、周波数変化を大き
くしなければ1波長ずれないため、実用上困難な場合も
ある。このため、位相差によって生じる誤差はサイン波
の合成によって生じており、その誤差も位相差に応じて
サインカーブとなるため、位相差をφからφ+πまで変
化させれば、φのときの情報と、φ+πのときの情報の
平均をとれば、データの中心値が得られる。
In addition, one way to reduce the error is to change the frequency of the carrier wave by one wavelength or more and take the average of the maximum and minimum data, but at short distances, unless the frequency change is large, one wavelength Because it does not shift, it may be difficult in practice. Therefore, the error caused by the phase difference is caused by the synthesis of sine waves, and the error also forms a sine curve depending on the phase difference. Therefore, if the phase difference is changed from φ to φ+π, the information at φ , φ+π, the central value of the data can be obtained.

このため、波長λを距aIiに応じて 2jl−λ。nl1Ilλ、(n+1/2)となるλ0
からλ宜まで変化させ、第5図に示すようにそれぞれの
情報θ0.01の平均により、誤差の少ない測定をする
ことができる。
Therefore, the wavelength λ is 2jl−λ according to the distance aIi. nl1Ilλ, (n+1/2) λ0
As shown in FIG. 5, by varying the information from .theta. to .lamda.

搬送波f0とflの関係は (nは整数) nを消去して、flを求めると f+ =fo + (0,sc7’2Jl)となる。The relationship between carrier waves f0 and fl is (n is an integer) Eliminating n and finding fl f+ = fo + (0, sc7'2Jl).

任意のときの測定した1を初期値としてf、を定め、f
oとf、のときの位相情報θ8.θ。を測定し、θ=(
θ。十〇I)/2として出力すると、最大誤差は第6図
での最大、最小となることがあるが、距11J2が連続
して変化すること、短時間に位相差検出ができること、
また最大誤差を初期値としても、搬送波の位相差誤差は
その初期値の誤差割合にしかならないため、繰り返し測
定により、測定データは真値に収束することになる。
Define f with the initial value of 1 measured at any time, and
Phase information θ8 when o and f. θ. , and θ=(
θ. When outputting as 10I)/2, the maximum error may be the maximum or minimum in Fig. 6, but the distance 11J2 changes continuously and the phase difference can be detected in a short time.
Further, even if the maximum error is set as the initial value, the phase difference error of the carrier wave is only the error percentage of the initial value, so the measured data will converge to the true value by repeated measurements.

以上のように、比較的少ない搬送波の周波数で誤差の少
ない測定を行なうことがで診る。
As described above, it is possible to perform measurements with few errors using a relatively small number of carrier wave frequencies.

[発明の効果] 以上のように、この発明の電波距離検出装置は、送信波
を所定の周波数で変調し、送信波自体の周波数も所定の
値の間にて変化させ、得られた値を演算して距離を求め
るから、誤差はサイン波の合成によって生じており、送
信波の周波数を所定の値の量変化させた場合の誤差自体
もサインカーブとなる。従って、このサインカーブ中の
最大値と最小値の平均、1波長中のすべてデータの平均
、半分周波数の始点と終了点の平均を算出等の演算によ
り真の値を求めることができる。
[Effects of the Invention] As described above, the radio distance detection device of the present invention modulates the transmitted wave at a predetermined frequency, changes the frequency of the transmitted wave itself between predetermined values, and modulates the obtained value. Since the distance is determined by calculation, the error is caused by the synthesis of sine waves, and the error itself when the frequency of the transmitted wave is changed by a predetermined amount also becomes a sine curve. Therefore, the true value can be determined by calculations such as calculating the average of the maximum and minimum values in this sine curve, the average of all data in one wavelength, and the average of the start and end points of half frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を搭載した遠隔操縦式ヘリコプタの側
面図、第2図は遠隔操縦式ヘリコプタを後方から見た図
、第3図は電波距離検出装置の回路図、第4図及び第5
図は電波距離検出装置の回路の波形図、第6図は距離と
位相との関係を示す図である。 図中符号1はヘリコプタ、2は機体、3は脚部、9は電
波距離検出装置、10は送信アンテナ、11は受信アン
テナ、12は発振器、13は、データ処理装置、14は
変調信号発生器、15は変調器、 16はアンプ、 相検出器である。 17は検波器、 18は位 竺 図 第 図 第 図 弛 趣り 第 図
Figure 1 is a side view of a remote-controlled helicopter equipped with this invention, Figure 2 is a view of the remote-controlled helicopter seen from the rear, Figure 3 is a circuit diagram of the radio range detection device, and Figures 4 and 5.
The figure is a waveform diagram of the circuit of the radio wave distance detection device, and FIG. 6 is a diagram showing the relationship between distance and phase. In the figure, 1 is a helicopter, 2 is a fuselage, 3 is a leg, 9 is a radio range detection device, 10 is a transmitting antenna, 11 is a receiving antenna, 12 is an oscillator, 13 is a data processing device, and 14 is a modulation signal generator , 15 is a modulator, 16 is an amplifier, and a phase detector. 17 is a detector, 18 is a scale diagram, a diagram, and a relaxation diagram.

Claims (1)

【特許請求の範囲】[Claims] 送信波と受信波との位相差により測距する電波距離検出
装置において、前記送信波を所定の周波数で変調し、送
信波自体の周波数も所定の値の間にて変化させ、得られ
た値を演算して距離を求めることを特徴とする電波距離
検出装置。
In a radio distance detection device that measures distance based on the phase difference between a transmitted wave and a received wave, the transmitted wave is modulated at a predetermined frequency, and the frequency of the transmitted wave itself is also varied between predetermined values. A radio distance detection device characterized by calculating distance.
JP31546688A 1988-12-14 1988-12-14 Radio wave distance detecting device Pending JPH02161380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31546688A JPH02161380A (en) 1988-12-14 1988-12-14 Radio wave distance detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31546688A JPH02161380A (en) 1988-12-14 1988-12-14 Radio wave distance detecting device

Publications (1)

Publication Number Publication Date
JPH02161380A true JPH02161380A (en) 1990-06-21

Family

ID=18065699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31546688A Pending JPH02161380A (en) 1988-12-14 1988-12-14 Radio wave distance detecting device

Country Status (1)

Country Link
JP (1) JPH02161380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168201B2 (en) 2003-09-04 2007-01-30 Eagle Mountain Brokers, Inc. Connector assembly for a fishing pole

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168201B2 (en) 2003-09-04 2007-01-30 Eagle Mountain Brokers, Inc. Connector assembly for a fishing pole

Similar Documents

Publication Publication Date Title
JPS59157581A (en) Fm/cw radar device
JP3572391B2 (en) Distance measuring device
KR101239166B1 (en) Frequency modulated continuous wave proximity sensor
GB1483236A (en) Device for indicating changes in the position of an object
JPH02287183A (en) Ultrasonic doppler type vehicle ground speed indicator
US4167735A (en) Aircraft orientation determining means
JP2794611B2 (en) Dual frequency FM-CW radar device
JPH02161380A (en) Radio wave distance detecting device
US3778830A (en) Vibration compensation for range direction finder
JPS61209382A (en) Range finder
JPH02161381A (en) Radio wave distance detecting device
JP2004198306A (en) Ranging device
JP3879966B2 (en) Frequency modulation radar and radar frequency modulation method
JP3013919B2 (en) Radar temporal sensitivity control method and apparatus
JPH0129274B2 (en)
JPH0419513B2 (en)
JPH05203732A (en) Range finder
JPH0593778A (en) Synthetic aperture radar device
JPH0367195A (en) Method and instrument for measuring temperature and humidity of atmospheric air by utilizing wave propagation
JP2004177338A (en) Ranging device
JP3731335B2 (en) Distance measuring system and distance measuring machine
JP2593211B2 (en) Modulation index switching type FM-CW Doppler radar
SU643817A1 (en) Ice thickness measuring method
JPH0372286A (en) Doppler radar apparatus of delay-type frequency-modulated continuous wave system
JP3000145B1 (en) Self-position detection circuit