JPH02160837A - Continuous reaction process - Google Patents

Continuous reaction process

Info

Publication number
JPH02160837A
JPH02160837A JP29127989A JP29127989A JPH02160837A JP H02160837 A JPH02160837 A JP H02160837A JP 29127989 A JP29127989 A JP 29127989A JP 29127989 A JP29127989 A JP 29127989A JP H02160837 A JPH02160837 A JP H02160837A
Authority
JP
Japan
Prior art keywords
reaction
liquid
tank
chambers
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29127989A
Other languages
Japanese (ja)
Other versions
JPH0529650B2 (en
Inventor
Masahiko Ishibe
石部 雅彦
Keishin Furukawa
古川 敬信
Nobuo Matsushita
松下 伸生
Chikao Oda
親生 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29127989A priority Critical patent/JPH02160837A/en
Publication of JPH02160837A publication Critical patent/JPH02160837A/en
Publication of JPH0529650B2 publication Critical patent/JPH0529650B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE:To make it possible to perform continuously intermediate polymerization and final polymerization in the same reaction apparatus by partitioning a reaction tank with partitions each having a special structure to form a plurality of chambers, controlling the operating pressures in the respective chambers according to the reaction states of the solutions treated and agitating the solutions in the respective chambers with agitating elements of different structures. CONSTITUTION:A solution to be treated is fed to a reaction tank 5 (from 16) and agitated in a plane crossing the direction of flow in such a manner that it can be exposed to a vapor phase atmosphere in the tank. A tank body 6 is partitioned in the lengthwise direction into a plurality of chambers (e.g. 5a and 5b) with a partition 9 constructed so that it may completely partition the vapor phase in the reaction tank 5 and that it may have a passage 9a for the solution below the surface of the solution. The pressures in the respective chambers (e.g. 5a and 5b) are decreased (through a vacuum nozzles 18 and 19), the operating pressures in the respective chambers are controlled according to the states of reaction of the solutions to be treated in the respective agitated chambers, and the agitation in the respective chambers is performed with agitating elements (e.g. 10a, 10b, 11a and 11b) of different surface areas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばモノマーを重縮合させて高分子ポリマ
ーを生成する場合において1重縮合の進行中にアルコー
ル、水等揮発性物質を除去する粘性物質の連続反応方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for removing volatile substances such as alcohol and water during the progress of single polycondensation, for example, when monomers are polycondensed to produce a high molecular weight polymer. This relates to a continuous reaction method for viscous substances.

下の操作となる。蒸発の効率は減圧度と比例して上昇す
るが、雰囲気圧力を急激に低下させると、蒸発により除
去される揮発性物質と共に粘性物質の一部が系外へ排出
される。また、蒸発促進により液粘度が増加し、粘性物
質の物性が変化するため、従来は、その粘性物質の物性
に適したおのおの攪拌性の異なる攪拌翼を持った複数個
の反応装置を直列につなぎ、各反応装置での圧力を順次
低下させることにより揮発性物質の除去が行われていた
。ここで、従来のポリエステル連続重合反応装置を例に
より説明すると、ポリエステル低重合体を高温、減圧下
で重縮合させる場合、減圧度の段階的低下の必要性およ
び粘性物質の物性に応じた反応装置の選択の必要性とい
う理由から第1θ図に示す如く一般に3檜の反応Mlが
用いられている。すなわち、重合の初期においては、竪
型反応装置2を用い、重合中期では、反応装置内の粘性
物質の粘度増加と必要蒸発面積の増加に伴ない、横型の
1軸子円板翼反応装置3が用いられる。しかしながら、
この1軸子円板翼反応装[3の粘性物質の処理粘度範囲
は、高々数百ポイズ程度であり、液の粘性があまり高畷
ないため、装置内において横方向の液面差によるシ1−
トパスが生じる可能性があり、一般に複数の仕切板を入
れてこれを防(゛構造としている。
The operation is as below. The efficiency of evaporation increases in proportion to the degree of pressure reduction, but when the atmospheric pressure is rapidly reduced, a portion of the viscous substance is discharged out of the system together with the volatile substance removed by evaporation. In addition, as evaporation promotion increases liquid viscosity and changes the physical properties of the viscous substance, conventionally, multiple reactors each having stirring blades with different stirring properties suited to the physical properties of the viscous substance were connected in series. , volatile substances were removed by sequentially lowering the pressure in each reactor. Here, to explain a conventional polyester continuous polymerization reaction apparatus using an example, when polyester low polymer is polycondensed at high temperature and reduced pressure, the reaction apparatus is designed according to the need for gradual reduction of the degree of vacuum and the physical properties of the viscous material. Because of the necessity of selecting a reaction mixture, 3-hinoki reaction Ml is generally used as shown in Fig. 1θ. That is, in the early stage of polymerization, a vertical reactor 2 is used, and in the middle stage of polymerization, as the viscosity of the viscous substance in the reactor increases and the required evaporation area increases, a horizontal uniaxial disk blade reactor 3 is used. is used. however,
The processing viscosity range of the viscous substance in this single-axis disk blade reactor [3] is at most several hundred poise, and since the viscosity of the liquid is not very high, the viscosity caused by the lateral liquid level difference in the device is −
Generally, multiple partition plates are installed to prevent this from occurring.

しかし仕切板はその取付部付近にデッドスペースが生じ
易いため、できるだけ攪拌翼で仕切効果を持たせ、仕切
板を少な(することが望ましい。
However, because the partition plates tend to create dead space near their attachment parts, it is desirable to use stirring blades to provide a partitioning effect as much as possible, and to reduce the number of partition plates.

次に最終重合段階では、液の粘度が急激に上昇して数千
ポイズ程度になるので、攪拌の良い横型2軸反応*!!
4が用いられる。この最終重合段階では、液の粘度が高
いためデッドスペースが生じ易くなり、対策が必要とな
ってくる。このため、特公昭50−21514号に示さ
れるように槽内全体を均一に攪拌でき、さらにデッドス
ペースを生じ易い仕切板を少なくした仕切効果のある攪
拌翼が提案されている。
Next, in the final polymerization stage, the viscosity of the liquid increases rapidly to about several thousand poise, so a horizontal biaxial reaction with good stirring*! !
4 is used. At this final polymerization stage, dead spaces tend to occur due to the high viscosity of the liquid, and countermeasures are required. For this reason, as shown in Japanese Patent Publication No. 50-21514, an agitation blade has been proposed which can uniformly agitate the entire inside of the tank and has a partitioning effect by reducing the number of partition plates that tend to create dead spaces.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は一つの反応装置内で連続反応させること
について配慮がされておらず、従来の方法によると反応
装置の構成機数が多いため、(1)処理工程の複雑化、
(2)操作、メンテナンス個所の増加と作業の複雑化、
(3)装置製作コストの増加、(4)装置設置スペース
増加等の欠点があった。
The above-mentioned conventional technology does not take into account continuous reaction within one reactor, and the conventional method has a large number of reactor components, resulting in (1) complication of the treatment process;
(2) Increased number of operation and maintenance points and complexity of work;
There were disadvantages such as (3) an increase in device manufacturing cost and (4) an increase in device installation space.

本発明の目的は、一つの反応装置内で中期重合、最終重
合の処理を行うことができる連続反応方法を提供するこ
とにある。
An object of the present invention is to provide a continuous reaction method that allows medium-term polymerization and final polymerization to be carried out in one reaction apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、従来の最終重合を行わせる
横型2軸反応装置の内部に気相部を気密的に完全に仕切
り、かつ液面より下部に処理液通路を備えた仕切板を設
けて複数室を形成し、各室毎に運転圧力を調整できるよ
うにして、前室で中期重合を行わせた後、後室で最終重
合わ行わせることにより、一つの反応装置内で中期重合
処理と最終重合処理を行わせるようにしたものである。
In order to achieve the above objective, a partition plate is installed inside a horizontal twin-shaft reactor for conventional final polymerization, which completely partitions off the gas phase in an airtight manner and has a processing liquid passage below the liquid level. By forming multiple chambers and adjusting the operating pressure for each chamber, medium-term polymerization is carried out in the front chamber, and final polymerization is carried out in the rear chamber, thereby achieving medium-term polymerization in one reactor. treatment and final polymerization treatment.

〔作  用〕[For production]

反応槽内に供給された被処理液は、回転軸に配設された
攪拌翼による攪拌および表面更新作用を受けながら揮発
成分を蒸発させて反応が促進し、送液されて仕切板に到
達する。該仕切板に到達した被処理液は処理液通路を(
(゛り抜けて火室へと送液される。反応槽内の気相部は
仕切板で気密的に完全に複数室に仕切られており、各室
毎に設けられた排気ノズルにより、各室での運転圧力を
単独に調整できる。反応が促進され、しだいに粘度が高
くなった被処理液は処理液出口ノズルより取出される。
The liquid to be treated that is supplied into the reaction tank is stirred by a stirring blade installed on the rotating shaft and subjected to the surface renewal action to evaporate volatile components and accelerate the reaction, and the liquid is sent to reach the partition plate. . The liquid to be treated that has reached the partition plate passes through the treatment liquid passage (
The gas phase inside the reaction tank is completely airtightly partitioned into multiple chambers by partition plates, and an exhaust nozzle installed in each chamber allows each chamber to be The operating pressure in the chamber can be adjusted independently.The reaction is promoted and the liquid to be treated, whose viscosity gradually increases, is taken out from the treatment liquid outlet nozzle.

従って、従来2槽以上必要としていた中期重合および最
終重合を一つの反応装置内で行わせることができる。
Therefore, medium-term polymerization and final polymerization, which conventionally required two or more tanks, can be carried out in one reactor.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図〜第5図により説明す
る。5は実質的に水平に設置された円筒状の反応装置本
体、9は円筒状の本体6内の気相部を気密的に完全に仕
切り、かつ液面より下部に処理液通路9mを備えた仕切
板である。該仕切板9により円筒状の本体6内を長平方
向に仕切り前室5a、および後室5bを形成している。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. 5 is a cylindrical reactor main body installed substantially horizontally, 9 is a cylindrical main body 6 that completely partitions off the gas phase in an airtight manner, and is provided with a processing liquid passageway of 9 m below the liquid level. It is a partition plate. The partition plate 9 partitions the interior of the cylindrical main body 6 in the longitudinal direction to form a front chamber 5a and a rear chamber 5b.

7は本体6外周に設けられた加熱シャケブト、9aは仕
切板9の下部に設けられた処理液通路、8a、8bは仕
切板9を貫通して本体6内に平行に設けられた回転軸で
ある。前室5a内の回転軸8a、8bには軸と直角方向
に対称に固着された表面積の大きい板状の支持板丘と、
その先端に直角方向に固着されたかき取り板13よりな
る攪拌翼1(1m、10bが取付けられている。一方後
室5b内の回転軸8m、8bには軸と直角方向に対称に
固着された表面積の小さい環状の支持板14と、その先
端に直角方向に固着されたかき取り板15よりなる攪拌
翼11a、flbが取付けられている。ここで、攪拌翼
10a、10bとlfa、llbは対向して相互に90
度の位相角をもって複数個取付けられており、かつ、回
転軸8m、8bは攪拌翼10a、10bおよび11a。
7 is a heating shaft provided on the outer periphery of the main body 6, 9a is a processing liquid passage provided at the bottom of the partition plate 9, and 8a and 8b are rotating shafts provided in parallel inside the main body 6 through the partition plate 9. be. A plate-shaped supporting plate having a large surface area is fixed to the rotating shafts 8a and 8b in the front chamber 5a symmetrically in a direction perpendicular to the shaft,
A stirring blade 1 (1m, 10b) consisting of a scraping plate 13 fixed perpendicularly to the tip thereof is attached.On the other hand, a stirring blade 1 (1m, 10b) is fixed symmetrically to the rotating shaft 8m, 8b in the rear chamber 5b in a direction perpendicular to the axis. Stirring blades 11a and flb are attached, each consisting of an annular support plate 14 with a small surface area and a scraping plate 15 fixed perpendicularly to the tip thereof.Here, the stirring blades 10a and 10b and lfa and llb are opposed mutually 90
A plurality of stirring blades 10a, 10b and 11a are attached to the rotating shafts 8m and 8b with a phase angle of 100 degrees.

11 bの先端が回転軸8m、8bに近接して通過する
ように保持されている。16は前室5aの本体6一端側
に設けられた処理液入口ノズル、17は後室5bの本体
6他端側に設けられた処理液出ロノズル、18および1
9は本体6の前室5mおよび後室5b上部にそれぞれ設
けられた排気ノズルである。
The tip of 11b is held so as to pass close to the rotating shafts 8m and 8b. 16 is a processing liquid inlet nozzle provided on one end side of the main body 6 of the front chamber 5a, 17 is a processing liquid outlet nozzle provided on the other end side of the main body 6 of the rear chamber 5b, 18 and 1
Reference numeral 9 denotes exhaust nozzles provided at the upper portions of the front chamber 5m and rear chamber 5b of the main body 6, respectively.

竪型反応装置2で初期重合され、入口ノズル16より反
応装置5に供給された処理液(液粘度lOポイズ程度)
は、前室5直内において図示矢印の如く本体6の内側よ
り外側に向って互いに反対方向に回転する回転軸8a、
8bの回転により、表面積の大きい板状の攪拌翼10a
、10bによる攪拌および表面更新作用を受けながら揮
発成分を蒸発させて反応が促進され、しだいに粘度が高
くなって第3図の左から右へ順次移動し、仕切板9に到
達する。そして処理液通路9aをクク゛り抜けて後室5
b側へと送られる。
Processing liquid (liquid viscosity approximately 10 poise) that was initially polymerized in the vertical reactor 2 and supplied to the reactor 5 from the inlet nozzle 16
are rotating shafts 8a that rotate in opposite directions from the inside to the outside of the main body 6 as shown by arrows in the front chamber 5;
By the rotation of 8b, a plate-shaped stirring blade 10a with a large surface area is formed.
, 10b, the volatile components are evaporated and the reaction is promoted, the viscosity gradually increases and the liquid moves sequentially from left to right in FIG. 3 until it reaches the partition plate 9. Then, it passes through the processing liquid passage 9a and enters the rear chamber 5.
Sent to side b.

ここで処理液は反応装置内に充満させず、装置上部は気
相部としている。そして本発明による反応装置5の気相
部は、仕切部9により完全(気密的に)に仕切られてお
り、前室5aおよび後室5bのそれぞれに設けられた排
気ノズル1111,19により各室5a、5bでの運転
圧力を単独で調整できるようになっている。通常、前室
5aでの運転圧力は4〜8 Torr 、後室5bでは
1〜2 Torr程度である。
Here, the processing liquid is not filled in the reaction apparatus, and the upper part of the apparatus is a gas phase section. The gas phase section of the reactor 5 according to the present invention is completely (airtightly) partitioned by a partition section 9, and each chamber is separated by exhaust nozzles 1111 and 19 provided in the front chamber 5a and the rear chamber 5b, respectively. The operating pressures at 5a and 5b can be adjusted independently. Normally, the operating pressure in the front chamber 5a is about 4 to 8 Torr, and in the rear chamber 5b, about 1 to 2 Torr.

後室5b内に供給された処理液(液粘度300ポイズ程
度)は、表面積の小さい環状の攪拌翼11a、flbに
より、表面更新作用を受けながら揮発成分を蒸発させて
反応が促進され、しだいに粘度が高くなって処理液出口
ノズル17より泡出される。
The processing liquid (liquid viscosity of about 300 poise) supplied into the rear chamber 5b is subjected to surface renewal action by annular stirring blades 11a and flb with a small surface area, while volatile components are evaporated, the reaction is accelerated, and the reaction is gradually accelerated. The viscosity increases and bubbles are ejected from the processing liquid outlet nozzle 17.

また、各室5m、Sb内で蒸発した揮発成分は、排気ノ
ズル18. 19より排出される。
In addition, the volatile components evaporated in each chamber 5 m long and Sb are discharged through the exhaust nozzle 18. It is discharged from 19.

ここで前室5aにおける攪拌翼10a、10bは、軸と
直角方向に対称に固着された表面積の大きい板状の支持
板辻と、その先端に固定されたかき取り板Bにより形成
されているため、本体6内下部の低粘度の処理液を有効
に攪拌し、処理液上部の空間部を通過する時には、支持
板比の表面積の大きい表面に液が付着して薄膜を形成し
て液の蒸発表面積を大!(することができると共に、表
面積の大きい板状の支持板校により被処理液の仕切り効
果が得られる。
Here, the stirring blades 10a and 10b in the front chamber 5a are formed by a plate-shaped support plate with a large surface area fixed symmetrically in the direction perpendicular to the axis, and a scraping plate B fixed to the tip thereof. When the low-viscosity processing liquid in the lower part of the main body 6 is effectively stirred and passes through the upper space of the processing liquid, the liquid adheres to the surface with a larger surface area than the support plate, forming a thin film and increasing the evaporation area of the liquid. Big! (In addition, a plate-shaped support plate with a large surface area provides a partitioning effect for the liquid to be treated.

これにより、低粘度の液からの揮発成分の除去が促進さ
れると共に、被処理液を本体6の長手方向にピストン7
0−させることができる。また、攪拌翼10a、10b
のかき取り板13は、本体6の内壁、回転軸8a、8b
の外面、さらに隣接して固定された他の攪拌翼10a、
10bのかき取り板13と微小な隙間をもって固定され
ているため、処理液の攪拌効果のきわめて小さい部分、
すなわちデッドスベーが生じることはない。
This facilitates the removal of volatile components from the low viscosity liquid and directs the liquid to be treated in the longitudinal direction of the main body 6 to the piston 7.
It can be set to 0-. In addition, stirring blades 10a, 10b
The scraping plate 13 is the inner wall of the main body 6, the rotation shafts 8a, 8b
another stirring blade 10a fixed adjacent to the outer surface of the
Since it is fixed with a small gap to the scraping plate 13 of 10b, there is a part where the stirring effect of the processing liquid is extremely small.
In other words, no dead base occurs.

前室5aにおいて、処理液は本体6内下部よりかき取り
板13によりかき上げられ、処理液上部の空間部を通過
後落下し、支持板12と本体6の内壁との隙間を本体6
の下部で通過して液出口ノズル17側に移動し、前述と
同様に隣接した攪拌翼10a。
In the front chamber 5a, the processing liquid is scraped up from the lower part of the main body 6 by the scraping plate 13, passes through the space above the processing liquid and then falls, filling the gap between the support plate 12 and the inner wall of the main body 6 with the scraping plate 13.
The stirring blade 10a moves to the liquid outlet nozzle 17 side and adjoins the stirring blade 10a as described above.

10 bにより攪拌される。その後、この作用を繰返し
ながら本体6内を移動して反応が促進される。
10 b. Thereafter, the reaction is promoted by moving inside the main body 6 while repeating this action.

この場合、前室5a内の処理液の粘度は10〜300ポ
イズの範囲内で低粘度であるため攪拌翼10m、10b
の支持板比を板状としたことにより、処理液を十分攪拌
混合することができると共に、シ曹−トパスあるいは逆
混合を防止することができる。
In this case, since the viscosity of the processing liquid in the front chamber 5a is low within the range of 10 to 300 poise, the stirring blades 10m and 10b
By making the support plate ratio plate-like, it is possible to sufficiently stir and mix the treatment liquid, and it is also possible to prevent carbon dioxide from passing or back-mixing.

一方、後室5b内の処理液は高粘度になっているが、表
面積の小さい環状の支持板14を持つ攪拌翼!1a、f
lbが用いられているので翼表面に付着することができ
る。
On the other hand, although the processing liquid in the rear chamber 5b has a high viscosity, the stirring blade with the annular support plate 14 with a small surface area! 1a,f
Since lb is used, it can be attached to the blade surface.

上述の実施例では反応装置5の本体6内に仕切板9を1
枚設けて前室5mと後室5bの2室を形成したものにつ
いて説明したが、必要に応じて本体6内に複数の仕切板
9を設けて複数室を形成し、本体6内で各室内の圧力を
入口から出口に向って順次下勢キ室内の攪拌翼の表面積
を入口から出口に向って順次小さくして被処理液の粘度
上昇に対して最適な攪拌条件で重合を行わせることも容
易に実施することができる。
In the above embodiment, one partition plate 9 is provided in the main body 6 of the reactor 5.
Although the explanation has been given on a case in which a plurality of partition plates 9 are provided in the main body 6 to form two chambers, the front chamber 5m and the rear chamber 5b, if necessary, a plurality of partition plates 9 can be provided in the main body 6 to form a plurality of rooms, and each room in the main body 6 can be It is also possible to perform polymerization under optimal stirring conditions for increasing the viscosity of the liquid to be treated by decreasing the pressure of the stirring blades in the downward pressure chamber sequentially from the inlet to the outlet. It can be easily implemented.

本発明の推奨される実施例によれば、第6図ないし第8
図に示すように、前室5 m’内の回転軸8”*8bに
表面積の比較的大きい環状の支持板14を持つ攪拌翼1
0i、lObを取りつけ、後室5b′内の回転耳軸g 
a/ 、 g b/間に表面積がさらに小さい矩形格子
状の攪拌翼30a、30bを取りつけたものがある。本
実施例によれば、後室5b’内に表面積が十分に小さく
、回転軸の無い、攪拌翼30a、30bが用いられてい
るので、粘度がさらに高い処理液に対しても攪拌翼表面
および回転軸への付着が少なくできるので、超高粘度液
の処理が可能である。
According to a preferred embodiment of the invention, FIGS.
As shown in the figure, a stirring blade 1 having an annular support plate 14 with a relatively large surface area is mounted on a rotating shaft 8''*8b in a front chamber 5 m'.
Attach 0i and 1Ob and rotate the ear shaft g in the rear chamber 5b'.
There is one in which rectangular lattice-shaped stirring blades 30a and 30b having a smaller surface area are attached between a/ and g and b/. According to this embodiment, since the stirring blades 30a and 30b having a sufficiently small surface area and no rotating shaft are used in the rear chamber 5b', the stirring blade surface and the Since adhesion to the rotating shaft can be reduced, it is possible to process ultra-high viscosity liquids.

本発明のさらに推奨される実施例によれば、第9図に示
すように、本体6内を仕切板9により3室に区分し、液
入口側の第1室ト1内に表面積の最も大きい板状の支持
捩しを持つ攪拌翼10m、10bを配置し、中央の@2
室5b’内に表面積が次に大きい環状の支持板14を持
つ攪拌翼11a、llbを配置し、液出口側の第3室5
C′内に表面積が最も小さい矩形格子状の攪拌翼30m
、(9)bを取りつけたものである。本発明によれば、
液入口から液出口に向って反応により粘度が上昇する処
理液に応じて最適な真空圧力でそれぞれ!1−N3室内
の圧力な―節できると共に、粘度上昇する処理液に応じ
て攪拌翼の表面積を順次小さくできるので、処理液の粘
度上昇に対応した最適な重合操作ができる。これにより
各粘度に応じて最適な表面更新および攪拌が得られ、反
応時間の短縮と各処理液の品質向上に効果がある。
According to a further preferred embodiment of the present invention, as shown in FIG. Stirring blades 10m and 10b with plate-shaped support twists are arranged, and the center @2
Stirring blades 11a and llb having an annular support plate 14 having the next largest surface area are arranged in the chamber 5b', and the third chamber 5 on the liquid outlet side
30 m of rectangular lattice stirring blades with the smallest surface area in C'
, (9)b is attached. According to the invention,
The viscosity increases due to reaction from the liquid inlet to the liquid outlet at the optimal vacuum pressure depending on the treatment liquid! The pressure inside the 1-N3 chamber can be reduced, and the surface area of the stirring blade can be gradually reduced in accordance with the increasing viscosity of the treating liquid, so that an optimal polymerization operation can be performed in response to the increasing viscosity of the treating liquid. As a result, optimal surface renewal and stirring can be obtained according to each viscosity, which is effective in shortening reaction time and improving the quality of each treatment liquid.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、従来2槽以上必要と
していた中期重合および最終重合処理を一つの反応装置
内で行わせることができるので、処理システム中の反応
装置の構成機数を少なくすることができ、(1)処理工
程の簡略化、(2)操作、メンテナンス箇所の低減およ
び作業の簡略化、(3)装置製作コストの低減、(4)
装置設置スペースの減少等の効果を得ることができる。
As described above, according to the present invention, medium-term polymerization and final polymerization treatment, which conventionally required two or more tanks, can be performed in one reactor, thereby reducing the number of reactors in the treatment system. (1) Simplification of processing steps, (2) Reduction of operation and maintenance points and simplification of work, (3) Reduction of equipment manufacturing costs, (4)
Effects such as a reduction in equipment installation space can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による横型反応装置を用いた重合反応装
置の一実施例を示す系統図、第2図は本発明による横型
反応!Iwの一実施例を示す一部を断面で示した平面図
、第3図は同じく縦断面図、fi4図はN3図のA−入
線断面図、第5図は第3図のB−B線断面図、第6図は
本発明の他の実施例の重合反応装置の縦断面図、第7図
は第6図のC−C線断面図、第8図は第6図のD−D線
断面図、第9図は本発明の他の実施例の重合反応装置の
縦断面図、第10図は従来の重合反応装置の系統図であ
る。 2・・・・・・竪型反応装置、3・・曲1軸子円板翼反
応装置、4・・・・・・横型2軸反応装置、5・・聞反
応装置、5a・・・・・・前室、5b・・曲後室、6・
曲・円筒状の本体、7・・・・・・加熱ジャケット、8
a、8b・・曲回転軸、9・・・・・・仕切板、9m・
・・・・・処理液通路、10 a 。 10 b 、 n a 、 11 b・・曲攪拌翼、ν
・・曲板状の支持板、13.15・・・・・・かき取り
板、14・・−・・・環状の支持板、16・・・・・・
処理液入口ノズル、17・・曲処理液出ロノズオ l 
閃 イ2閃 第 図 イ 閃 17図 オ8目
Fig. 1 is a system diagram showing an example of a polymerization reaction apparatus using a horizontal reaction apparatus according to the present invention, and Fig. 2 is a system diagram showing an embodiment of a polymerization reaction apparatus using a horizontal reaction apparatus according to the present invention. A plan view showing a part of an embodiment of Iw in cross section, FIG. 3 is also a longitudinal sectional view, fi4 is a sectional view taken along the line A--A in FIG. N3, and FIG. 6 is a vertical sectional view of a polymerization reaction apparatus according to another embodiment of the present invention, FIG. 7 is a sectional view taken along the line C-C in FIG. 6, and FIG. 8 is a sectional view taken along the line D-D in FIG. 6. 9 is a longitudinal sectional view of a polymerization reaction apparatus according to another embodiment of the present invention, and FIG. 10 is a system diagram of a conventional polymerization reaction apparatus. 2...Vertical reactor, 3...Curved single-axis disk blade reactor, 4...Horizontal twin-shaft reactor, 5...Vertical reactor, 5a... ... Anterior chamber, 5b... Posterior chamber, 6.
Curved/cylindrical body, 7... Heating jacket, 8
a, 8b...Curved rotation axis, 9...Partition plate, 9m.
...Processing liquid passage, 10a. 10 b, na, 11 b... curved stirring blade, ν
... Curved support plate, 13.15 ... Scraping plate, 14 ...... Annular support plate, 16 ......
Processing liquid inlet nozzle, 17... Curved processing liquid outlet nozzle l
Flash 2 Flash Figure A Flash 17 Figure O 8

Claims (1)

【特許請求の範囲】[Claims] 1、被処理液を反応槽内に供給し、該供給された被処理
液を反応槽内の流動方向を横切る面内で槽内気相部雰囲
気に露呈可能に攪拌し、該攪拌される反応槽内で気相部
を完全に仕切ると共に、液面より下部に処理液通路を備
えた仕切り板で本体長手方向に複数室に仕切り各室毎に
圧力を減圧し、各攪拌室の被処理液の反応状況に応じて
各攪拌室毎に運転圧力を調節し、表面積の違う攪拌翼で
攪拌混合することを特徴とする連続反応方法。
1. Supply the liquid to be treated into a reaction tank, stir the supplied liquid to be treated in a plane that crosses the flow direction in the reaction tank so that it can be exposed to the atmosphere of the gas phase in the tank, and stir the supplied liquid to be exposed to the atmosphere of the gas phase in the tank. In addition to completely partitioning the gas phase within the tank, the main body is divided into multiple chambers in the longitudinal direction using a partition plate with a processing liquid passage below the liquid level, and the pressure in each chamber is reduced, allowing the liquid to be processed in each stirring chamber to be separated. A continuous reaction method characterized by adjusting the operating pressure for each stirring chamber according to the reaction situation and stirring and mixing using stirring blades with different surface areas.
JP29127989A 1989-11-10 1989-11-10 Continuous reaction process Granted JPH02160837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29127989A JPH02160837A (en) 1989-11-10 1989-11-10 Continuous reaction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29127989A JPH02160837A (en) 1989-11-10 1989-11-10 Continuous reaction process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17420783A Division JPS6067537A (en) 1983-09-22 1983-09-22 Horizontal reactor

Publications (2)

Publication Number Publication Date
JPH02160837A true JPH02160837A (en) 1990-06-20
JPH0529650B2 JPH0529650B2 (en) 1993-05-06

Family

ID=17766824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29127989A Granted JPH02160837A (en) 1989-11-10 1989-11-10 Continuous reaction process

Country Status (1)

Country Link
JP (1) JPH02160837A (en)

Also Published As

Publication number Publication date
JPH0529650B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US6846103B2 (en) Apparatus for continuous stirring and process for continuous polycondensation of polymer resin
US3251657A (en) Reactor for the manufacture of polyethylene phthalates
TWI415672B (en) A family of stationary film generators and film support structures for vertical staged polymerization reactors
US6329495B2 (en) Process and apparatus for producing polycarbonate
EP0865820B1 (en) Reactor for chemical conversions
US3630688A (en) Polymerization apparatus
US3528782A (en) Polycondensation reactor
US3987021A (en) Process utilizing a stirring reactor
JPH02160837A (en) Continuous reaction process
US3726648A (en) Bulk polymerizer for vinyl chloride production
US4432940A (en) Reactor
CN1089270C (en) Latticed plate type polyester polycondensing tower
JPH0314052B2 (en)
CN1118318C (en) Agitating element and mixing apparatus equipped with the same
RU2754910C1 (en) Installation for obtaining and concentrating polymer solutions
JPH08109208A (en) Production of seed particle for emulsion polymerization and continuous multistage emulsion polymerization process
GB2100272A (en) Continous production of high impact polystyrene
US6350848B1 (en) Process and apparatus for producing polycarbonate
JPH0987392A (en) Continuous production apparatus for polycondensation polymer and production process therefor
US3321282A (en) Vessel subdivided by partitions into several cells transversely to its longitudinal axis
JP3133240B2 (en) Liquid material stirring device and method for producing polycarbonate using the device
JPH093199A (en) Apparatus for continuous production of polycondensation polymer and method therefor
JPH03239727A (en) Apparatus for continuously agitating viscous substance
JPS6250180B2 (en)
JPH10174862A (en) Continuous reaction device