JPH0216056B2 - - Google Patents

Info

Publication number
JPH0216056B2
JPH0216056B2 JP54037577A JP3757779A JPH0216056B2 JP H0216056 B2 JPH0216056 B2 JP H0216056B2 JP 54037577 A JP54037577 A JP 54037577A JP 3757779 A JP3757779 A JP 3757779A JP H0216056 B2 JPH0216056 B2 JP H0216056B2
Authority
JP
Japan
Prior art keywords
circuit
signal
transistor
waveform shaping
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54037577A
Other languages
Japanese (ja)
Other versions
JPS55130237A (en
Inventor
Shigeo Nishitoba
Koichi Fukaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3757779A priority Critical patent/JPS55130237A/en
Publication of JPS55130237A publication Critical patent/JPS55130237A/en
Publication of JPH0216056B2 publication Critical patent/JPH0216056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • F02P3/0552Opening or closing the primary coil circuit with semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明は、出力負荷にパルス電流を流すトラン
ジスタ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transistor circuit that causes a pulse current to flow through an output load.

出力負荷にパルス電流を流す回路の一例として
内燃機関点火装置がある。内燃機関点火装置は点
火コイルの2次側に高電圧を発生させてシリンダ
内の混合気を燃焼させるもので、従来の代表的な
回路構成として第1図の様な例が開発されてい
る。第1図において、1は信号発生器、2は該信
号発生器からの出力信号を入力信号として波形整
形回路でシユミツト・トリガ回路より成る。8,
9は波形整形回路2の入力抵抗である。3は上記
波形整形回路2の出力電圧パルスを入力信号とし
て出力トランジスタ4を駆動する駆動回路で、1
0は駆動回路3の出力トランジスタでスイツチ回
路を構成し、5は出力トランジスタ4の負荷、6
は直流電源供給ラインである。7は駆動回路3の
出力トランジスタのコレクタ抵抗である。第2図
は、第1図のブロツク図の各部の電圧電流波形で
ある。信号発生器1はエンジンの回転数と同期し
た、三角波に近い信号電圧V1を発生し、波形整
形回路2の入力信号となる。波形整形回路2の導
通レベルをVON、遮断レベルをVOFFとすると、入
力信号が導通レベルVONより低くなると波形整形
回路2の出力電圧は高レベルに、遮断レベルVOFF
より高くなると低レベルになる。従つて、波形整
形回路2の出力電圧V2は第2図の様な矩形波と
なる。波形整形回路2の出力電圧V2は駆動回路
3の入力電圧となり、出力トランジスタ4を駆動
し、この出力トランジスタ4を導通させて負荷5
のインダクタンスと抵抗との時定数で決る電流I5
が流れる。負荷5の点火コイルの1次側のインダ
クタンスをL1、抵抗をR1とすると、1次側コイ
ルの時定数T1はL1/R1となる。直流電源供給ラ
インの電圧をE、点火コイルの1次側の全抵抗を
Rとすると、点火コイルの1次側電流I5は(1)式の
様になる。
An internal combustion engine ignition device is an example of a circuit that causes a pulse current to flow through an output load. An internal combustion engine ignition system generates a high voltage on the secondary side of an ignition coil to combust an air-fuel mixture in a cylinder, and an example as shown in FIG. 1 has been developed as a typical conventional circuit configuration. In FIG. 1, 1 is a signal generator, and 2 is a waveform shaping circuit which uses an output signal from the signal generator as an input signal, and is composed of a Schmitt trigger circuit. 8,
9 is an input resistance of the waveform shaping circuit 2. 3 is a drive circuit that drives the output transistor 4 using the output voltage pulse of the waveform shaping circuit 2 as an input signal;
0 constitutes a switch circuit with the output transistor of the drive circuit 3, 5 is the load of the output transistor 4, and 6 is the output transistor of the drive circuit 3.
is the DC power supply line. 7 is a collector resistance of the output transistor of the drive circuit 3. FIG. 2 shows voltage and current waveforms at various parts of the block diagram of FIG. 1. The signal generator 1 generates a signal voltage V 1 similar to a triangular wave in synchronization with the engine rotation speed, and serves as an input signal to the waveform shaping circuit 2 . Assuming that the conduction level of the waveform shaping circuit 2 is V ON and the cutoff level is V OFF , when the input signal becomes lower than the conduction level V ON , the output voltage of the waveform shaping circuit 2 becomes a high level and the cutoff level V OFF.
The higher the level, the lower the level. Therefore, the output voltage V2 of the waveform shaping circuit 2 becomes a rectangular wave as shown in FIG. The output voltage V2 of the waveform shaping circuit 2 becomes the input voltage of the drive circuit 3, drives the output transistor 4, makes the output transistor 4 conductive, and loads the load 5.
The current I 5 is determined by the time constant of the inductance and resistance of
flows. Assuming that the inductance on the primary side of the ignition coil of the load 5 is L 1 and the resistance is R 1 , the time constant T 1 of the primary side coil is L 1 /R 1 . Assuming that the voltage of the DC power supply line is E and the total resistance on the primary side of the ignition coil is R, the primary side current I5 of the ignition coil is expressed by equation (1).

I5=E/R(1−e-TON/T 1) (1) ここで、TONは出力トランジスタ4が導通して
いる時間である。
I5 =E/R(1-e -TON/T1 ) (1) Here, T ON is the time during which the output transistor 4 is conductive.

従来のトランジスタ回路では、波形整形回路2
の入力の導通レベル、遮断レベルは直流電源供給
ラインの電圧Eに対しほぼ一定、あるいは極くわ
ずかしか変化しないため、(1)式からも明らかな様
に、低回転、高電圧時に負荷5を流れる電流I5
ピーク値は大きな値となる。このことは、同回路
を構成する部品及びパツケージ等の熱設計が非常
に困難になるという欠点があると同時に、出力ト
ランジスタ4がその破壊耐量を越えて破壊するこ
ともあるという欠点があつた。
In the conventional transistor circuit, the waveform shaping circuit 2
Since the input conduction level and cutoff level are almost constant or change only slightly with respect to the voltage E of the DC power supply line, as is clear from equation (1), the load 5 is The peak value of the flowing current I5 becomes a large value. This has the disadvantage that the thermal design of the components and packages constituting the circuit becomes extremely difficult, and at the same time has the disadvantage that the output transistor 4 may exceed its breakdown tolerance and be destroyed.

本発明は、上記欠点を補うべく低回転高電圧時
に負荷を流れる電流が過大に流れることなく適当
な好ましい値となる様なトランジスタ回路を提供
するものである。
In order to compensate for the above-mentioned drawbacks, the present invention provides a transistor circuit in which the current flowing through the load at low rotation speeds and high voltages does not flow excessively and reaches a suitable and preferable value.

本発明によるトランジスタ回路は、点火コイル
への電流供給を制御するトランジスタを駆動する
ためのスイツチ回路と一端が電源端子に接続され
た抵抗の他端との接続点を、整形回路の入力に定
電圧素子を含む帰還回路を介して接続したことを
特徴とする。
The transistor circuit according to the present invention connects the connection point between the switch circuit for driving the transistor that controls the current supply to the ignition coil and the other end of the resistor, one end of which is connected to the power supply terminal, to the input of the shaping circuit at a constant voltage. The device is characterized in that it is connected via a feedback circuit including an element.

以下、図面により本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は本発明の一実施例であり、同図におい
て、11はエンジンの回転数と同期した信号を発
生する信号発生器、12は信号発生器11より発
生する信号を入力信号として波形整形する波形整
形回路でシユミツト・トリガ回路からなる。13
は波形整形回路12の出力信号を入力信号とし出
力トランジスタ14を駆動する駆動回路で、20
は上記駆動回路の出力トランジスタであり、スイ
ツチ回路を構成し、17は同トランジスタ20の
コレクタ抵抗である。15は出力トランジスタ1
4の負荷、16は直流電源供給ラインの一端、1
8,19は波形整形回路12の入力抵抗、22は
駆動回路13の出力トランジスタ20のコレクタ
端子より波形整形回路12の入力端子へ信号を帰
還する帰還回路で、この帰還回路は、定電圧素子
と直列に帰還量調節のための受動素子が接続され
ている。23,24は帰還回路12の接続端子で
ある。
FIG. 3 shows an embodiment of the present invention, in which 11 is a signal generator that generates a signal synchronized with the engine rotation speed, and 12 is a waveform shaping signal using the signal generated by the signal generator 11 as an input signal. This waveform shaping circuit consists of a Schmitt trigger circuit. 13
20 is a drive circuit that uses the output signal of the waveform shaping circuit 12 as an input signal to drive the output transistor 14;
1 is an output transistor of the drive circuit and constitutes a switch circuit, and 17 is a collector resistor of the transistor 20. 15 is output transistor 1
4 load, 16 is one end of the DC power supply line, 1
8 and 19 are input resistors of the waveform shaping circuit 12, and 22 is a feedback circuit that feeds back a signal from the collector terminal of the output transistor 20 of the drive circuit 13 to the input terminal of the waveform shaping circuit 12. This feedback circuit includes a constant voltage element and A passive element for adjusting the amount of feedback is connected in series. 23 and 24 are connection terminals of the feedback circuit 12.

信号発生器11の出力は第4図にV11として示
されるように三角波に近い波形であり、波形整形
回路2へ供給される。波形整形回路2は二つの閾
値VONとVOFFを有し、信号V11のレベルがVONより
も低くなると駆動回路13内のトランジスタ20
は導通して出力トランジスタ14が導通し、負荷
15に第4図にI15として示される電流が流れる。
信号V11が回路2の閾値VOFFよりも高くなるとト
ランジスタ20は遮断状態となり出力トランジス
タ14も遮断状態となる。このようにトランジス
タ20は導通又は遮断状態をとるので、そのコレ
クタ電圧は第4図にV13として示されるように矩
形波となる。このコレクタ電圧V13の高電位レベ
ルは帰還回路22内の定電圧素子を導通させ、低
電位レベルは同定電圧素子を導通させ得ない。し
たがつて、電圧V13が高電位レベルをとる時、そ
のレベルは帰還回路22によつてレベルシフトさ
れ、直流オフセツト電位として信号発生器11か
らの信号V11に重畳され、その重畳信号が波形整
形回路12に供給される。一方、電圧V13が低電
位レベルをとる時は、信号V11がそのまま回路1
2に供給される。この結果、波形整形回路12に
実際に供給される信号は、第5図でV11の実線で
示される信号波形をとる。第5図で破線で示す
V11は信号発生器11の出力を示す。これら両信
号波形の比較から明らかなように、帰還回路22
を設けることにより、波形整形回路12の入力レ
ベルが同回路の閾値VONよりも低くなるタイミン
グが遅れる。すなわち、出力トランジスタ14が
導通状態となるタイミングが遅れる。トランジス
タ20のコレクタ電圧V13の高電位レベル、した
がつて信号発生回路11の出力に重畳される直流
オフセツト電位は、ライン16での電源電圧依存
性をもち、電源電圧が高くなるほど大きくなる。
また、通常、内燃機関点火装置では電磁ピツクア
ツプコイルが信号発生器11として用いられてお
り、そのような信号発生器11は内燃機関の回転
数が低いほど小さな波高値の信号V11を出力し、
回転数が高いほど大きい波高値の信号V11を出力
する。したがつて、帰還回路22による直流オフ
セツト電位は信号V11の全周波数に対しておこる
ものの、信号V11の周波数が低い(回転数が小さ
い)ほど帰還効果は大きい。このように、電源電
圧が高くなるほど、発生器11からの信号の波高
値が小さいほど、出力トランジスタ14が導通す
るタイミングは遅れる。一方、コレクタ電位V13
が低電位レベルのとき、すなわち、出力トランジ
スタ14が導通状態のときは、帰還回路23は働
かないので、波形整形回路12の入力レベルが同
回路のVOFFをこえるタイミングは変化しない。
The output of the signal generator 11 has a waveform close to a triangular wave, as shown as V 11 in FIG. 4, and is supplied to the waveform shaping circuit 2. The waveform shaping circuit 2 has two threshold values V ON and V OFF , and when the level of the signal V 11 becomes lower than V ON , the transistor 20 in the drive circuit 13
conducts, causing output transistor 14 to conduct and a current, shown as I 15 in FIG. 4, to flow through load 15.
When the signal V 11 becomes higher than the threshold value V OFF of the circuit 2, the transistor 20 is turned off and the output transistor 14 is also turned off. Since the transistor 20 is thus conductive or disconnected, its collector voltage becomes a rectangular wave as shown as V13 in FIG. The high potential level of this collector voltage V 13 makes the constant voltage element in the feedback circuit 22 conductive, and the low potential level does not make the identification voltage element conductive. Therefore, when the voltage V 13 assumes a high potential level, its level is level-shifted by the feedback circuit 22 and superimposed on the signal V 11 from the signal generator 11 as a DC offset potential, and the superimposed signal becomes the waveform. The signal is supplied to the shaping circuit 12. On the other hand, when voltage V 13 takes a low potential level, signal V 11 is passed directly to circuit 1.
2. As a result, the signal actually supplied to the waveform shaping circuit 12 takes the signal waveform shown by the solid line V 11 in FIG. Indicated by the dashed line in Figure 5.
V 11 indicates the output of the signal generator 11. As is clear from the comparison of these two signal waveforms, the feedback circuit 22
By providing , the timing at which the input level of the waveform shaping circuit 12 becomes lower than the threshold value V ON of the circuit is delayed. That is, the timing at which the output transistor 14 becomes conductive is delayed. The high potential level of the collector voltage V13 of the transistor 20, and therefore the DC offset potential superimposed on the output of the signal generating circuit 11, has a dependency on the power supply voltage on the line 16, and increases as the power supply voltage increases.
Further, in an internal combustion engine ignition system, an electromagnetic pickup coil is usually used as the signal generator 11, and such a signal generator 11 outputs a signal V 11 with a smaller peak value as the rotation speed of the internal combustion engine becomes lower.
The higher the rotation speed, the larger the signal V 11 of the peak value is output. Therefore, although the DC offset potential generated by the feedback circuit 22 occurs for all frequencies of the signal V 11 , the lower the frequency of the signal V 11 (lower the rotational speed), the greater the feedback effect. In this way, the higher the power supply voltage is and the smaller the peak value of the signal from the generator 11 is, the later the timing at which the output transistor 14 becomes conductive is delayed. On the other hand, the collector potential V 13
When is at a low potential level, that is, when the output transistor 14 is conductive, the feedback circuit 23 does not work, so the timing at which the input level of the waveform shaping circuit 12 exceeds V OFF of the circuit does not change.

以上のように、帰還回路22によつて出力トラ
ンジスタ14の導通期間は短かくなり、負荷15
に流れる電流は、第5図で実線I15として示され
るように、破線のI15として示される帰還回路2
2がない場合に比して小さいピーク値をとる。ト
ランジスタ14の導通時間の短縮は電源ライン1
6の電圧が高くなるほど、信号V11そのものの波
高値が低くなるほど大きくなる。
As described above, the conduction period of the output transistor 14 is shortened by the feedback circuit 22, and the conduction period of the output transistor 14 is shortened.
The current flowing through the feedback circuit 2, shown as the dashed line I15 , as shown as the solid line I15 in FIG.
The peak value is smaller than that without 2. The conduction time of the transistor 14 can be reduced by using the power supply line 1.
The higher the voltage of signal V 11 becomes, the lower the peak value of the signal V 11 itself becomes.

第6図は本発明の具体的な実施例であり、同図
aは直流電源供給ラインの電圧があるレベル以上
で、ツエナー・ダイオードが導通して帰還回路2
2が動作して本発明の効果が生じる様にしたもの
であり、同図bはダイオードを付加して温度補償
をしたものである。実施例a,bに限らず、複数
個のダイオード、ツエナー・ダイオードを組合わ
せても、本発明は有効である。
Fig. 6 shows a specific embodiment of the present invention, and Fig. 6a shows that when the voltage of the DC power supply line exceeds a certain level, the Zener diode becomes conductive and the feedback circuit 2
2 is operated so that the effect of the present invention is produced, and FIG. The present invention is effective not only in embodiments a and b, but also in combinations of a plurality of diodes and Zener diodes.

従つて、本発明によるトランジスタ回路を内燃
機関点火装置として使用すると、低回転・高電圧
時、出力トランジスタの導通時間が短くなつて、
出力負荷を流れる電流のピーク値が減るので、出
力トランジスタの破壊耐量、及び、同装置を構成
する部品・パツケージ等の熱設計に対して好適で
ある。
Therefore, when the transistor circuit according to the present invention is used as an internal combustion engine ignition device, the conduction time of the output transistor is shortened at low rotation speeds and high voltages.
Since the peak value of the current flowing through the output load is reduced, this is suitable for the breakdown withstand capacity of the output transistor and the thermal design of components and packages constituting the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のトランジスタ回路のブロツク
図、第2図は第1図各部の電圧、電流波形図、第
3図は本発明のトランジスタ回路の一実施例を示
すブロツク図、第4図は第3図各部の電圧、電流
波形図、第5図は本発明の効果を示した原理図、
第6図a,bは本発明のトランジスタ回路の帰還
回路の実施例である。 1,11…信号発生器、2,12…波形整形回
路、3,13…駆動回路、4,14…出力トラン
ジスタ、5,15…負荷、6,16…直流電源供
給ラインの一端、7,8,9,17,18,19
…抵抗、10,20…トランジスタ、22…帰還
回路、23,24…帰還回路の接続端子。
FIG. 1 is a block diagram of a conventional transistor circuit, FIG. 2 is a voltage and current waveform diagram of each part of FIG. 1, FIG. 3 is a block diagram showing an embodiment of the transistor circuit of the present invention, and FIG. Figure 3 is a voltage and current waveform diagram of each part, Figure 5 is a principle diagram showing the effects of the present invention,
FIGS. 6a and 6b show an embodiment of the feedback circuit of the transistor circuit of the present invention. DESCRIPTION OF SYMBOLS 1, 11... Signal generator, 2, 12... Waveform shaping circuit, 3, 13... Drive circuit, 4, 14... Output transistor, 5, 15... Load, 6, 16... One end of a DC power supply line, 7, 8 ,9,17,18,19
...Resistor, 10, 20... Transistor, 22... Feedback circuit, 23, 24... Connection terminal of feedback circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の回転数に同期した三角波状信号で
あつて前記回転数の増大に比例して波高値が大き
くなる三角波信号を発生する信号発生回路と、こ
の信号発生回路に接続され前記三角波信号をパル
ス信号に整形する波形整形回路と、この波形整形
回路に接続され前記パルス信号に応答してスイツ
チングするスイツチ回路を有する駆動回路と、こ
の駆動回路に接続され前記スイツチ回路のスイツ
チング動作に応答して点火コイルへの電流供給を
制御するトランジスタとを備えるトランジスタ回
路において、前記スイツチ回路と電源端子との間
に抵抗を接続し、前記スイツチ回路と前記抵抗と
の接続点を定電素子を含む帰還回路を介して前記
波形整形回路の入力に接続したことを特徴とする
トランジスタ回路。
1. A signal generation circuit that generates a triangular wave signal that is synchronized with the rotational speed of an internal combustion engine and whose peak value increases in proportion to the increase in the rotational speed, and a signal generation circuit that is connected to this signal generation circuit and generates the triangular wave signal. A drive circuit having a waveform shaping circuit that shapes the pulse signal into a pulse signal, a switch circuit that is connected to the waveform shaping circuit and switches in response to the pulse signal, and a drive circuit that is connected to the drive circuit and that switches in response to the switching operation of the switch circuit. In a transistor circuit comprising a transistor for controlling current supply to an ignition coil, a resistor is connected between the switch circuit and a power supply terminal, and a connection point between the switch circuit and the resistor is connected to a feedback circuit including a constant current element. A transistor circuit, characterized in that the transistor circuit is connected to the input of the waveform shaping circuit via.
JP3757779A 1979-03-29 1979-03-29 Transistor circuit Granted JPS55130237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3757779A JPS55130237A (en) 1979-03-29 1979-03-29 Transistor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3757779A JPS55130237A (en) 1979-03-29 1979-03-29 Transistor circuit

Publications (2)

Publication Number Publication Date
JPS55130237A JPS55130237A (en) 1980-10-08
JPH0216056B2 true JPH0216056B2 (en) 1990-04-16

Family

ID=12501382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3757779A Granted JPS55130237A (en) 1979-03-29 1979-03-29 Transistor circuit

Country Status (1)

Country Link
JP (1) JPS55130237A (en)

Also Published As

Publication number Publication date
JPS55130237A (en) 1980-10-08

Similar Documents

Publication Publication Date Title
US4641626A (en) Electronic ignition device for interval combustion engines
JPS5819850B2 (en) Non-contact ignition device for internal combustion engine
US3940658A (en) Electronic ignition control system
US4438751A (en) High voltage generating circuit for an automotive ignition system
JPS5941344Y2 (en) Non-contact ignition device for internal combustion engines
US4461265A (en) Ignition timing control system for internal combustion engine
GB2049813A (en) Ignition system for an internal combustion engine incorporating a magneto generator
JP2011511211A (en) System for energy support in a CDI system
JPH0216056B2 (en)
US6684866B2 (en) Ignition system for an internal combustion engine
JPS6350958B2 (en)
JP2519574B2 (en) Internal combustion engine ignition device
JPS6329178Y2 (en)
JPS609426Y2 (en) engine ignition system
JPS6124545B2 (en)
JP3043320U (en) RCC type switching power supply
JPS63196483U (en)
JPS6033753Y2 (en) Capacitor discharge type ignition device
JPS5836854Y2 (en) Non-contact ignition device for internal combustion engine
JP2578742Y2 (en) Magnet-type alternator voltage regulator
JPH0219591Y2 (en)
JPS5827092Y2 (en) internal combustion engine ignition system
JPH0544543Y2 (en)
JPH0578672B2 (en)
JPS6257829B2 (en)