JPH02160647A - Method for improving quality of mortar or concrete structure and admixture - Google Patents

Method for improving quality of mortar or concrete structure and admixture

Info

Publication number
JPH02160647A
JPH02160647A JP1139486A JP13948689A JPH02160647A JP H02160647 A JPH02160647 A JP H02160647A JP 1139486 A JP1139486 A JP 1139486A JP 13948689 A JP13948689 A JP 13948689A JP H02160647 A JPH02160647 A JP H02160647A
Authority
JP
Japan
Prior art keywords
mortar
water
weight
concrete
amino resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1139486A
Other languages
Japanese (ja)
Other versions
JPH0674160B2 (en
Inventor
Masahiko Okuno
奥野 正彦
Yoshitaka Kanayama
金山 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERUBABU KK
Merbabu Corp
Original Assignee
MERUBABU KK
Merbabu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MERUBABU KK, Merbabu Corp filed Critical MERUBABU KK
Priority to US07/400,807 priority Critical patent/US4986854A/en
Priority to CA000609807A priority patent/CA1333815C/en
Priority to EP89116199A priority patent/EP0359068B1/en
Priority to DE89116199T priority patent/DE68908052T2/en
Priority to KR1019890012740A priority patent/KR960007366B1/en
Publication of JPH02160647A publication Critical patent/JPH02160647A/en
Publication of JPH0674160B2 publication Critical patent/JPH0674160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/32Polyethers, e.g. alkylphenol polyglycolether
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To prevent mortar, etc., from whitening and improve durability thereof by blending a water-soluble amino resin in kneading the mortar or concrete. CONSTITUTION:A water-soluble amino resin is blended with one or more of metal salts of higher fatty acids and nonionic surfactants in kneading mortar or concrete. A water-soluble resin in a prepolymer stage consisting essentially of dimers or trimers obtained by reacting an amino compound, such as melamine or urea, or amide compound with aldehydes, such as formaldehyde, is used as the water-soluble resin. A resin free of methylol groups is especially preferred. For example, an admixture consisting of 100 pts.wt. water-soluble amino resin (expressed in terms of dry solid), 5-25 pts.wt. metal salt of a higher fatty acid and/or 1-20 pts.wt. nonionic surfactant is blended with mortar, etc. A secondary product, such as the mortar, can be prevented from whitening and suppression of neutralization in structures, such as the mortar, reduction in dry shrinkage and rust prevention of reinforcing bars can be carried out by the above- mentioned method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、モルタル、コンクリート構造物の品質を向上
させる方法及び該方法において使用するモルタル、コン
クリート混和剤に関する。より詳しくは、本発明は、モ
ルタル、コンクリート二次製品の白華防止を図り、モル
タル、コンクリート構造物の中性化抑制、乾燥収縮の低
減、鉄筋の防錆を図り、モルタル、コンクリート構造物
の耐久性を向上させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to mortar, a method for improving the quality of concrete structures, and mortar and concrete admixtures used in the method. More specifically, the present invention aims to prevent efflorescence of mortar and concrete secondary products, suppress carbonation of mortar and concrete structures, reduce drying shrinkage, and prevent rust of reinforcing bars. Concerning how to improve durability.

従来の技術 一般にモルタル、コンクリート等のセメント配合物は、
硬化と乾燥に伴い種々の宿命的欠点を露呈する。例えば
セメント配合物の硬化体の表面に発生する白華は、建築
物の外観を損ねたり、タイルや塗料等の仕上げ材を剥離
、変色させる等の悪影響を与える。従来より白華防止の
方法が種々提案されているが、十分な効果を発揮する白
華防止方法は、未だ開発されていないのが現状である。
Conventional technologyIn general, cement mixtures such as mortar and concrete are
As it hardens and dries, it exposes various fatal flaws. For example, efflorescence generated on the surface of a hardened cement compound has adverse effects such as impairing the appearance of buildings and causing peeling and discoloration of finishing materials such as tiles and paints. Although various methods for preventing efflorescence have been proposed in the past, a method for preventing efflorescence that is sufficiently effective has not yet been developed.

このように白華防止が困難である理由の一つとして、白
華が通常二つの原因で発生することが挙げられる。即ち
、特開昭60−16843号に記載されるように、白華
の発生原因の一つは、硬化体内部に存在する水酸化カル
シウムが硬化体表面で炭酸化され炭酸カルシウムとなっ
て結晶成長するものであり、他の原因はアルカリ金属と
硫酸根が硬化体表面に溶出し、アルカリ金属硫酸塩とな
って結晶成長するものである。従って、一方の原因に基
づく白華を防止し得る白華防止剤であっても、他方の原
因に基づく白華を防止し得るとは限らずそのために完全
な白華防止が行なえない。
One of the reasons why it is difficult to prevent efflorescence is that efflorescence usually occurs due to two causes. That is, as described in JP-A-60-16843, one of the causes of efflorescence is that calcium hydroxide present inside the hardened body is carbonated on the surface of the hardened body and becomes calcium carbonate, resulting in crystal growth. Another cause is that alkali metals and sulfate radicals are eluted onto the surface of the cured product, become alkali metal sulfates, and grow as crystals. Therefore, even if an anti-efflorescence agent is capable of preventing efflorescence due to one cause, it may not be able to prevent efflorescence due to the other cause, and therefore, complete prevention of efflorescence cannot be achieved.

次にコンクリート構造物の耐久性についてであるが、従
来から鉄筋コンクリート構造物の寿命は50年から60
年程度と考えられている。この理由はコンクリートの表
面から炭酸ガスによるコンクリート内部への中性化が進
行し、この中性化領域が鉄筋の位置にまで達すると、鉄
筋が発錆し、鉄筋コンクリート部材はその耐力を失うと
いう現象によるものである。
Next, regarding the durability of concrete structures, the lifespan of reinforced concrete structures has traditionally been 50 to 60 years.
It is thought to be about 20 years old. The reason for this is the phenomenon that carbonation from the surface of the concrete progresses to the inside of the concrete due to carbon dioxide gas, and when this neutralized region reaches the position of the reinforcing bars, the reinforcing bars rust and the reinforced concrete members lose their strength. This is due to

また、セメント配合物は硬化と乾燥に伴い体積の減少を
生ずるが、この乾燥収縮はコンク・リート構造物等のひ
び割れの原因となる。このひび割れはコンクリート構造
物等の強度低下やひび割れ部分から炭酸ガスを内部に浸
透させ、コンクリートの中性化を促進し、鉄筋の発錆を
ひき起こすためコンクリート構造物等の耐久性を大幅に
低下させる。このような中性化、ひび割れに対する対策
としては、従来より、 1)セメント配合物の水/セメント比を小さくする、 2)塗料等の気密性に優れた仕上材をコンクリート表面
に塗付する、 等の方法が行われてきた。しかし、水/セメント比を小
さくすると作業性が著しく損われる上に、硬化発熱量の
増大のためかえってひび割れが発生する欠点がある。ま
た、上記塗料等の仕上材の使用は短期的には有効であっ
ても、仕上材自体の耐久性に問題がある。このため、上
記1)及び2)の方法はいずれも満足を得る方法とはい
えない。
Cement mixtures also decrease in volume as they harden and dry, and this drying shrinkage causes cracks in concrete structures and the like. These cracks reduce the strength of concrete structures, allow carbon dioxide to penetrate into the interior through the cracks, promote carbonation of the concrete, and cause rusting of reinforcing bars, which significantly reduces the durability of concrete structures. let Conventional countermeasures against such carbonation and cracking include: 1) reducing the water/cement ratio of the cement mixture; 2) applying a finishing material with excellent airtightness, such as paint, to the concrete surface; Such methods have been used. However, when the water/cement ratio is reduced, workability is significantly impaired, and the heat generated by curing increases, resulting in cracking. Further, even if the use of finishing materials such as the above-mentioned paints is effective in the short term, there are problems with the durability of the finishing materials themselves. Therefore, neither of the above methods 1) and 2) can be said to be satisfactory.

更にコンクリート構造物の耐久性を低下させる要因とし
ては、鉄腐蝕性塩化物によるコンクリート中の鉄筋の腐
食が挙げられる。より具体的には、近年増加しつつある
海砂の使用や海岸沿いのコンクリート構造物への海風に
より運ばれる鉄腐蝕性塩化物のコンクリート内部への浸
透を原因とする鉄筋の腐蝕である。その対策としては、
従来から初期硬化を促進させる添加剤や水密性を増強す
る添加剤等が提案されているが、必ずしも満足できるも
のではな(、特に、骨材砂中の鉄JK蝕性塩化物含量が
NaC1換算で0.01重量%以上である場合について
は、特に好適な防錆剤が見当たらない。
Another factor that reduces the durability of concrete structures is corrosion of reinforcing bars in concrete due to iron-corrosive chlorides. More specifically, corrosion of reinforcing bars is caused by the increasing use of sea sand in recent years and the penetration of iron-corrosive chlorides carried by sea breezes into concrete structures along the coast. As a countermeasure,
Additives that accelerate initial hardening and additives that enhance watertightness have been proposed in the past, but these are not always satisfactory (particularly when the content of corrosive chlorides in iron JK in aggregate sand is converted to NaC1). If the amount is 0.01% by weight or more, no particularly suitable rust preventive has been found.

発明が解決しようとする課題 本発明は上記のモルタル、コンクリート構造物固有の欠
点を改善し、白華現象の防止及び耐久性に優れたモルタ
ル、コンクリート構造物を与える方法を提供することを
目的とする。
Problems to be Solved by the Invention The purpose of the present invention is to provide a method for improving the above-mentioned disadvantages inherent in mortar and concrete structures, preventing efflorescence, and providing mortar and concrete structures with excellent durability. do.

課題を解決するための手段 本発明者は、上記課題を解決すべく鋭意研究を重ねた。Means to solve problems The present inventor has conducted extensive research in order to solve the above problems.

その結果、水溶性アミノ樹脂が、前記二つの原因に基づ
く白華の防止のみならず、中性化抑制及び鉄筋の防錆に
も効果的であることを見出だした。
As a result, it was found that the water-soluble amino resin is effective not only in preventing efflorescence caused by the above two causes, but also in suppressing carbonation and preventing rust on reinforcing bars.

更に本発明者は、上記水溶性アミノ樹脂と、高級脂肪酸
金属塩及び非イオン界面活性剤の少なくとも1種とを、
夫々適当量で併用することにより、上記水溶性アミノ樹
脂が奏する上記効果が増強され、それに加えて乾燥収縮
も抑制されることを見出した。本発明はこれらの新知見
に基づき完成されたものである。
Furthermore, the present inventor has prepared the water-soluble amino resin and at least one of a higher fatty acid metal salt and a nonionic surfactant,
It has been found that by using them in appropriate amounts, the above-mentioned effects of the water-soluble amino resin are enhanced, and in addition, drying shrinkage is also suppressed. The present invention has been completed based on these new findings.

即ち、本発明は、モルタル、コンクリートから形成され
るモルタル、コンクリート構造物の品質を向上させる方
法において、モルタル、コンクリートの混練時に、水溶
性アミノ樹脂を配合することを特徴とするモルタル、コ
ンクリート構造物の品質を向上させる方法を提供するも
のである。
That is, the present invention provides a method for improving the quality of mortar and concrete structures formed from mortar and concrete, which is characterized in that a water-soluble amino resin is blended during mixing of the mortar and concrete. It provides a method to improve the quality of

また、本発明は、モルタル、コンクリートから形成され
るモルタル、コンクリート構造物の品質を向上させる方
法において、モルタル、コンクリートの混練時に、水溶
性アミノ樹脂と、高級脂肪酸金属塩及び非イオン界面活
性剤の少なくとも1種とを配合することを特徴とするモ
ルタル、コンクリート構造物の品質を向上させる方法を
提供するものでもある。
Furthermore, the present invention provides a method for improving the quality of mortar and concrete structures formed from mortar and concrete, in which a water-soluble amino resin, a higher fatty acid metal salt, and a nonionic surfactant are mixed together during kneading of mortar and concrete. The present invention also provides a method for improving the quality of mortar and concrete structures, characterized by blending at least one of them.

本発明によれば、上記水溶性アミノ樹脂を単独で使用し
た場合、白華防止、中性化抑制及び鉄筋の防錆が効果的
に行われる。
According to the present invention, when the above-mentioned water-soluble amino resin is used alone, efflorescence prevention, neutralization prevention, and rust prevention of reinforcing bars are effectively performed.

また、本発明によれば、上記水溶性アミノ樹脂と、高級
脂肪酸金属塩及び非イオン界面活性剤の少なくとも1種
とを、夫々適当量で併用することにより、上記作用が増
強される。
Further, according to the present invention, the above effects are enhanced by using the water-soluble amino resin and at least one of a higher fatty acid metal salt and a nonionic surfactant in appropriate amounts.

より具体的には、上記水溶性アミノ樹脂と高級脂肪酸金
属塩とを併用すると、白華防止作用及び中性化抑制作用
が増強される。
More specifically, when the above-mentioned water-soluble amino resin and higher fatty acid metal salt are used together, the efflorescence-preventing effect and the neutralization-inhibiting effect are enhanced.

上記水溶性アミノ樹脂と非イオン界面活性剤とを併用す
ると、白華防止作用、中性化抑制作用及び乾燥収縮抑制
作用が増強され、両者を特定の使用量で併用すると、白
華防止作用、中性化抑制作用、乾燥収縮抑制作用及び鉄
筋の防錆作用の全てにおいて顕著に優れた効果を発揮す
る。
When the above-mentioned water-soluble amino resin and nonionic surfactant are used in combination, the efflorescence-preventing effect, neutralization-inhibiting effect, and drying shrinkage-inhibiting effect are enhanced, and when both are used together in specific amounts, the efflorescence-preventing effect, It exhibits remarkable effects in all of its neutralization inhibiting action, drying shrinkage inhibiting action, and reinforcing steel rust prevention action.

上記水溶性アミノ樹脂と高級脂肪酸金属塩及び非イオン
界面活性剤の3者を使用すると、白華防止作用、中性化
抑制作用、乾燥収縮抑制作用及び鉄筋の防錆作用のすべ
てが少なくとも部分的に増強され、これら3者を特定の
使用nで使用すると、白華防止作用、中性化抑制作用、
乾燥収縮抑制作用及び鉄筋の防錆作用の全てにおいて顕
著に優れた効果を発揮する。
When the above-mentioned water-soluble amino resin, higher fatty acid metal salt, and nonionic surfactant are used, all of the efflorescence prevention effect, neutralization suppression effect, drying shrinkage suppression effect, and reinforcing steel rust prevention effect can be achieved at least partially. When these three are used in specific ways, they have an anti-efflorescence effect, a neutralization suppressing effect,
It exhibits remarkable effects in both drying shrinkage suppressing action and reinforcing steel rust prevention action.

本発明において使用される水溶性アミノ樹脂としては、
メラミン、尿素等のアミノ化合物乃至アミド化合物とホ
ルムアルデヒド等のアルデヒド類との反応で得られる二
量体、二量体を主成分とするプレポリマー段階の水溶性
樹脂であり、水溶性である限り広い範囲のものが包含さ
れ、特にメチロール基がフリーのものが良い。メチロー
ル基がエーテル化される等により水不溶性であるアミノ
樹脂では、所望の品質向上効果を十分に発揮することが
できない。本発明では、上記水溶性アミノ樹脂のうちで
も、特に水溶性の尿素樹脂、メラミン樹脂、尿素・メラ
ミン樹脂等が好ましく使用できる。かかる尿素樹脂は、
尿素1モルに対しホルムアルデヒド1〜2.5モル程度
、特に1.5〜2モル程度の割合で、またメラミン樹脂
はメラミン1モルに対しホルムアルデヒド1.5〜3.
5モル程度、特に2〜3モル程度の割合で、夫々メチロ
ール化、縮合反応させて得られる水溶性の樹脂がより好
ましく、尿素・メラミン樹脂はこのような特定の尿素樹
脂とメラミン樹脂との混合物又は共縮合物であるのがよ
り好ましい。これらは、特に別途調製してもよいし、ま
た市販品を用いてもよい。一般に、上記水溶性アミノ樹
脂は、水溶液の形態にある。
The water-soluble amino resin used in the present invention includes:
It is a dimer obtained by the reaction of an amino compound or amide compound such as melamine or urea with an aldehyde such as formaldehyde, or a water-soluble resin at the prepolymer stage mainly composed of a dimer, and can be used in a wide range of applications as long as it is water-soluble. Those within this range are included, and those free of methylol groups are particularly preferred. Amino resins that are water-insoluble due to etherification of methylol groups or the like cannot sufficiently exhibit the desired quality improvement effect. In the present invention, among the above-mentioned water-soluble amino resins, water-soluble urea resins, melamine resins, urea/melamine resins, etc. can be particularly preferably used. Such urea resin is
The ratio of formaldehyde to 1 mole of urea is about 1 to 2.5 moles, especially about 1.5 to 2 moles, and the ratio of melamine resin is about 1.5 to 3.5 moles of formaldehyde to 1 mole of melamine.
Water-soluble resins obtained by methylolation and condensation reactions are more preferable at a ratio of about 5 moles, particularly about 2 to 3 moles, respectively, and urea/melamine resins are mixtures of such specific urea resins and melamine resins. Or, it is more preferable that it is a co-condensate. These may be prepared separately, or commercially available products may be used. Generally, the water-soluble amino resin is in the form of an aqueous solution.

本発明では、水溶性アミノ樹脂は、単独使用の場合、セ
メント100重量部に対して、0.4〜1.5重量部程
度、好ましくは0.5〜1.0重量部程度使用される。
In the present invention, when used alone, the water-soluble amino resin is used in an amount of about 0.4 to 1.5 parts by weight, preferably about 0.5 to 1.0 parts by weight, based on 100 parts by weight of cement.

0.4重量部を下回るとその効果が不十分となり、1.
5重量部を上回ると硬化が時折阻害され、又、鉄筋の防
錆効果を阻害する傾向がみられる。
If the amount is less than 0.4 parts by weight, the effect will be insufficient;
When the amount exceeds 5 parts by weight, hardening is sometimes inhibited, and there is a tendency to inhibit the rust prevention effect of reinforcing bars.

既述の如く、本発明では、上記水溶性アミノ樹脂と、高
級脂肪酸金属塩及び非イオン界面活性剤の少なくとも1
種とを併用することにより、水溶性アミノ樹脂の作用を
増強することができる。
As mentioned above, in the present invention, the water-soluble amino resin and at least one of a higher fatty acid metal salt and a nonionic surfactant are used.
The action of the water-soluble amino resin can be enhanced by using it in combination with seeds.

高級脂肪酸金属塩としては各種のものが使用できるが、
炭素数6〜24の高級飽和又は不飽和のモノカルボン酸
のアルカリ金属塩又はアルカリ土類金属塩が好ましく用
いられる。特に、炭素数9〜21の高級飽和モノカルボ
ン酸のアルカリ土類金属塩は、廉価で、アルカリ骨材反
応の面からもより好ましい。本発明で使用される高級脂
肪酸金属塩のうちでも、ステアリン酸カルシウム、ステ
アリン酸マグネシウム、ミリスチン酸カルシウム、パル
ミチン酸カルシウム、ラウリン酸カルシウム等が特に好
ましく使用できる。
Various types of higher fatty acid metal salts can be used, but
Alkali metal salts or alkaline earth metal salts of higher saturated or unsaturated monocarboxylic acids having 6 to 24 carbon atoms are preferably used. In particular, alkaline earth metal salts of higher saturated monocarboxylic acids having 9 to 21 carbon atoms are inexpensive and more preferred from the viewpoint of alkaline aggregate reaction. Among the higher fatty acid metal salts used in the present invention, calcium stearate, magnesium stearate, calcium myristate, calcium palmitate, calcium laurate, etc. can be particularly preferably used.

非イオン界面活性剤も各種のものが使用できるが、典型
的には、下記一般式 %式%(1) [式中、Rは炭素数6〜22のアルキル基又は置換基と
して炭素数1〜16のアルキル基又はハロゲン原子を有
していてもよいフェニル基を示し、nは4〜30の整数
である。] で表わされるもの又は一般式 %式%(3) [式中、R1は炭素数6〜22のアルキル基を示し、m
は4〜30の整数である。] で表わされるもの又は一般式 [式中R2は炭素数6〜22のアルキル基を示し、R3
は水素原子又は2−ヒドロキシエチル基を示す。コ で表されるものが好ましい。
Various types of nonionic surfactants can be used, but typically, the following general formula % formula % (1) [wherein R is an alkyl group having 6 to 22 carbon atoms or a substituent having 1 to 1 carbon atoms] It represents a phenyl group which may have 16 alkyl groups or a halogen atom, and n is an integer of 4 to 30. ] or general formula % formula % (3) [wherein R1 represents an alkyl group having 6 to 22 carbon atoms, m
is an integer from 4 to 30. ] or the general formula [wherein R2 represents an alkyl group having 6 to 22 carbon atoms, R3
represents a hydrogen atom or a 2-hydroxyethyl group. Preferably, the one represented by .

上記の如き高級脂肪酸金属塩又は非イオン界面活性剤は
、それ単独では白華防止、中性化抑制、乾燥収縮低減及
び鉄筋防錆のいずれの効果をも発揮せず、前記水溶性ア
ミノ樹脂と併用した場合に水溶性アミノ樹脂の白華防止
効果、中性化抑制効果及び乾燥収縮低減効果を増強する
ものである。
The above higher fatty acid metal salts or nonionic surfactants alone do not exhibit any of the effects of preventing efflorescence, suppressing neutralization, reducing drying shrinkage, and preventing rust from reinforcing steel, and do not work together with the water-soluble amino resin. When used in combination, it enhances the efflorescence prevention effect, neutralization suppression effect, and drying shrinkage reduction effect of the water-soluble amino resin.

従って、この様な併用の場合、水溶性アミノ樹脂は、単
独使用の場合に比し少ない使用量でもよく、一般にセメ
ント100重量部に対して、乾燥固形分として0,2〜
1.5重n部程度、好ましくは0.3〜1.0重量部程
度使用すればよい。上記水溶性アミノ樹脂と併用する場
合、高級脂肪酸金属塩は、一般にセメント100重量部
に対して、0.02〜0.1重量部程度、好ましくは0
.03〜0.088重量部程使用され、非イオン界面活
性剤は、一般にセメント100重量部に対して、0.0
04〜0.088重量部程、好ましくは 0.005〜
0.055重量部程使用される。
Therefore, when used in combination, the water-soluble amino resin may be used in a smaller amount than when used alone, and generally has a dry solid content of 0.2 to 100 parts by weight per 100 parts by weight of cement.
It is sufficient to use about 1.5 parts by weight, preferably about 0.3 to 1.0 parts by weight. When used in combination with the above water-soluble amino resin, the higher fatty acid metal salt is generally about 0.02 to 0.1 part by weight, preferably 0 parts by weight, based on 100 parts by weight of cement.
.. The nonionic surfactant is generally used in an amount of 0.03 to 0.088 parts by weight per 100 parts by weight of cement.
04 to 0.088 parts by weight, preferably 0.005 to 0.088 parts by weight
About 0.055 parts by weight is used.

セメント100重責部に対して、上記水溶性アミノ樹脂
0.2〜1.5重量部(乾燥固形分換算)と高級脂肪酸
金属塩を0.02〜0.1重量部程度併用すると、上記
水溶性アミノ樹脂の白華防止作用及び中性化抑制作用が
増強される。高級脂肪酸金属塩の使用量が0.02重量
部を下回ると、白華防止作用及び中性化抑制作用の増強
効果が小さく、0.1重量部を上回ると、逆に白華が発
生しやすくなる傾向が生じる。
When 0.2 to 1.5 parts by weight of the water-soluble amino resin (calculated as dry solid content) and 0.02 to 0.1 parts by weight of higher fatty acid metal salt are used in combination with 100 parts of cement, the water-soluble The anti-efflorescence and neutralization-inhibiting effects of the amino resin are enhanced. If the amount of higher fatty acid metal salt used is less than 0.02 part by weight, the effect of enhancing the efflorescence prevention effect and neutralization suppressing effect will be small, and if it exceeds 0.1 part by weight, efflorescence will be more likely to occur. There is a tendency to

セメント100重責部に対して、上記水溶性アミノ樹脂
0.2〜1.5重量部程度(乾燥固形分換算)と非イオ
ン界面活性剤0.004〜0.08重量部程度とを併用
すると、白華防止作用、中性化抑制作用及び乾燥収縮抑
制作用が増強される。非イオン界面活性剤の使用量が0
.004重量部を下回ると、中性化抑制作用及び乾燥収
縮抑制作用の増強効果が小さく、0.08重量部を上回
ると、白華防止作用、中性化抑制作用の増強効果が小さ
くなる傾向が生じる。
When about 0.2 to 1.5 parts by weight of the above-mentioned water-soluble amino resin (calculated as dry solid content) and about 0.004 to 0.08 parts by weight of a nonionic surfactant are used together with 100 parts by weight of cement, The efflorescence prevention effect, neutralization suppression effect, and drying shrinkage suppression effect are enhanced. No amount of nonionic surfactant used
.. If it is less than 0.04 parts by weight, the effect of enhancing the neutralization suppressing effect and drying shrinkage suppressing effect is small, and if it exceeds 0.08 part by weight, the effect of enhancing the effect of preventing efflorescence and the suppressing effect of carbonation tends to be small. arise.

セメント100重量部に対して、上記水溶性アミノ樹脂
0.2〜1.5重量部程度(乾燥固形分換算)、高級脂
肪酸金属塩0.02〜0.1重量部程度及び非イオン界
面活性剤0.004〜0.08重量部程度を使用すると
、白華防止作用、中性化抑制作用、乾燥収縮抑制作用及
び鉄筋の防錆作用のすべてが少なくとも部分的に増強さ
れる。
For 100 parts by weight of cement, about 0.2 to 1.5 parts by weight of the water-soluble amino resin (calculated as dry solid content), about 0.02 to 0.1 parts by weight of higher fatty acid metal salts, and nonionic surfactant. When about 0.004 to 0.08 parts by weight is used, all of the efflorescence-preventing effect, neutralization-inhibiting effect, drying shrinkage-inhibiting effect, and rust-preventing effect on reinforcing bars are at least partially enhanced.

白華防止、中性化抑制、乾燥収縮及び鉄筋の防錆の全て
の点において顕著に優れた効果を得るには、セメント1
00重量部に対して上記水溶性アミノ樹脂0.3〜1.
0重世部程度(乾燥固形分換算)と非イオン界面活性剤
0.005〜0.03重量部程度とを使用するか、又は
、セメント100重n部に対して、上記水溶性アミノ樹
脂0.3〜1.0重量部程度(乾燥固形分換算)、高級
脂肪酸金属塩0.03〜0.1重量部程度及び非イオン
界面活性剤0.005〜0.03重世部程度を使用する
とよい。
In order to obtain remarkable effects in all aspects of preventing efflorescence, suppressing carbonation, drying shrinkage, and preventing rust of reinforcing bars, cement 1.
0.3 to 1.0 parts by weight of the above water-soluble amino resin.
Either use about 0 parts by weight (in terms of dry solid content) and about 0.005 to 0.03 parts by weight of a nonionic surfactant, or use 0 parts by weight of the above water-soluble amino resin per 100 parts by weight of cement. When using about .3 to 1.0 parts by weight (in terms of dry solid content), about 0.03 to 0.1 parts by weight of higher fatty acid metal salts, and about 0.005 to 0.03 parts by weight of nonionic surfactants, good.

更に、上記本発明に従えば、上記の白華防止効果、中性
化抑制効果、乾燥収縮抑制効果及び鉄筋の防錆効果が向
上することに加えて、モルタル、コンクリート構造体の
防水性も向上する。
Furthermore, according to the present invention, in addition to improving the efflorescence prevention effect, carbonation suppression effect, drying shrinkage suppression effect, and rust prevention effect of reinforcing bars, the waterproofness of mortar and concrete structures is also improved. do.

本発明の白華防止方法の対象となるセメントとしては、
一般に使用されているものが特に限定なく使用でき、例
えばポルトランドセメント、アルミナセメント、フライ
アッシュセメント、高炉セメント、シリカセメント等が
挙げられる。
Cement that is subject to the efflorescence prevention method of the present invention includes:
Commonly used cements can be used without particular limitation, such as Portland cement, alumina cement, fly ash cement, blast furnace cement, and silica cement.

水溶性アミノ樹脂と高級脂肪酸金属塩及び非イオン界面
活性剤の少なくとも1種とを併用する場合、これらは別
個にセメント配合物に添加しても良いし、予め混合して
目的とする品質に合わせた組成物として添加しても良い
。目的とする品質に合わせた組成物とする場合、その組
成は前記使用量に照らし適宜決定すれば良いが、一般に
は、水溶性アミノ樹脂100重責部(乾燥固形分として
)に対し、高級脂肪酸金属塩を5〜25重量部程度、好
ましくは7.5〜20重n部程度又は/及び非イオン界
面活性剤を1〜20重合部程度、好ましくは1.5〜7
.5重量部程度含有する組成物とするのが望ましい。
When a water-soluble amino resin and at least one of a higher fatty acid metal salt and a nonionic surfactant are used together, these may be added to the cement mixture separately or mixed in advance to achieve the desired quality. It may be added as a composition. When creating a composition that meets the desired quality, the composition can be determined appropriately in light of the amount used, but in general, higher fatty acid metal is added to 100 parts of water-soluble amino resin (as dry solid content). About 5 to 25 parts by weight of salt, preferably about 7.5 to 20 parts by weight, and/or about 1 to 20 parts by weight of nonionic surfactant, preferably 1.5 to 7 parts by weight.
.. It is desirable that the composition contains about 5 parts by weight.

従って、本発明は、 (a)水溶性アミノ樹脂(乾燥固形分として)100重
全重責及び (b)高級脂肪酸金属塩5〜25重量部及び/又は非イ
オン界面活性剤1〜20重量部 を含有することを特徴とするモルタル、コンクリート混
和剤を提供するものでもある。
Therefore, the present invention comprises (a) 100 parts by weight of a water-soluble amino resin (as dry solids) and (b) 5 to 25 parts by weight of a higher fatty acid metal salt and/or 1 to 20 parts by weight of a nonionic surfactant. The present invention also provides mortar and concrete admixtures characterized by containing.

本発明に従い、上記水溶性アミノ樹脂単独又は上記水溶
性アミノ樹脂と上記高級脂肪酸金属塩及び非イオン界面
活性剤の少なくとも1種とを、モルタル、コンクリート
等のセメント配合物に配合して均一混合物を得、これを
型枠に流し込み、ついで硬化させることにより、建物の
壁や床面、橋その他のモルタル、コンクリート構造物を
製造すると、かかる構造物の品質は前記のごとく向上し
たものとなる。また、上記均一混合物を、既に完成して
いるモルタル、コンクリート構造物の表面に塗布または
吹付けすることによっても、白華や中性化を防止又は抑
制することができる。
According to the present invention, the above-mentioned water-soluble amino resin alone or the above-mentioned water-soluble amino resin and at least one of the above-mentioned higher fatty acid metal salt and nonionic surfactant are blended into a cement composition such as mortar or concrete to form a homogeneous mixture. When this is poured into formwork and then hardened to produce walls and floors of buildings, bridges, and other mortar and concrete structures, the quality of such structures is improved as described above. Furthermore, efflorescence and carbonation can also be prevented or suppressed by applying or spraying the uniform mixture onto the surface of an already completed mortar or concrete structure.

実施例 以下実施例及び比較例を掲げて本発明をより詳しく説明
する。
EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 (1)混和H料 本実施例において使用した水溶性アミノ樹脂は、次のも
のである。
Example 1 (1) Mixed H material The water-soluble amino resin used in this example is as follows.

a:水溶性尿素樹脂 (住友ベークライト■製の商品名「イゲタライム」シリ
ーズの中で、尿素1モルに対しホルムアルデヒド1.7
モルをメチロール化、縮合反応させたもの) b:水溶性メラミン樹脂 (住友ベークライト■製の商品名「イゲタライムjシリ
ーズの中で、メラミン1モルに対しホルムアルデヒド2
.6モルをメチロール化、縮合反応させたもの) C:水溶性尿素メラミン樹脂 (上記水溶性尿素樹脂aと上記水溶性メラミン樹脂すと
の3=7(重量比)混合物)また、高級脂肪酸金属塩と
しては次のものを用いた。
a: Water-soluble urea resin (product name "Igetalime" series manufactured by Sumitomo Bakelite ■, formaldehyde 1.7 per mole of urea)
b: Water-soluble melamine resin (produced by Sumitomo Bakelite ■ under the product name "Igetalime J series", where 1 mole of melamine contains 2 formaldehyde)
.. C: Water-soluble urea melamine resin (3=7 (weight ratio) mixture of the above water-soluble urea resin a and the above water-soluble melamine resin S), and higher fatty acid metal salt The following was used.

■ニステアリン酸カルシウム ■:パルミチン酸カルシウム 非イオン界面活性剤としては、次のものを用いた。■Calcium nistearate ■: Calcium palmitate The following nonionic surfactants were used.

■: CH3(CH2) +5COO(CH2CH20
)s H■: Cl1a (C1l 2 )  a C
0NIICH2CI+2011(2)試験方法 1)白華促進試験 以上の水溶性アミノ樹脂、高級脂肪酸金属塩及び/又は
非イオン界面活性剤を用い、その使用割合を下記第1表
のように変えて、普通ポルトランドセメントに添加し、
砂利/川砂重量比3(豊浦標準砂使用)、水/セメント
重量比0. 7のモルタルとし、1010X10X10
のセメントモルタル角柱体に成形し、20℃×90%R
Hで24時間湿空養生した後脱型した。
■: CH3 (CH2) +5COO (CH2CH20
)s H■: Cl1a (C1l 2 ) a C
0NIICH2CI+2011 (2) Test method 1) Using a water-soluble amino resin, higher fatty acid metal salt, and/or nonionic surfactant with a rating higher than the efflorescence acceleration test, and changing the usage ratio as shown in Table 1 below, ordinary Portland cement was used. added to the
Gravel/river sand weight ratio: 3 (using Toyoura standard sand), water/cement weight ratio: 0. 7 mortar, 1010X10X10
Formed into a cement mortar prismatic body, 20℃ x 90%R
After curing in humid air for 24 hours in H, the mold was demolded.

次いで、これらセメントモルタル角柱体を長手方向に2
cm幅で切断し、1010X10X2の切断片を得た。
Next, these cement mortar prismatic bodies are longitudinally divided into two
It was cut to a width of cm to obtain a cut piece of 1010 x 10 x 2.

得られた切断片を、80℃で24時間乾燥し、側面をパ
ラフィンでコーティングし、白華発生試験用の試験片と
した。
The obtained cut piece was dried at 80° C. for 24 hours, and the side surface was coated with paraffin to prepare a test piece for an efflorescence test.

別に硫酸ナトリウム2重金%と過剰の水酸化カルシウム
を含有する水溶液を浴槽中に入れ、炭酸化を防止するべ
く油を浮かせた。この浴槽を7℃×55%RH,風速0
.2〜0. 3m1secの環境下に置き、前記試験片
を浴槽中の水溶液に1CI11まで浸漬し、14日後に
、白華の発生状況を目視観察した。白華発生度合いの判
定は次の基準によるものである。
Separately, an aqueous solution containing 2% sodium sulfate and excess calcium hydroxide was placed in a bathtub, and the oil was floated to prevent carbonation. This bathtub is 7℃ x 55%RH, wind speed is 0.
.. 2-0. The test piece was placed in an environment of 3 ml for 1 sec, and immersed in an aqueous solution in a bathtub up to 1 CI11. After 14 days, the appearance of efflorescence was visually observed. The degree of efflorescence occurrence is determined based on the following criteria.

◎  全く白華を認めず O試験片の周辺部又は中心部に僅かに白く着色 △  試験片の周辺部に白華の結晶成長X  全面に白
華の結晶成長 結果を第1表に示す。
◎ No efflorescence observed O Slight white coloring on the periphery or center of the test piece △ Crystal growth of efflorescence on the periphery of the test piece X The results of crystal growth of efflorescence on the entire surface are shown in Table 1.

2)中性化促進試験 上記1)で行った試験と同じ混和材料を用い、その使用
割合も1)と同じように変えて、普通ポルトランドセメ
ントに添加し、川砂/セメント重量比1、砂利/川砂重
量比1.5、水/セメント重量比0.6の割合で混練り
し、10cmxlQcmX20cmの直方体の供試体を
成形し、20℃×90%RHで1週間養成した後、20
℃×50%RHで2週間乾燥させた。これらの供試体を
40℃×50%RH1炭酸ガス濃度10%の槽の中に入
れ1ケ月間放置した。
2) Accelerated carbonation test Using the same admixture as in the test conducted in 1) above, and changing the proportions used in 1), it was added to ordinary Portland cement, with a river sand/cement weight ratio of 1, gravel/ The mixture was mixed with a river sand weight ratio of 1.5 and a water/cement weight ratio of 0.6, formed into a rectangular parallelepiped specimen of 10 cm x 1 Q cm x 20 cm, and cured at 20°C x 90% RH for one week.
It was dried for 2 weeks at 50% RH. These specimens were placed in a tank at 40° C., 50% RH, and 10% carbon dioxide gas concentration, and left for one month.

1ケ月の後、各供試体を槽の中から取り出し、供試体を
切断しその断面に1%濃度のフェノールフタレイン溶液
(エチルアルコール)を吹き付けて中性化深さ(無着色
の深さ)を測定した。
After one month, each specimen was removed from the tank, the specimen was cut, and a 1% concentration phenolphthalein solution (ethyl alcohol) was sprayed on the cross section to determine the neutralization depth (uncolored depth). was measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

3)乾燥収縮試験 上記1)で行なった試験と同じ混和材料を用いその使用
割合も1)と同じように変えて普通ポルトランドセメン
トに添加し、川砂/セメント重量比1、砂利/川砂重量
比1、水/セメント重量比0.6の割合で混合して、J
IS  A  1129「モルタル及びコンクリートの
長さ変化試験方法」に準じて行なった。
3) Drying shrinkage test Using the same admixture as in the test conducted in 1) above, and changing the proportions used in 1), they were added to ordinary Portland cement, and the river sand/cement weight ratio was 1, and the gravel/river sand weight ratio was 1. , mixed at a water/cement weight ratio of 0.6, J
The test was conducted in accordance with IS A 1129 "Length change test method for mortar and concrete".

測定は3ケ月経過の時点で行なった。Measurements were taken after 3 months had elapsed.

測定結果を第1表に示す。The measurement results are shown in Table 1.

4)発錆促進試験 上記1)で行なった試験と同じ混和材料を用いその使用
割合も1)と同じように変えて普通ポルトランドセメン
ト50重回部に添加し、これに海砂(NaCJを0.0
2重量%含有)を100重世部混合して水/セメント重
量比0.5で混練りした。よく磨き、アセトンで脱脂し
た軟鋼棒(4φX100mm)を型枠の中央部に置いて
上記混練物を流し込み、4X4X160mmの直方体状
コンクリート供試体を成形した。
4) Rust acceleration test Using the same admixture as in the test conducted in 1) above, the proportions used were changed in the same way as in 1), and 50 parts of ordinary Portland cement was added to 50 parts of normal Portland cement. .0
2% by weight) was mixed and kneaded at a water/cement weight ratio of 0.5. A well-polished and acetone-degreased mild steel rod (4 φ x 100 mm) was placed in the center of the mold, and the above kneaded material was poured into it to form a rectangular parallelepiped concrete specimen measuring 4 x 4 x 160 mm.

この供試体20℃×60%RHで1週間養成した後、4
0°C×90%RHの恒温恒湿容器中に3ケ月放置し、
供試体を壊して内部の鉄筋の発錆度合いを目視観察した
After culturing this specimen for one week at 20°C x 60% RH,
Leave it in a constant temperature and humidity container at 0°C x 90% RH for 3 months.
The specimen was broken and the degree of rust on the internal reinforcing bars was visually observed.

鉄筋の発錆度合いの判定は次の基準によるものである。The degree of rust on reinforcing bars is judged based on the following criteria.

◎二発錆を全く認めず ○:発錆をほとんど認めず Δ:やや発錆あり X:かなり発錆あり 結果を第1表に示す。◎No second-shot rust observed ○: Almost no rust observed Δ: Slight rusting X: Significant rusting The results are shown in Table 1.

尚、第1表及び引続く表において、「使用量」は、セメ
ント100重量部に対する重量部を示し、また、水溶性
アミノ樹脂の使用量は、乾燥固形分としての二である。
In Table 1 and the subsequent tables, "amount used" indicates parts by weight based on 100 parts by weight of cement, and the amount of water-soluble amino resin used is 2 as dry solid content.

比較例1 水溶性アミノ樹脂に代えて、末端メチロール基をブチル
エーテル化した下記の非水溶性アミノ1得脂を第2表(
試料No、43〜45)記載のように使用し、実施例1
と同様に前記1)〜4)の試験を行なった。
Comparative Example 1 In place of the water-soluble amino resin, the following water-insoluble amino 1 resin obtained by converting the terminal methylol group to butyl ether was used as shown in Table 2 (
Sample No. 43-45) was used as described in Example 1.
Tests 1) to 4) above were conducted in the same manner as above.

結果を第2表に示す。The results are shown in Table 2.

X:非水溶性尿素樹脂 (実施例1で用いた水溶性尿素樹脂aをブチルエーテル
化したもの) y:非水溶性メラミン樹脂 (実施例1で用いた水溶性メラミン樹脂すをブチルエー
テル化したもの) 比較例2 また、高級脂肪酸金属塩を単独で使用しく試料No、4
6.47)、又は非イオン界面活性剤を単独で使用(試
料No、48〜50)して、実施例1と同様に前記1)
〜4)の試験を行なった。結果を第2表に示す。
X: Water-insoluble urea resin (butyl etherified water-soluble urea resin a used in Example 1) y: Water-insoluble melamine resin (butyl etherified water-soluble melamine resin used in Example 1) Comparative Example 2 In addition, higher fatty acid metal salt was used alone in sample No. 4.
6.47), or using a nonionic surfactant alone (sample No. 48 to 50) and performing 1) in the same manner as in Example 1.
Tests 4) to 4) were conducted. The results are shown in Table 2.

第2表には、混和材料を全く使用せずにセメント配合物
のみを用いた場合(ブレーン)の結果を併記する。
Table 2 also shows the results when only the cement mixture was used without using any admixtures (blane).

第1表及び第2表から明らかなように、水溶性アミノ樹
脂の適当量を使用した場合白華、中性化及び鉄筋の発錆
が防止又は抑制され、水溶性アミノ樹脂と、高級脂肪酸
金属塩及び非イオン界面活性剤の少なくとも1種とを夫
々適当全使用した場合には、白華、中性化、乾燥収縮、
鉄筋の発錆が効果的に複合的に防止又は抑制されている
ことが判る。
As is clear from Tables 1 and 2, when an appropriate amount of water-soluble amino resin is used, efflorescence, carbonation, and rusting of reinforcing bars are prevented or suppressed, and water-soluble amino resin and higher fatty acid metal When at least one of a salt and a nonionic surfactant is used appropriately, efflorescence, neutralization, drying shrinkage,
It can be seen that rusting of reinforcing bars is effectively prevented or suppressed in a complex manner.

実施例2 別途第1表の試料No、 3.14.15及び32を用
いて、JIS−A1401に準じて吸水試験を行った。
Example 2 Separately, a water absorption test was conducted according to JIS-A1401 using sample Nos. 3, 14, 15, and 32 in Table 1.

その結果を第3表に示す。The results are shown in Table 3.

尚、比較のため、第1表の試料No、 1及び第2表の
試料No、51(プレーン)の結果を第3表に併記する
For comparison, the results of sample No. 1 in Table 1 and sample No. 51 (plain) in Table 2 are also listed in Table 3.

第3表から明らかなように、水溶性アミノ樹脂を添加し
た場合(試料No、3)、防水性も付与され、水溶性ア
ミノ樹脂を高級脂肪酸金属塩又は非イオン界面活性剤と
併用した場合(試料No、 14.15.32)、更に
防水性が向上することが判る。
As is clear from Table 3, when a water-soluble amino resin is added (sample No. 3), waterproof properties are also imparted, and when a water-soluble amino resin is used in combination with a higher fatty acid metal salt or a nonionic surfactant ( Sample No. 14.15.32), it can be seen that the waterproofness is further improved.

(以 上) 手続辛甫正書(自発) 事件の表示 平成1年特許願第139486号 発明の名称 モルタル、コンクリート構造物の 品質向上方法及び混和剤 補正をする者 事件との関係 特許出願人 株式会社メルバブ(that's all) Procedures Shinbo Seisho (self-motivated) Display of incidents 1999 Patent Application No. 139486 name of invention mortar, concrete structures Quality improvement methods and admixtures person who makes corrections Relationship to the incident: Patent applicant Melbab Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)モルタル、コンクリートから形成されるモルタル
、コンクリート構造物の品質を向上させる方法において
、モルタル、コンクリートの混練時に、水溶性アミノ樹
脂を配合することを特徴とするモルタル、コンクリート
構造物の品質を向上させる方法。
(1) In a method for improving the quality of mortar and concrete structures formed from mortar and concrete, the quality of mortar and concrete structures is improved by blending a water-soluble amino resin when mixing the mortar and concrete. How to improve.
(2)モルタル、コンクリートから形成されるモルタル
、コンクリート構造物の品質を向上させる方法において
、モルタル、コンクリートの混練時に、水溶性アミノ樹
脂と、高級脂肪酸金属塩及び非イオン界面活性剤の少な
くとも1種とを配合することを特徴とするモルタル、コ
ンクリート構造物の品質を向上させる方法。
(2) In a method for improving the quality of mortar and concrete structures formed from mortar and concrete, at least one of a water-soluble amino resin, a higher fatty acid metal salt, and a nonionic surfactant is added during kneading of the mortar and concrete. A method for improving the quality of mortar and concrete structures, characterized by blending with.
(3)a)水溶性アミノ樹脂(乾燥固形分として)10
0重量部、及び (b)高級脂肪酸金属塩5〜25重量部及び/又は非イ
オン界面活性剤1〜20重量部 を含有することを特徴とするモルタル、コンクリート混
和剤。
(3) a) Water-soluble amino resin (as dry solid content) 10
and (b) 5 to 25 parts by weight of a higher fatty acid metal salt and/or 1 to 20 parts by weight of a nonionic surfactant.
JP1139486A 1988-09-05 1989-05-31 Mortar, concrete structure quality improvement method and admixture Expired - Fee Related JPH0674160B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/400,807 US4986854A (en) 1988-09-05 1989-08-30 Method of improving quality of mortar or concrete structures and additives therefor
CA000609807A CA1333815C (en) 1988-09-05 1989-08-30 Method of improving quality of mortar or concrete structures and additives therefor
EP89116199A EP0359068B1 (en) 1988-09-05 1989-09-01 Method of improving quality of mortar or concrete structures and additives therefor
DE89116199T DE68908052T2 (en) 1988-09-05 1989-09-01 Process for improving the quality of mortar or concrete components and additives intended therefor.
KR1019890012740A KR960007366B1 (en) 1988-09-05 1989-09-04 Method of improving quality of mortar or concrete structures and additives therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22214888 1988-09-05
JP63-222148 1988-09-05

Publications (2)

Publication Number Publication Date
JPH02160647A true JPH02160647A (en) 1990-06-20
JPH0674160B2 JPH0674160B2 (en) 1994-09-21

Family

ID=16777932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1139486A Expired - Fee Related JPH0674160B2 (en) 1988-09-05 1989-05-31 Mortar, concrete structure quality improvement method and admixture

Country Status (2)

Country Link
JP (1) JPH0674160B2 (en)
KR (1) KR960007366B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079800A (en) * 1993-06-28 1995-01-13 Hikari Concrete Kogyo Kk Artificial natural matter and manufacture thereof
JP2002081188A (en) * 2000-09-11 2002-03-22 Takenaka Komuten Co Ltd Tiling construction method for concrete structure
JP2019104663A (en) * 2017-12-14 2019-06-27 ミヨシ油脂株式会社 Admixture used for concrete and/or mortar
CN115403333A (en) * 2022-08-30 2022-11-29 江西锦业实业有限公司 Durable cement mortar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079800A (en) * 1993-06-28 1995-01-13 Hikari Concrete Kogyo Kk Artificial natural matter and manufacture thereof
JP2002081188A (en) * 2000-09-11 2002-03-22 Takenaka Komuten Co Ltd Tiling construction method for concrete structure
JP4535218B2 (en) * 2000-09-11 2010-09-01 株式会社竹中工務店 Tiling method for concrete structures
JP2019104663A (en) * 2017-12-14 2019-06-27 ミヨシ油脂株式会社 Admixture used for concrete and/or mortar
CN115403333A (en) * 2022-08-30 2022-11-29 江西锦业实业有限公司 Durable cement mortar
CN115403333B (en) * 2022-08-30 2023-09-05 唐山丰滦新材料有限公司 Durable cement mortar

Also Published As

Publication number Publication date
JPH0674160B2 (en) 1994-09-21
KR960007366B1 (en) 1996-05-31
KR900004643A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
US5938835A (en) Cement composition
KR100404790B1 (en) Shrinkage reduction cement composition
PL177006B1 (en) Workable cement-based compositions
KR19980079265A (en) Concrete spray additive
US4357166A (en) Method and composition for controlling volume change in fast setting, fluid impermeable cementitious systems
JPH06199555A (en) Glycol-containing additive for promoting hardening of hydraulic cement
US5326397A (en) Low shrinkage cement composition
ES2352319T3 (en) MIXING TO MINIMIZE THE PREFERENCE OF SURFACE FINE POWDER ON CEMENT AND CONCRETE STRUCTURES.
US4986854A (en) Method of improving quality of mortar or concrete structures and additives therefor
JP2000007401A (en) Corrosion inhibitor for cement composition
US4355079A (en) Corrosion inhibition
EP1714949A1 (en) Concrete composition with reduced drying shrinkage
JPH02160647A (en) Method for improving quality of mortar or concrete structure and admixture
IE51867B1 (en) Improved cementitious coating composition
JP7372159B2 (en) hydraulic composition
KR100561233B1 (en) Ready mixed concrete contained watertight, inorganic, crack decreasing matter
JPH10236860A (en) Cement composition having resistance to sulfuric acid
US4465519A (en) Dry mortar mix with adhesive
EP0813507B1 (en) Cement composition
JPS6357474B2 (en)
JPS6140856A (en) Neutralizing controller for cement
JPH0327502B2 (en)
JP2006143547A (en) Hydraulic composition having excellent rust preventability
JPS5815052A (en) Mortar concrete admixing agent for enhancing watertightness and having rust preventive effect
JPS62100466A (en) Admixing agent for mortar concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees