JPH02161150A - Idle speed controlling method - Google Patents

Idle speed controlling method

Info

Publication number
JPH02161150A
JPH02161150A JP31473888A JP31473888A JPH02161150A JP H02161150 A JPH02161150 A JP H02161150A JP 31473888 A JP31473888 A JP 31473888A JP 31473888 A JP31473888 A JP 31473888A JP H02161150 A JPH02161150 A JP H02161150A
Authority
JP
Japan
Prior art keywords
capacity
compressor
engine
idle
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31473888A
Other languages
Japanese (ja)
Inventor
Toshinori Katou
憲徳 加藤
Akira Nakamoto
中本 昭
Kazuya Kimura
一哉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP31473888A priority Critical patent/JPH02161150A/en
Publication of JPH02161150A publication Critical patent/JPH02161150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent generation of engine stall due to variation in capacity of a compressor for a car provided with a continuously variable capacity type compressor by controlling idle speed of the engine based on the information of detected capacity of the compressor. CONSTITUTION:On an inlet passage 31 communicating with an inlet port 25 of an engine body 21, a throttle valve 34 is arranged. On a bypass passage 35 connecting the upper and lower parts of the throttle valve 34 together, an idle control valve 36 is arranged, whose opening is regulated according to a duty ratio of welding time to its solenoid 37. The solenoid 37 is controlled by an engine control part 41 based on the detected information on car condition of several kinds 51 through 57, and on the detected information 58 on capacity of a continuously variable capacity type compressor for air conditioning. Variation in capacity of the compressor generated during driving of a car can be assuredly reflected upon speed control for the next idling, and the generation of engine stall can thus be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、連続可変容量型空調用圧縮機を装備した車両
のアイドル回転Wi制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for controlling idle rotation Wi of a vehicle equipped with a continuously variable capacity air conditioning compressor.

[従来の技術] アイドル回転数のIII III機構は、吸気通路のバ
イパス路に設けられたアイドル制御弁の開度を調節して
、アイドル回転数を常に最適にIII allするもの
であり、アイドル制御弁を作動させるエンジン制御部に
は、エンジン回転数、冷却水湯、車速などのほか、アイ
ドル制御に必要な車両状態検出情報の一つとして空調用
圧11機の稼働情報(ON、OFF信号)も入力されて
いる。
[Prior Art] The idle speed control mechanism adjusts the opening degree of an idle control valve provided in a bypass passage of the intake passage to always keep the idle speed at an optimum level. In addition to the engine speed, cooling water, vehicle speed, etc., the engine control unit that operates the valves also receives operating information (ON and OFF signals) for 11 air conditioning units as one of the vehicle state detection information necessary for idle control. is also entered.

一方、上記空調用に供される圧縮機は、定容量型から段
階可変容量型を経て、いまや連続可変容量型の圧縮機も
実用段階へと推移してきている。
On the other hand, the compressors used for air conditioning have gone from a fixed capacity type to a stepwise variable capacity type, and now a continuously variable capacity type compressor has also entered the practical stage.

[発明が解決しようとする課題] ところが上記連続可変容量型圧縮機を装備した車両のア
イドル制御において、既述のように圧縮機の稼働情報が
ON、OFF信号のみに−限られ、負荷(容量)変動情
報が全く提供されないまま制御が行われると、当初のフ
ィトリンク時に字間されたアイドル制御弁開度及び目標
回転数は、走行中の状況変化つまり¥Hl変動に対応し
えないまま、次期アイドリンク時のスタート条件を支配
してしまう。
[Problems to be Solved by the Invention] However, in the idle control of a vehicle equipped with the above-mentioned continuously variable capacity compressor, as mentioned above, the operation information of the compressor is limited to ON and OFF signals, and the load (capacity) ) If control is performed without any fluctuation information being provided, the idle control valve opening and target rotation speed that were set during the initial phytolink will not be able to respond to changes in the driving situation, that is, fluctuations in ¥Hl. This will control the starting conditions for the next idle link.

したがって走行中、回転数の上昇に伴う過剰な冷房能力
により圧縮機の容量が低下した場合は、次期のアイドル
回転数が目標値よりも道かに高くなって不快感を覚えた
り、また、環境変化や渋滞に起因した緩速走行などによ
り逆に圧縮機の容量が増大した場合は、上記アイドル回
転数が目11jliに達せず、ときにはエンジン停止と
いった不測の事態を招く虞れもある。
Therefore, if the capacity of the compressor decreases due to excessive cooling capacity as the rotation speed increases while driving, the next idle rotation speed will be much higher than the target value, causing discomfort, and may cause environmental problems. Conversely, if the capacity of the compressor increases due to slow speed driving due to changes or traffic jams, the idle rotation speed may not reach the target 11jli, and there is a risk that an unexpected situation such as the engine stopping may occur.

本発明は、連M何変容潰型圧縮機を装備した車両のアイ
ドル回転数を適確に制御することを解決すべき技vi課
題とするものである。
An object of the present invention is to accurately control the idle rotation speed of a vehicle equipped with a continuous M variable crushing compressor.

[課題を解決するための手段] 本発明は上記課題解決のため、各種の車両状態検出情報
と上記圧縮機の容量検出情報とをエンジン制御1部に入
力し、エンジン制御部は上記情報に基づいてアイドル回
転数調節手段をIt、IIIXIするという技術手段を
講じている。
[Means for Solving the Problems] In order to solve the above problems, the present invention inputs various vehicle state detection information and compressor capacity detection information to the engine control section 1, and the engine control section operates based on the above information. A technical measure is taken to adjust the idle speed adjustment means.

本発明方法における上記圧N機は、揺動斜板型、回転斜
板型、ベーン型等連続可変容醋m能を備えたすべての圧
縮機を包含する。
The above-mentioned compressor N in the method of the present invention includes all types of compressors having a continuously variable capacity such as an oscillating swash plate type, a rotating swash plate type, and a vane type compressor.

容量検出情報を出力するための具体的な手段は随意に選
択が可能であり、エンジン制御1部への入力情報も細微
な容品検出信号に限らず、段階的なIfi鞘囲に判別さ
れた判別信号とすることができる。
The specific means for outputting the capacity detection information can be selected at will, and the input information to the engine control section 1 is not limited to minute container detection signals, but is determined by stepwise Ifi sheath circumference. It can be used as a discrimination signal.

また、アイドル回転数調節手段の機能は、バイパス路に
設けたアイドル制御弁の開度調節に基づいてt+11t
l空気闇及び燃料噴射mを制御するものであるが、イグ
ナイタを介した点火時期の制御に置換えることらできる
Further, the function of the idle rotation speed adjusting means is based on the opening degree adjustment of the idle control valve provided in the bypass passage.
Although this is intended to control air darkness and fuel injection m, it can be replaced with control of ignition timing via an igniter.

[作用1 しlこかって圧縮機のn荷<’am検出〉情報は、他の
車両状態検出情報と共に走行時においても常にエンジン
制御部に供与され、エンジンLll 1111部は上記
負荷の変動を入力後直ちに目標回転数を予測し、アイド
ル回転数調節手段を作動させて次期アイドリング時の制
御条件を調整する。
[Effect 1] Therefore, compressor n load <'am detection> information is always provided to the engine control section even when driving, together with other vehicle state detection information, and the engine Lll 1111 section inputs the above load fluctuation. Immediately thereafter, the target rotation speed is predicted, and the idle rotation speed adjusting means is operated to adjust the control conditions during the next idling.

[実施例] 以下、図に基づいて本発明の一実施例を具体的に説明す
る。
[Example] Hereinafter, an example of the present invention will be specifically described based on the drawings.

第1図は本発明方法を実施する車両に装備された揺動斜
板式圧縮機を示すもので、圧縮機の外郭の一部を構成す
るシリンダブロック10前後にはフロントハウジング2
及びリヤハウジング3が結合されており、シリンダブロ
ック1及びフロントハウジング2には回転軸4が回転可
能に支持されている。フロントハウジング2内の回転軸
4上には回転支持体5が固着され、該回転支持体5の後
面側に延出した支持アーム6の先端部には長孔6aが貫
設されている。そして該長孔6aにはビン7がスライド
可能に嵌めこまれてJ3す、ビン7には回転駆動板8が
傾動可能に連結されている。
FIG. 1 shows a rocking swash plate type compressor installed in a vehicle implementing the method of the present invention, in which a front housing 2 is placed before and after a cylinder block 10 that constitutes a part of the outer shell of the compressor.
A rotating shaft 4 is rotatably supported by the cylinder block 1 and the front housing 2. A rotary support body 5 is fixed on the rotary shaft 4 in the front housing 2, and a support arm 6 extending toward the rear side of the rotary support body 5 has an elongated hole 6a extending through the distal end thereof. A bottle 7 is slidably fitted into the elongated hole 6a, and a rotary drive plate 8 is connected to the bottle 7 so as to be tiltable.

回転支持体5の後端に隣設しで回転軸4上にtよスリー
ブ9がスライド可能に嵌入され、ばね10により常に回
転支持体5側へ付勢されるとともに、スリーブ9の左右
両側に突設された支軸9a(−方のみ図示)が回転駆動
板8の図示しない係合孔に嵌合されて、該回転駆動板8
は支軸98の周りを揺動可能に支持されている。
A sleeve 9 is disposed adjacent to the rear end of the rotary support 5 and is slidably fitted onto the rotary shaft 4, and is always biased toward the rotary support 5 by a spring 10. A protruding support shaft 9a (only the negative direction is shown) is fitted into an unillustrated engagement hole of the rotational drive plate 8, and the rotational drive plate 8
is supported so as to be swingable around a support shaft 98.

回転駆動板8の後面側にはlfl動斜板11が相対回転
可能に支持され、かつ外縁部に設けた切欠き11aが通
しボルト16と係合することにより自転が拘束されると
ともに、シリンダブロック1に貫設されたボア12内の
ピストン13と該(χ幼斜板11とはピストンロッド1
4により連結されている。したがって、回転軸4の回転
運動が回転駆動板8を介して揺動斜板11の前後t1:
復揺動に変換され、ビス[−ン13がボア12内を萌後
仙することにより吸入室3aからボア12内l\吸入さ
れた冷媒ガスが圧縮されつつ吐出室3bへ吐出される。
An lfl movable swash plate 11 is supported on the rear side of the rotary drive plate 8 so as to be relatively rotatable, and a notch 11a provided at the outer edge engages with a through bolt 16, thereby restraining the rotation, and the cylinder block The piston 13 in the bore 12 penetrating through the piston rod 1 and the (χ minor swash plate 11)
Connected by 4. Therefore, the rotational movement of the rotating shaft 4 is transmitted through the rotational drive plate 8 to the front and back of the swinging swash plate 11 at t1:
The refrigerant gas sucked into the bore 12 from the suction chamber 3a is compressed and discharged into the discharge chamber 3b as the bistron 13 moves back and forth within the bore 12.

そしてクランク室2a内の圧力とボア12内の吸入圧力
とのビス1〜ン13を介した差圧に応じてピストン13
0ストロークが変動し、揺動斜板ゴ1の傾角が変化する
。なお、クランク室2a内の圧力はりゃハウジング3の
後端突出部内に配設された電磁制御弁機構15にJ:り
冷m負何に基づいてff、II lIIされる。
Then, the piston 13 responds to the pressure difference between the pressure inside the crank chamber 2a and the suction pressure inside the bore 12 via the screws 1 to 13.
The zero stroke changes, and the inclination angle of the rocking swash plate 1 changes. The pressure in the crank chamber 2a is applied to the electromagnetic control valve mechanism 15 disposed within the protruding portion of the rear end of the housing 3 based on the pressure.

上記揺動斜板11の外周縁には磁性体か−うなる被検出
体17が植設され、該被検出体17の動作軌跡と対応す
るクランク室2aの壁部には、例えば電磁誘導型の検出
器ゴ8が配tQされている。該検出器18は被検出体1
7と遭遇の都度パルスを発信し、同信号はト記動作軌跡
の検出器18を挾んだ両頭域にお(プる被検出体17の
滞留時間比、つまりパルスの発生間隔時間比として演拝
された細微な容量検出信号、又は1周期ごとのパルス数
により段階的な容量判別装置などに変換されて、アイド
ル回転数を制御するエンジンll1l制御部へ入力され
る。
A magnetic body 17 is implanted on the outer peripheral edge of the swinging swash plate 11, and a wall of the crank chamber 2a corresponding to the movement locus of the detected body 17 is provided with, for example, an electromagnetic induction type. A detector 8 is arranged. The detector 18 detects the detected object 1
7, and the signal is transmitted to both heads of the detector 18 on the movement locus (expressed as the residence time ratio of the detected object 17, that is, the pulse generation interval time ratio). The detected minute capacity detection signal or the number of pulses per cycle is converted into a stepwise capacity discrimination device, etc., and is input to the engine ll1l control unit that controls the idle speed.

圧縮111HIによって変動する。F2被検出体17の
動作軌跡と検出器18との位置関係並びにパルスの発信
状況を第2図〜第4図に基づいてさらに詳しく説明する
It varies depending on the compression 111HI. The positional relationship between the motion trajectory of the F2 detected object 17 and the detector 18, as well as the pulse transmission situation will be explained in more detail based on FIGS. 2 to 4.

第2図にお番プる(a)〜(e)は圧縮機の¥ffff
1に応じた被検出体17の動作軌跡を表わしたもので、
(a)は最小容量時(e)は最大容ffi時、(C)は
中間容量時を示し、各軌跡線の右端は不変の上死点側限
界点、同左端は変動する下死点側限界点である。検出器
18は被検出体17の動作軌跡を監視しうる位置に設置
されるが、まず最小容量時(a)の動作軌跡の中心部(
S位置)から下死点側限界点までの闇に設置した場合に
ついて説明する。
Figure 2 shows numbers (a) to (e) of the compressor.
1 represents the motion locus of the detected object 17 according to 1.
(a) shows the minimum capacity, (e) shows the maximum capacity ffi, and (C) shows the middle capacity. The right end of each trajectory line is the limit point on the unchanging top dead center side, and the left end is the changing bottom dead center side. This is the breaking point. The detector 18 is installed at a position where it can monitor the motion locus of the detected object 17, but first it detects the center of the motion locus (a) at the minimum capacity (a).
An explanation will be given of the case where the device is installed in the darkness from the S position to the limit point on the bottom dead center side.

動作軌跡のうちS位置より図中右側の領域をR1同左側
の領域をLとすると、被検出体17が両頭域R,Lの境
界を越える都度、つまり1周期に2而パルスが発生する
。そして被検出体17が両頭[R1L中に滞留する18
間をそれぞれtl’(XtLとすれば、tR,tLは共
に回転軸の4の回転角に比例する。したがって、この場
合は容暴変肋に基づくパルス発生間隔時間比をtR/l
R+tl−≦0,5と一義的に定めることができるとい
う利点を有する反面、大容量に至るほど容聞安肋に対す
る該パルス発生間隔時間比の変動幅が小さくなるといっ
た不具合がある(第4図のA線)。
Assuming that the area to the right in the figure from the S position in the movement locus is R and the area to the left of the S position is L, two pulses are generated each time the detected object 17 crosses the boundary between the two head areas R and L, that is, in one cycle. Then, the detected object 17 has both heads [18 staying in R1L]
If the time interval is tl' (XtL), then both tR and tL are proportional to the rotation angle of the rotating shaft. Therefore, in this case, the pulse generation interval time ratio based on the dynamic variation is tR/l.
Although it has the advantage of being able to uniquely determine R + tl-≦0,5, it has the disadvantage that the fluctuation range of the pulse generation interval time ratio with respect to the response rate becomes smaller as the capacity increases (see Fig. 4). line A).

逆に検出!!118を上記S位置から下死点側限界点寄
りに設置した場合には、S位置からの距離に応じて上記
パルス発生間隔時間比の変動幅を大きくすることはでき
るが、小官ff1ti!tにおける異なる容量のパルス
発生間隔時間比が161−値(tR/lR+tL−tL
/lR+tL)となる場合が生じて、−桟的には特定で
きないといった問題が残る(第4図のB線)。しかし、
かかる容量不確定現象は負荷の小さい小官出城にのみ発
現するものであり、実用上無視することら許される範囲
ではある。このようにして19られたパルス発生間隔時
間比は、4I黴な容量検出信号としてエンジン制御部へ
入りされる。
Detection in reverse! ! 118 is installed closer to the limit point on the bottom dead center side from the S position, the fluctuation range of the pulse generation interval time ratio can be increased depending on the distance from the S position, but the small official ff1ti! The pulse generation interval time ratio of different capacities at t is 161-value (tR/lR+tL-tL
/lR+tL), and the problem remains that it cannot be specified in terms of the -frame (line B in FIG. 4). but,
Such a capacity uncertainty phenomenon occurs only in small-sized buildings with small loads, and is within a range that can be ignored for practical purposes. The pulse generation interval time ratio thus determined is input to the engine control section as a 4I capacitance detection signal.

次いで検出器18を上記下死点側限界点の変動領域(図
中破線間の領域)中のほぼ中央部(P位置)に設置した
例について説明する。
Next, an example will be described in which the detector 18 is installed approximately at the center (position P) in the variation area (area between the broken lines in the figure) of the limit point on the bottom dead center side.

第3図は検出器18によって検出されたパルス発生状況
を示しており、図中(a)〜(e)は第2図の容槍別符
@(a)〜(e)とそれぞれ対応している。すなわら最
小容量時<8)においては被検出体17が検出VMia
の捕捉範囲にまで達せず、起電力EはOであるのでパル
スは発生しない。
Figure 3 shows the pulse generation situation detected by the detector 18, and (a) to (e) in the figure correspond to the marks @(a) to (e) in Figure 2, respectively. There is. In other words, when the minimum capacity is <8), the detected object 17 is detected VMia
does not reach the capture range of , and the electromotive force E is O, so no pulse is generated.

中間容量時(C)においては被検出体17が検出器18
に完全に遭遇しているので、最大出力のパルスが1周期
に1回発生する。最大容量時(e)においては被検出体
17が検出器18の捕捉範囲を十分に越えたのも折返す
ので、往路と復路の双方に同様のパルスが2回発生する
At intermediate capacity (C), the detected object 17 is the detector 18
is completely encountered, so a pulse of maximum power occurs once per period. At the maximum capacity (e), when the detected object 17 sufficiently exceeds the capture range of the detector 18, it turns around, so similar pulses are generated twice on both the forward and backward paths.

なお、図中(1)ンで示したように被検出体17の動作
軌跡が上記中v!J11聞時(C)のそれよりも幾分短
い場合は、その程度に応じた小出力のパルスが1回発生
し、同じく(d)で示したように動作軌跡が中間容ff
1l15(C)のそれよりも幾分長い場合は、その程度
に応じた小出力のものを加えてパルスが2回発生づるこ
とになる。したがってカウントされるパル゛スの出力限
界値を定めてこれを整11jすれば、容量が(a)〜(
b)はパルス数0の小容量、(b)〜(d)はパルス数
1の中容量、(d)〜(e)はパルス′e&2の大容量
どいった3段階に容易に判別することができる。この場
合、最小容量を10%、最大容量を100%としたとき
の上記3段階の容重配分は、F記検出器18の配段位園
並びにカウントされるパルスの出力限界値の選択により
、任意に設定することが可能である。
In addition, as shown by (1) in the figure, the motion locus of the detected object 17 is within the range v! If it is somewhat shorter than that in J11 (C), one pulse with a small output corresponding to the degree will be generated, and the motion trajectory will change to the intermediate volume ff as shown in (d).
If the length is somewhat longer than that of 1l15(C), a pulse with a small output corresponding to the length will be added and two pulses will be generated. Therefore, by determining the output limit value of the pulses to be counted and adjusting this 11j, the capacity becomes (a) to (
b) is a small capacity with a pulse number of 0, (b) to (d) is a medium capacity with a pulse number of 1, and (d) to (e) is a large capacity with a pulse 'e & 2. Can be done. In this case, when the minimum capacity is 10% and the maximum capacity is 100%, the above-mentioned three-stage capacity weight distribution can be arbitrarily determined by selecting the level distribution of the F detector 18 and the output limit value of the pulses to be counted. It is possible to set.

第5図は本発明の容量判別装置により出力される圧縮機
容量信号を車両状態情報の一つに加えたアイドル回転数
ll1ll tal1機構を示すもので、エンジン本体
21に形成されたシリンダボア22内には、ピストン2
3が摺動自在に収容されて燃焼室24が形成される。吸
気ボート25は吸気弁26により、また、排気ボート2
7は排気弁28によりそれぞれ開閉される。吸気ボート
25の近傍には燃料噴射弁29が配設される。吸気ボー
ト25に連通ずる吸気通路31の最も上流側には、エア
フィルタ32とエアフロメータ33が設()られ、その
下流側にはスロットル弁34が段【プられる。ス「」ッ
トル弁34の上流側と下流側とはバイパス通路35によ
り接続され、バイパス通路35はアイドル制御弁36に
よりその流路面積が調節される。
FIG. 5 shows an idle rotation speed ll1ll tal1 mechanism that adds the compressor capacity signal output by the capacity determination device of the present invention to one of the vehicle status information. is piston 2
3 is slidably housed to form a combustion chamber 24. The intake boat 25 is connected to the exhaust boat 2 by the intake valve 26.
7 are opened and closed by exhaust valves 28, respectively. A fuel injection valve 29 is arranged near the intake boat 25. An air filter 32 and an air flow meter 33 are provided at the most upstream side of the intake passage 31 communicating with the intake boat 25, and a throttle valve 34 is provided downstream thereof. The upstream and downstream sides of the throttle valve 34 are connected by a bypass passage 35, and the flow area of the bypass passage 35 is adjusted by an idle control valve 36.

アイドル制御弁36は例えばりニアソレノイドバルブで
あり、常にエンジン制御部41によりその開1度が調節
され、これによりアイドル回転数がI11制御される。
The idle control valve 36 is, for example, a near solenoid valve, and its opening degree is always adjusted by the engine control section 41, thereby controlling the idle rotation speed by I11.

アイドル制師弁36は、ソレノイド37の通電時間のデ
ユーティ比によってその17f1度が調節され、デユー
ティ比O%の時全開であり、デユーティ比100%の時
全開である。
The idle control valve 36 is adjusted by 17f1 degrees depending on the duty ratio of the energization time of the solenoid 37, and is fully open when the duty ratio is 0% and fully open when the duty ratio is 100%.

エンジン制御部41はアイドル制御弁36のソレノイド
37の通電時間のデユーティ比を決めるらのて゛あり、
マイクロプロセッシングユニット(MPU)42と、メ
モリ43と、入力ポート44と、出力ボート45と、こ
れらを接続するバス46とからなる。入力ポート44に
は後述する種々の車両状態情報が入力され、+J+カボ
ート45はアイドル制御弁36のソレノイド37に接続
される。MPU42はメモリ43に格納されICプログ
ラムに従って、ソレノイド37への通電時間のデユーデ
イ比を求める。
The engine control unit 41 is responsible for determining the duty ratio of the energization time of the solenoid 37 of the idle control valve 36.
It consists of a microprocessing unit (MPU) 42, a memory 43, an input port 44, an output port 45, and a bus 46 connecting these. Various vehicle status information, which will be described later, is input to the input port 44, and the +J+ cover 45 is connected to the solenoid 37 of the idle control valve 36. The MPU 42 calculates the duty ratio of the energization time to the solenoid 37 according to the IC program stored in the memory 43.

51〜584;を車両状態情報として入力ポート44に
入力されるパラメータで、51はエンジン回転数に応じ
た信号、52はスロワ1〜ル弁34の開度が所定値以下
のときのアイドルスイッチのON信号、53は車速に応
じた信号、54はA−トマブック車の自動変速機に取付
けられ、シフトレバ−がニュートラルレンジ(Nレンジ
)又はパーキングレンジくPレンジ)に入っているとき
のニュートラルON信号、55は空調用圧縮機のON信
号、56はパワーステアリング装置のポンプの吐出圧が
所定値以トのときのオイルプレッシ11ON(ii号、
57は冷却水温に応じた信号である。そして58は本発
明によって特徴づ′けられる容量検出に繕づいた連続可
変容隋型圧縮機の容を訝情報(検出又は判別信号)であ
る。
51 to 584 are parameters input to the input port 44 as vehicle status information, 51 is a signal corresponding to the engine speed, and 52 is a signal of the idle switch when the opening degree of the throttle valve 1 to the valve 34 is below a predetermined value. ON signal, 53 is a signal according to the vehicle speed, 54 is attached to the automatic transmission of the A-Tomabook car, and is the neutral ON signal when the shift lever is in the neutral range (N range) or parking range (P range) , 55 is an ON signal for the air conditioning compressor, 56 is an oil pressure 11 ON (No. ii,
57 is a signal corresponding to the cooling water temperature. Reference numeral 58 denotes information (detection or discrimination signal) for inquiring about the capacity of the continuously variable capacity Sui-type compressor equipped with capacity detection, which is a feature of the present invention.

したがって、容量検出によって出力される圧縮機の負荷
情報は、走行時においても常にエンジン制御部41に与
えられ、該エンジン1IIl+御部41は上記負伺の変
動を入力後直ちに目標回転数を予測し、アイドル制御弁
36を作動させて次期アイドリング時のυ」御空気聞及
び連鎖的に対応する燃料噴射−を調整するので、エンジ
ン回転数を常時適正値に近付kjることが可能となる。
Therefore, the compressor load information output by capacity detection is always given to the engine control section 41 even when driving, and the engine 1II+ control section 41 predicts the target rotation speed immediately after inputting the above-mentioned load fluctuation. Since the idle control valve 36 is operated to adjust the next idling air pressure and the corresponding fuel injection in a chained manner, it is possible to keep the engine speed close to the appropriate value at all times.

ちなみに圧縮機の容量を10〜100%の範囲で可変と
なした場合、従来のON、OFF信号のみの制御では、
アイドリング時のエンジン回転数に30Or、 p、m
、程度の影響が生じるbのといわれ、エンジン停止事故
や当然に運転者が知覚しつる不快状態の発生が懸念され
るものであるが、上述したように圧縮機の容量を例えば
3段階程度に判別して、この判別情報をエンジン制御部
41に供与したとすれば、アイドリング時のエンジン回
転数への影響は100r、p、mにし満たない僅少値に
とどめることができる1゜ なお、−し述の実施例は揺動斜根式圧縮機について説明
したが、回転斜板(可変角)弐圧縮機の容I検j口手段
どしでは5例えばピストン頚部に植設した被検出体の動
作軌跡を、シリンダブロックに設芦した検出器に五つ(
同様に検出づればよく、また、ベーン型F[縮機にお1
プる同手段として番よ、実質的に圧縮仕事を加減する機
能藍素の動作を位置検出センナで計測1)るように寸−
ればよい。
By the way, when the capacity of the compressor is made variable in the range of 10 to 100%, with conventional control using only ON and OFF signals,
30 Or, p, m for engine speed at idling
It is said that the impact on the compressor is in three stages, for example, and there are concerns about the occurrence of engine stop accidents and unpleasant conditions that the driver will naturally perceive. If this discrimination information is provided to the engine control unit 41, the influence on the engine speed during idling can be kept to a small value of less than 100 r, p, m. Although the above-mentioned embodiments have been explained with respect to a swinging inclined root type compressor, in the case of a rotary swash plate (variable angle) two compressor, the operation locus of an object to be detected installed in the piston neck may be , five detectors installed in the cylinder block (
It suffices to detect it in the same way.
As a means of compressing the compressor, it is possible to use a position sensor to measure the movement of the indigo element, which actually adjusts the compression work.
That's fine.

[発明の効果) 以1:五T)ボしたように本発明は、連続可変容量型8
E縮機の古墳検出情報を他のji両状態検出情報と共に
エンジン制御部に入力し、該情報に基づいてアイドル回
転数を副面するようにしたちのであるから、走行中に生
じた圧縮機の容量変動も次+1+1アイドリング時の回
転数副部に着実に反映されることどなり、懸念されるエ
ンストや不快感などの発生を完全に防止することができ
る。
[Effects of the invention] 1:5T) As mentioned above, the present invention has a continuously variable capacity type 8
The E-compressor's burial detection information is input to the engine control unit along with other state detection information, and the idle speed is calculated based on this information, so it is possible to detect compressor damage that occurs during driving. Capacity fluctuations are also steadily reflected in the rotational speed subsection during the next +1+1 idling, making it possible to completely prevent the occurrence of concerns such as engine stalling and discomfort.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する揺動斜板式圧縮機の一例を示
す所百図、第2図は被検出体の動作軌跡と検出器の配設
位置を示す説明図、第3図は容量別のパルス発生状況を
示す説明図、第4図は圧縮機の容愚変初とパルス発生間
隔時間比との関係を示すグラフ、第5図はアイドル制御
機構を示寸断面図である。 1・・・シリンダブロック  2a・・・クランク室1
1−・・揺動斜板     13・・・ピストン17・
・・被検出体     18・・・検出器41・・・エ
ンジン制御部
Fig. 1 is a diagram showing an example of a oscillating swash plate compressor embodying the present invention, Fig. 2 is an explanatory diagram showing the motion locus of the object to be detected and the arrangement position of the detector, and Fig. 3 is the capacity FIG. 4 is a graph showing the relationship between the beginning of the change in compressor and the pulse generation interval time ratio, and FIG. 5 is a sectional view showing the idle control mechanism. 1... Cylinder block 2a... Crank chamber 1
1-... Rocking swash plate 13... Piston 17.
...Detected object 18...Detector 41...Engine control section

Claims (1)

【特許請求の範囲】[Claims] (1)連続可変容量型空調用圧縮機を装備した車両にお
いて、各種の車両状態検出情報と上記圧縮機の容量検出
情報とをエンジン制御部に入力し、エンジン制御部は上
記情報に基づいてアイドル回転数調節手段を制御するこ
とを特徴とするアイドル回転数制御方法。
(1) In a vehicle equipped with a continuously variable capacity air conditioning compressor, various vehicle state detection information and compressor capacity detection information are input to the engine control unit, and the engine control unit idles based on the above information. An idle rotation speed control method comprising controlling a rotation speed adjustment means.
JP31473888A 1988-12-13 1988-12-13 Idle speed controlling method Pending JPH02161150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31473888A JPH02161150A (en) 1988-12-13 1988-12-13 Idle speed controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31473888A JPH02161150A (en) 1988-12-13 1988-12-13 Idle speed controlling method

Publications (1)

Publication Number Publication Date
JPH02161150A true JPH02161150A (en) 1990-06-21

Family

ID=18056986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31473888A Pending JPH02161150A (en) 1988-12-13 1988-12-13 Idle speed controlling method

Country Status (1)

Country Link
JP (1) JPH02161150A (en)

Similar Documents

Publication Publication Date Title
US4898005A (en) Method of controlling idling rotational speed of internal combustion engine for vehicles equipped with air conditioning systems
EP1111238B1 (en) Engine control apparatus of vehicle having air conditioner
JP3866285B2 (en) Cam-free engine with compression release braking
US5199272A (en) Idling speed control system
US5889476A (en) Method of reducing the speed of a vehicle having a collision avoidance system
JPH0717151B2 (en) Variable capacity compressor operation control method
EP1052124A2 (en) Method for controlling a refrigerating cycle and a refrigerating cycle
JP3676389B2 (en) Method and apparatus for controlling air flow through an internal combustion engine during engine braking
AU593162B2 (en) Improved variable displacement wobble plate type compressor for automotive air conditioner refrigeration system or the like
FR2801250A1 (en) AIR CONDITIONING SYSTEM FOR VEHICLES
JPH02161150A (en) Idle speed controlling method
JP2650378B2 (en) Capacity determination device for continuously variable displacement swash plate compressor
JP3835265B2 (en) Control method for air conditioner driven by vehicle engine
US7302806B2 (en) Motor vehicle with an air-conditioning system
JP2004514600A5 (en)
JP2513176B2 (en) Idle speed control device
KR910000667B1 (en) A hydraulic mechanism for actuating a poppet ualve
JPH041432A (en) Control of number of revolutions of idling
JP3717143B2 (en) Idling speed controller
JPH05156921A (en) Engine exhauster
JP2615172B2 (en) Drive wheel slip control device
JP2969769B2 (en) Idle speed control method
JPS595165Y2 (en) Diesel engine intake throttle device
JP2730243B2 (en) In-vehicle variable displacement compressor controller
JPH086577Y2 (en) Idling speed control device