JPH021604B2 - - Google Patents
Info
- Publication number
- JPH021604B2 JPH021604B2 JP8756381A JP8756381A JPH021604B2 JP H021604 B2 JPH021604 B2 JP H021604B2 JP 8756381 A JP8756381 A JP 8756381A JP 8756381 A JP8756381 A JP 8756381A JP H021604 B2 JPH021604 B2 JP H021604B2
- Authority
- JP
- Japan
- Prior art keywords
- wing
- cutter
- blade
- center
- ventral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 21
- 238000003672 processing method Methods 0.000 claims description 12
- 230000005484 gravity Effects 0.000 description 22
- 238000003754 machining Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000005520 cutting process Methods 0.000 description 8
- 238000009434 installation Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C3/00—Milling particular work; Special milling operations; Machines therefor
- B23C3/16—Working surfaces curved in two directions
- B23C3/18—Working surfaces curved in two directions for shaping screw-propellers, turbine blades, or impellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2215/00—Details of workpieces
- B23C2215/44—Turbine blades
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Milling Processes (AREA)
Description
本発明は、汎用工作機械によつてタービン等の
ひねり翼を加工する加工方法に関する。
タービン等のひねり翼を製造する場合には、精
密鋳鍛造によるかあるいは素材を機械加工するこ
とによつて得ていた。そのうち機械加工による場
合は、従来、多軸専用倣加工機を使つて次に示す
ような方法で加工していた。まず鍛造した素材を
加工することによりセンタ穴を設けたボス1と取
付部2とプラツトフオーム5とを有する未完成の
ひねり翼3を作る。次に該ひねり翼3を、第1図
に示すように前記取付部2を多軸専用倣加工機の
据付台4に挾むことにより固定する。ひねり翼3
は第2図に示すようにその内外側が曲面であり、
断面の形状も大きさも上下方向に異なることか
ら、作ろうとするひねり翼と同一形状に対し、
0.2〜0.4の仕上代△tをつけた倣用モデル翼(図
示せず)が軟い材料で作られる。そして前記据付
台4に固定されたひねり翼3を、倣用モデル翼に
倣つてひねり翼3の腹面6及び背面7を加工す
る。その後、別に製作した断面ゲージに合せなが
ら、仕上代△tを残した前記腹面6及び背面7を
研削仕上する。最後に該腹面6及び背面7を研摩
し、前記ボス1を削除すると共に翼長hを決め
る。このようにしてひねり翼が完成する。
ところで多軸専用倣加工機の前記倣軸の直径d
が小さく、フライス状のカツタを用いているため
軸長Hを長くする必要がある(H≧h)ことから
重切削が困難でびびりが生じ易く、それゆえ加工
面が荒く切り込みが生じ易い。そして同一のモデ
ル翼を使つても、カツタ径Dや倣軸に多軸専用倣
加工機毎のばらつきがあるため十分余裕のある研
削代を設けなけらばならず、また仕上時には長手
方向の各断面ゲージが必要となり加工にも熟練を
要する。特に翼の出口角γをを上から角まで各断
面で均一に揃えることが難しい。このように荒加
工と仕上加工との2回に加工が別れ、研削代が多
いため研削時間が長い。更に製作に熟練を要する
倣用モデル翼が必要なことや、多軸専用倣加工機
を製作費が高いことからひねり翼のコストが高く
なる。
本発明はかかる欠点を解消し、ひねり翼加工の
コスト低減を図ることを目的とするもので、傾斜
させることにより翼面の長手方向の平面形状が一
つの曲線状態となつて長手方向が直線の組合せと
なる翼面を有するひねり翼の加工方法において、
長手方向の長さが前記翼面の長手方向の長さ以上
の円筒状のカツタを用い、該カツタが翼面に対し
て相対的に傾斜させて該翼面の切削を行なうこと
を特徴とする。
以下、本発明を図面に示す一実施例に基づいて
詳細に説明する。
本発明は、ひねり翼には、傾斜させることによ
り翼面の長手方向の平面形状が一つの曲線状態と
なつて翼の長手方向に直線の組合せと見做せる点
があることに着目してなされたもので、この着目
に基づいてひねり翼の腹面、背面を加工する方法
である。本実施例ではミーリング等の汎用機にお
いて据付台とカツタの軸心が直角でそのなす角度
が変えられない場合について説明する。なお取付
部等の加工方法は除外して加工が容易でない腹面
及び背面の加工方法だけを説明する。
第3図はひねり翼を本発明に係る加工方法で加
工する原理を示す説明図、第4図、第5図は夫々
本発明に係るひねり翼の加工方法による腹面及び
背面の加工状態を示す説明図、第6図はひねり翼
がロータデイスクの台に取り付けられた状態の側
面図、第7図aは第6図中のA−A線断面図、第
7図bは第6図中のE−E線断面図、第8図、第
9図は夫々ひねり翼の腹面及び背面を加工するた
めに第7図a,bから変換した平面図、第10図
は第7図を曲面円弧中心で重ねた状態の説明図、
第11図はカツタ径の算出説明図を示してある。
ひねり翼3(第2図参照)の断面形状は第3図
の斜線部に相当し、腹面6及び背面7は共に腹面
6側に中心をもつ円形面とこれに接する直線の合
成で構成されている。これら寸法表示は、一般的
にX軸(タービン翼の台)に平行な面上での表示
である。例えば腹面6を加工する場合は第3図
BE面の腹面6側の内径寸法表示はX軸に平行な
面(台に平行)上に表示され、半径2の中心が
O2でこの時の直径がで表示され2rとなる。こ
のような円形の内面を加工するには近似的な加工
法として、直径DのカツタがO1,O2を軸心とし
て移動すればよい。この加工状態を図に表わした
ものが第4図である。図においてカツタの動きは
三点鎖線で示され、このカツタの動きを表わす円
筒体をその円周方向へ移動させることにより腹面
6を仕上げることができる。このときの直径Dの
値はZ軸に対する軸心O1,O2の傾きをθ1とすれ
ばD=2rcosθ1となる。即ち実際に加工する場合、
本実施例では据付面と垂直に具えられたカツタの
軸心を前記軸心O1,O2に一致させるため、逆に
ひねり翼3自体を傾けてその腹面6がZ軸と平行
になるよう据付面に固定すればよい。
ひねり翼3の切削を行なうカツタは、円筒体の
直径Dに等しく長手方向の長さが翼の高さHより
も長い円筒状のものを用いる。
第6図はひねり翼がロータデイスクの台に取付
けられた状態で、ひねり翼3の重心点が台Rの中
央軸線S上に装備された配置状態を示してある。
第7図a,bはひねり翼3の翼頂部断面及び翼根
部断面図である。第10図は翼根部断面(第7図
b)上の翼板重心P2に翼頂部断面(第7図a)
の翼板重心点P2を重ね合せ、第7図a,bの形
状を同一平面上に表わし、腹面円弧r5の中心点を
夫々O1,O2で示しXY軸に対する相対位置関係を
示したものである。第8図は翼根中心点O1を基
準にして翼頂中心点O2をO1に重ね合せた時の翼
頂部断面の翼板重心点P2の移動を示して、第1
0図の腹面円弧r5の中心点O1,O2の相対位置関
係寸法を示した(第3表)。並びに第8図はひね
り翼の翼根部を基準にした翼頂部の倒れを表示
し、重心点1 2の移動量W1は1 2であり、重心
点P1に対するP2傾きはθ1で示しθ1=pln-1W1/Hと
なり従つてθ1=pln-1重心点移動量/翼頂翼根の高さと
なること
が判る。
また第8図は腹面の後縁出口角に平行な角βを
表示したものである(カツタの進入角度をβとす
れば良い)。故に第8図は腹面加工の円筒カツタ
に対するひねり翼の翼根、翼頂重心点までの寸法
及び翼に対するカツタの進入方向が表示されたも
のである。
ひねり翼3に対するカツタの横方向の相対的な
動きは(第8図参照)、ひねり翼を、翼根部断面
の翼板重心点P1を基準にしてθ1度翼頂を傾けた時
の重心点P1P2に対し、カツタの中心がX軸方向
になるまでX軸に対しβの進入角でカツタを進め
る。これにより腹面円弧r5の形状が翼根から翼頂
まで同時に創成される(直線と楕円の一部で腹面
6が創成される)。ただし、(1)カツタの鉛直方向
の長さは翼の高さHより長くする、(2)カツタの進
入角βは翼をP1P2だけ傾けた時の腹面側縁出口
角度に等しくする。(3)汎用堅形エンドミル加工機
に翼を取付ける場合は進入角βが機械のテーブル
のX軸と平行になるように、即ち翼の出口角をX
軸に平行に合せると良い。
また、直径Dのカツタより小径の標準カツタで
加工する場合は、第8図の条件で腹面形状のテン
プレートを作り、これに倣つて加工すれば良い
(テンプレートは翼の後縁出口の直線部とカツタ
の半径円径で構成される簡単な形状である)。テ
ンプレートの形状は、図面寸法表示の腹面半径r5
の原点を基準に各断面の翼形を第8図のように表
示し、半径r5のと後縁側出口部の直線とからなる
形状とすれば良い。テンプレートの取付は第8図
の条件を満足し、後縁出口の直線部を加工機のX
軸と平行に設置すれば能率的である。
また図面寸法の各断面の曲面半径は楕円の一部
分を近似的に半径rで表したものと仮説するなら
ば、上記加工方法は理に合つた加工法であり、ひ
ねり翼の傾斜各をθ1とすれば、θ1≧8゜ならD=
2rcosθ1、θ1≦8゜ならD=2rの条件でカツタ径を想
定したとき、図面寸法形状と本例による加工法に
より創成された形状の誤差が小さい。またこの誤
差を腹面6の頭部側に作るか腹面6の中央部に作
るかによつて上記条件が変る。
次にひねり翼の背面7を加工する場合は、第3
図において背面7がZ軸に対してθ2だけ傾いてい
るのでカツタの軸心も背面7と同じ方向へθ2傾け
ればよい。なお、このときは前記のように腹面6
を加工したのと同じカツタでよい。この加工状態
を図に表わしたものが第5図である。図において
カツタの動きは二点鎖線で示す円筒体で示されて
おり、カツタを円筒体状に回転させることによ
り、該カツタとひねり翼3の背面7とが接する太
線部分が切削され、該円筒体がその円周方向へ移
動することにより背面7全体が加工される。即ち
実際に加工する場合、本実施例では据付面と垂直
に設けられたカツタの軸心をを背面7と一致する
まで傾けるため、逆にひねり翼3自体を傾けてそ
の背面7がZ軸と平行になるようにして据付面に
固定すればよい。なお、このときのひねり翼3に
対するカツタの横方向の相対的な動きは、任意の
直径の円筒体を想定し、該円筒体が背面7へ直線
状に接する位置での円筒体中心の変位量を連続的
に求めたテンプレートによる倣加工をすればよ
い。この時のテンプレートの形状は、図面寸法表
示の背面半径r1、r2、r3、r4の原点を基準に断面
翼形を第9図のように表示し、各々の半径r1、
r2、r3、r4の後縁側出口部の直線とからなる形状
とすれば良い。
以上のように本実施例ではひねり翼の腹面及び
背面を加工する場合は、夫々の場合に応じて一定
の角度ひねり翼を傾けてあらかじめ決められた位
置に固定し、決められた外径寸法のカツタの中心
が決められた軌道上を移動することによつてひね
り翼が加工される。
次に加工する際、設計図面から本発明に係るひ
ねり翼の加工方法を使うとき使用する図面へ変換
した図面及び表を示す。第7図a,bは設計図と
して与えられたものである。第6図において、紙
面の垂直な平面でひねり翼を上から順に等分し、
A〜E断面とした時、第7図aはA−A線断面
図、第7図bはE−E線断面図である。そして第
2表はA−A線断面である第7図a及びE−E線
断面である第7図bにおける各符号の寸法を表わ
したものである。第1表は前記各断面A〜Eにお
ける半径のf5の寸法を示し、本実施例では断面A
〜Eでr5=13.68で一定となつている。以上のよ
うに各寸法が与えられた、第7図からまずひねり
翼の腹面を加工するために傾け各θ1を求め、求め
た値θ1=10゜14′だけひねり翼を傾けたときの平面
図の各部の寸法換算して第8図と第3表に示す。
図中太線の矢印はカツタ中心の変位量を示す。な
お本実施例ではD=26.92となるが前述のように
D<26.92でもよく、その時はカツタ中心の変位
量は異なる。次にひねり翼の背面を加工するため
に第7図a,bから傾け角θ2を求め、求めた値θ2
=4゜48′だけひねり翼を傾けたときの平面図の各
部の寸法を換算して第9図と第4表に示す。
The present invention relates to a processing method for processing a twisted blade of a turbine or the like using a general-purpose machine tool. When manufacturing twisted blades for turbines and the like, they were obtained by precision casting or forging or by machining the material. Conventionally, machining was performed using a multi-axis copying machine using the following method. First, an unfinished twisted wing 3 having a boss 1 with a center hole, a mounting part 2, and a platform 5 is made by processing a forged material. Next, as shown in FIG. 1, the twist wing 3 is fixed by sandwiching the mounting portion 2 to the installation stand 4 of a multi-axis copying machine. twisted wings 3
As shown in Figure 2, its inner and outer surfaces are curved surfaces,
Since the shape and size of the cross section are different in the vertical direction, the shape of the twisted wing that you are trying to make is the same.
A copying model wing (not shown) with a finishing allowance Δt of 0.2 to 0.4 is made of a soft material. Then, the ventral surface 6 and back surface 7 of the twisted wing 3 fixed on the installation stand 4 are machined by imitating the model wing for copying. Thereafter, the vent surface 6 and the back surface 7 are finished by grinding, with a finishing allowance Δt remaining, while matching with a separately manufactured cross-sectional gauge. Finally, the ventral surface 6 and the back surface 7 are polished to remove the boss 1 and determine the blade length h. In this way, the twisted wing is completed. By the way, the diameter d of the copying axis of the multi-axis copying machine
is small, and since a milling cutter is used, it is necessary to increase the axial length H (H≧h), making heavy cutting difficult and prone to vibration, and therefore the machined surface is rough and cuts are likely to occur. Even if the same model blade is used, there are variations in cutter diameter D and copying axis between multi-axis copying machines, so it is necessary to provide a sufficient margin for grinding. A cross-section gauge is required, and processing requires skill. In particular, it is difficult to make the exit angle γ of the blade uniform in each cross section from the top to the corner. In this way, the machining is divided into two stages, rough machining and finishing machining, and the grinding time is long because there is a large amount of grinding allowance. Furthermore, the cost of the twisted blade is high because a copying model blade that requires skill to manufacture is required, and a multi-axis dedicated copying machine is expensive to manufacture. The purpose of the present invention is to eliminate such drawbacks and reduce the cost of processing twisted blades.By tilting the blade surface, the plane shape in the longitudinal direction becomes a single curve, and the longitudinal direction becomes a straight line. In a method for processing a twisted wing having a combination of wing surfaces,
A cylindrical cutter whose length in the longitudinal direction is longer than the length in the longitudinal direction of the wing surface is used, and the cutter is inclined relative to the wing surface to cut the wing surface. . Hereinafter, the present invention will be explained in detail based on an embodiment shown in the drawings. The present invention has been made by focusing on the fact that a twisted wing has a point in which, when tilted, the planar shape in the longitudinal direction of the wing becomes a single curved shape, which can be regarded as a combination of straight lines in the longitudinal direction of the wing. Based on this observation, this method is used to process the ventral and dorsal surfaces of the twisted wing. In this embodiment, a case will be described in which, in a general-purpose machine such as a milling machine, the axes of the installation base and the cutter are perpendicular to each other and the angle cannot be changed. Note that only the method for processing the ventral and back surfaces, which are not easy to process, will be explained, excluding the method for processing the attachment portions and the like. FIG. 3 is an explanatory diagram showing the principle of processing a twisted wing using the processing method according to the present invention, and FIGS. 4 and 5 are explanatory diagrams showing processing states of the ventral surface and back surface, respectively, by the processing method of the twisted wing according to the present invention. Figure 6 is a side view of the twist wing attached to the base of the rotor disk, Figure 7a is a sectional view taken along line A-A in Figure 6, and Figure 7b is E in Figure 6. - E line sectional view, Figures 8 and 9 are plan views converted from Figures 7a and b in order to process the ventral and back surfaces of the twist wing, respectively, and Figure 10 is a plan view of Figure 7 with the center of the curved arc. An explanatory diagram of the stacked state,
FIG. 11 shows an explanatory diagram for calculating the diameter of the cutter. The cross-sectional shape of the twisted wing 3 (see Fig. 2) corresponds to the shaded area in Fig. 3, and the ventral surface 6 and back surface 7 are both composed of a circular surface centered on the ventral surface 6 side and a straight line in contact with the circular surface. There is. These dimensions are generally displayed on a plane parallel to the X axis (turbine blade platform). For example, when processing the ventral surface 6, see Figure 3.
The inner diameter dimension display on the ventral surface 6 side of the BE surface is displayed on a plane parallel to the X axis (parallel to the base), and the center of radius 2 is
The diameter at this time is expressed as O 2 and becomes 2r. To process such a circular inner surface, as an approximate processing method, a cutter with a diameter D may be moved with O 1 and O 2 as axes. FIG. 4 is a graphical representation of this machining state. In the figure, the movement of the cutter is shown by a three-dot chain line, and the ventral surface 6 can be finished by moving the cylindrical body representing the movement of the cutter in the circumferential direction. The value of the diameter D at this time is D=2r cos θ 1 , where θ 1 is the inclination of the axes O 1 and O 2 with respect to the Z axis. In other words, when actually processing,
In this embodiment, in order to align the axes of the cutters perpendicular to the installation surface with the axes O 1 and O 2 , the twist blade 3 itself is tilted so that its ventral surface 6 is parallel to the Z axis. Just fix it to the installation surface. A cylindrical cutter for cutting the twisted blade 3 is used, which is equal to the diameter D of the cylindrical body and whose length in the longitudinal direction is longer than the height H of the blade. FIG. 6 shows a state in which the twisting wing is attached to the base of the rotor disk, and the center of gravity of the twisting wing 3 is placed on the central axis S of the base R.
FIGS. 7a and 7b are cross-sectional views of the blade top and the blade root of the twisted blade 3. FIG. Figure 10 shows the blade center of gravity P 2 on the blade root cross section (Figure 7b) and the blade top cross section (Figure 7a).
The shapes of Figure 7 a and b are expressed on the same plane by superimposing the center of gravity P 2 of the blades, and the center points of the ventral arc r 5 are indicated by O 1 and O 2 , respectively, and the relative positional relationship with respect to the XY axes is shown. It is something that Figure 8 shows the movement of the blade center of gravity P 2 of the blade top section when the blade tip center point O 2 is superimposed on O 1 with the blade root center point O 1 as a reference.
The relative positional relationship dimensions of the center points O 1 and O 2 of the ventral arc r 5 in Figure 0 are shown (Table 3). In addition, Fig. 8 shows the inclination of the top of the wing based on the root of the twisted wing, and the amount of movement W 1 of the center of gravity point 1 2 is 1 2 , and the inclination of P 2 with respect to the center of gravity P 1 is shown as θ 1 . It can be seen that θ 1 = pln -1 W 1 /H, and therefore θ 1 = pln -1 displacement of the center of gravity/height of the blade root. Further, FIG. 8 shows an angle β parallel to the exit angle of the trailing edge of the ventral surface (β may be the entry angle of the cutter). Therefore, FIG. 8 shows the dimensions of the blade root of the twist wing, the center of gravity of the blade top, and the direction of approach of the cutter into the wing with respect to the cylindrical cutter with the ventral surface machined. The relative movement of the blade in the lateral direction with respect to the twist wing 3 (see Figure 8) is the center of gravity when the tip of the twist wing is tilted by θ 1 degree with reference to the center of gravity P 1 of the blade root section. With respect to point P 1 P 2 , the cutter is advanced at an approach angle of β with respect to the X-axis until the center of the cutter is in the X-axis direction. As a result, the shape of the ventral arc r5 is simultaneously created from the wing root to the wing tip (the ventral surface 6 is created by a straight line and a part of the ellipse). However, (1) the vertical length of the cutter should be longer than the height H of the wing, (2) the approach angle β of the cutter should be equal to the exit angle of the ventral side edge when the wing is tilted by P 1 P 2 . (3) When installing a blade on a general-purpose rigid end milling machine, make sure that the approach angle β is parallel to the X axis of the machine table, that is, the exit angle of the blade is
It is best to align it parallel to the axis. In addition, when machining with a standard cutter having a smaller diameter than the cutter with diameter D, you can make a template with a ventral surface shape under the conditions shown in Figure 8 and process it by following this (the template should be placed between the straight part of the trailing edge outlet of the blade and It is a simple shape consisting of the radius of a cutter). The shape of the template is the ventral radius r 5 shown in the drawing dimensions.
The airfoil shape of each cross section may be displayed as shown in FIG. 8 with reference to the origin of the airfoil, and the airfoil shape may be formed by a radius r5 and a straight line at the trailing edge side outlet. The template installation satisfies the conditions shown in Figure 8, and the straight part of the trailing edge exit is aligned with the
It is efficient if installed parallel to the axis. If we assume that the curved surface radius of each cross section in the drawing dimensions is approximately a radius r of a portion of an ellipse, then the above processing method is a reasonable processing method, and the inclination of each twist wing is set to θ 1 Then, if θ 1 ≧8°, D=
If 2rcos θ 1 , θ 1 ≦8°, then when the cutter diameter is assumed under the condition of D=2r, the error between the drawing dimensions and shape and the shape created by the processing method according to this example is small. The above conditions also change depending on whether this error is created on the head side of the ventral surface 6 or in the center of the ventral surface 6. Next, when processing the back surface 7 of the twist wing, the third
In the figure, since the back surface 7 is inclined by θ 2 with respect to the Z axis, the axis of the cutter may also be inclined by θ 2 in the same direction as the back surface 7. In addition, at this time, as mentioned above, the ventral surface 6
You can use the same cutter that was used for processing. FIG. 5 is a graphical representation of this machining state. In the figure, the movement of the cutter is shown by a cylindrical body indicated by a two-dot chain line, and by rotating the cutter into a cylindrical shape, the thick line part where the cutter and the back surface 7 of the twisting wing 3 are in contact is cut, and the cylindrical cutter is By moving the body in its circumferential direction, the entire back surface 7 is processed. That is, when actually machining, in this embodiment, the axis of the cutter, which is perpendicular to the installation surface, is tilted until it coincides with the back surface 7, so the twisting blade 3 itself is tilted so that the back surface 7 coincides with the Z axis. Just fix it to the installation surface so that it is parallel. Note that the relative movement of the cutter in the lateral direction with respect to the twisting blade 3 at this time is calculated by assuming a cylindrical body with an arbitrary diameter, and the amount of displacement of the center of the cylindrical body at the position where the cylindrical body linearly contacts the back surface 7. It is sufficient to carry out copy processing using a template that is continuously obtained. The shape of the template at this time is to display the cross-sectional airfoil shape as shown in Fig. 9 based on the origin of the back radius r 1 , r 2 , r 3 , r 4 of the drawing dimensions, and to display each radius r 1 ,
The shape may be formed by r 2 , r 3 , and the straight line of the trailing edge side exit portion of r 4 . As described above, in this embodiment, when processing the ventral surface and back surface of the twist wing, the twist wing is tilted at a certain angle depending on each case and fixed at a predetermined position, and the outer diameter dimension is determined. The twist wing is fabricated by moving the center of the cutter along a determined trajectory. Next, drawings and tables that are converted from design drawings to drawings used when using the twist wing processing method according to the present invention during processing are shown. Figures 7a and 7b are given as design drawings. In Figure 6, the twist wing is divided into equal parts in order from the top on a plane perpendicular to the page,
When the cross sections are taken from A to E, FIG. 7a is a cross-sectional view taken along the line A-A, and FIG. 7b is a cross-sectional view taken along the line E-E. Table 2 shows the dimensions of each symbol in FIG. 7a, which is a cross section taken along line A-A, and FIG. 7b, which is a cross section taken along line E-E. Table 1 shows the size of the radius f5 in each of the cross sections A to E, and in this example, the cross section A
~E, r 5 is constant at 13.68. From Fig . 7, where each dimension is given as above, we first find each angle θ 1 of the tilt in order to process the ventral surface of the twist wing. The dimensions of each part in the plan view are shown in FIG. 8 and Table 3.
The thick arrow in the figure indicates the amount of displacement at the center of the cutter. In this embodiment, D=26.92, but as described above, D<26.92 may also be used, and in that case, the amount of displacement of the center of the cutter will be different. Next, in order to process the back surface of the twist wing, the inclination angle θ 2 is determined from Figure 7 a and b, and the obtained value θ 2
Figure 9 and Table 4 show the converted dimensions of each part of the plan view when the twist wing is tilted by =4°48'.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
第9図は第7図a,bの図面状況を第10図の
腹面加工要領にならい背面円弧r1,r2,r3,r4の
中心点座標を翼板重心点P1P2を基準にして同一
平面上に夫々表示したものを、翼根円弧r3の中心
点を基準に翼円弧r3を重ね合せた時の翼板重心点
P1P2の移動量とひねり翼高さHに対する傾き角θ2
との関係寸法を表示したものである(第4図)。
ここで、傾け角の決定手法について第7図〜第
11図を参照して説明する。第11図は腹面のカ
ツタの形状寸法を決め原理図であり、また、図面
寸法と本案の加工方法による腹面形状の誤差を示
したものである。XY軸を中心とした実線はカツ
タをα1゜の方向にβ1゜傾けた時のひねり翼台に平行
な面上に表示される楕円の形状を示す。故に腹面
形状の誤差は円弧r5とカツタをθ1゜傾けた時できる
楕円形状との差である。腹面のカツタ径Dの決定
方法は、本図から式D=(r5×cosθ1゜)×2で求め
られる。ただし図面に表示された腹面円弧r5は楕
円(長径2×r5)の一部であると仮説をたててカ
ツタ径を決めたものである。
ひねり翼形の重心点は、第7図a,bで表示の
通り翼の強度上からロータデイスクひねり翼台の
中心線上に全て存在するよに計画されるのが普通
であり、本例も同様である。因に、翼の各断面図
の重心Pがずれた場合、この点において曲げモー
メントが遠心力に加わつて働き、翼の応力値を高
める主原因となり、材料許容応力との関係で安全
率が曲げモーメントの影響で低下する。重心Pに
基づいて傾斜角を決定する理由は以下の通りであ
る。即ち、タービン翼形の各断面形状で共通点た
は基準点は重心点Pの一箇所のみであり、プラツ
トフオーム5の中心と重心P1は共通であり、基
準点として重心Pは最適である。従つて、第6、
7図の図面表示寸法から、第8、9図のように翼
形の腹、背面形状の半径rの足を基準に重心P1
〜P2のずれを算出することにより傾斜角が決め
る関係にある。
よつて、第7図a,bの断面形状寸法からひね
り翼の翼根部翼板重心点P1を原点として各断面
の円弧中心点の座標を同一のXY座標平面上に表
示し、翼根部円弧の中心点O1及び翼頂部円弧の
中心点O2の各座標により、腹・背面のひねり具
合を知ることができる。故に腹面の場合第10図
の通りである。次に第10図の翼根円弧の中心点
O1を原点にし翼頂円弧の中心点O2をO1に重ね合
わせる。この状態で翼の傾き角をθ1で表示したも
のが第8図である。この状態で重心点P1,P2の
変位量を翼根からみた時の傾き角で表わす。
∴1 2=1 2となり
傾け角θ1゜=pln-1P1P2/――/H(第8図参照)
傾け方向α1゜=tan-1v1/u1
となる。
背面7側のθ2も同様にして求めることができ
る。
次に傾けた後の加工寸法の算出方法を説明す
る。カツタ径Dは第11図に示すように、D=2
(r5cosθ1)で表わすことができる。
したがつて、
D=2(r5cosθ1)
=2(13・68×cos10.24゜)
=26.92(mm)となる。
腹面6を例にして加工寸法の算出手法について
説明する。第8図に示すように、円弧中心点O1,
O2を重ね合わせた状態のXY座標値を、第10図
に示すように、翼形重心点P1,P2を重ねた状態
に転位して円弧中心点O1,O2の移動量を読み替
えることにより加工寸法が算出できる(第1、第
2表参照)。
E−E断面例 K1=a3-E+aG-E=6.19
+9.46=15.65
A−A断面 l1=aG-A−aG-A=15.54
−5.0=10.54
E−E断面 m1=b3-E−bG-E=12.50
−9.76=2.74
A−A断面 n1=b3-A−bG-A=17.47
−7.20=10.54
v1=n1−m1=10.27−2.74=7.53
u1=K1−l1=15.65−10.54=5.11
w1=√1 2+1 2=√5.112+7.532=9.10
θ1゜=pln-1w1/H=10.24゜
β=ψ2cosθ1=24゜×0.9841=23.62゜
ψ2:翼の腹面出口角(カツタ進入角)
尚、第3、第4表はある形状から比例で出した
値のため、上記計算と多少相違する。
背面7についても腹面6と同一手法で算出でき
る。
このような本発明に係るひねり翼の加工方法に
よれば、専用倣加工機を要せず加工機のチージが
安く、倣用モデル翼も必要としないことから経費
も大幅に節減される。又、長手方向の長さが翼面
の長手方向の長さ以上の円筒状のカツタを用いて
切削を行なうようにしているので、カツタ部に対
するシヤンク部の長さを短かくすることができる
と共にカツタの取付軸を大きくでき、びびりが生
じることなく精度も良くなり重切削も可能とな
る。更に傾斜させることによつて翼面の長手方向
の平面形状を一つの曲線状態にして円筒状のカツ
タで切削するようにしたので、一度に仕上げられ
ることから切削代を要せず、出口角、肉厚、形状
が正確になり、切削時における熟練者によるゲー
ジ合せも不要となり全体としても加工時間が大幅
に低減される。又プラツトフオームに接する翼面
部分も翼面加工と同時に仕上げることができる。[Table] Figure 9 shows the drawing situation in Figures 7a and b, and the coordinates of the center points of the back arcs r 1 , r 2 , r 3 , r 4 are changed to the vane center of gravity point P 1 by following the ventral surface machining procedure in Figure 10. The center of gravity of the blade when the blade arc R 3 is superimposed on the center point of the blade root arc R 3 , which are displayed on the same plane with P 2 as the reference.
Movement amount of P 1 P 2 and tilt angle θ 2 with respect to twist blade height H
(Fig. 4). Here, a method for determining the tilt angle will be explained with reference to FIGS. 7 to 11. FIG. 11 is a diagram showing the principle of determining the shape and dimensions of the cutter on the ventral surface, and also shows the error in the shape of the ventral surface due to the drawing dimensions and the processing method of the present invention. The solid line centered on the XY axis shows the shape of the ellipse displayed on the plane parallel to the twist platform when the cutter is tilted by β 1 ° in the direction of α 1 °. Therefore, the error in the ventral shape is the difference between the arc r5 and the elliptical shape created when the cutter is tilted by θ1 ° . The method for determining the diameter D of the cutter on the ventral surface is obtained from this figure using the formula D=(r 5 ×cosθ 1 °)×2. However, the diameter of the cutlet was determined based on the assumption that the ventral arc r 5 shown in the drawing is a part of an ellipse (major axis 2×r 5 ). As shown in Figures 7a and 7b, the center of gravity of a twisted airfoil is normally planned so that it is all on the center line of the rotor disk twisting platform due to the strength of the wing, and this is the same in this example. It is. Incidentally, if the center of gravity P of each cross-sectional view of the blade shifts, the bending moment will act in addition to the centrifugal force at this point, which will be the main cause of increasing the stress value of the blade, and the safety factor will increase due to the relationship with the material allowable stress. It decreases due to the influence of moment. The reason why the inclination angle is determined based on the center of gravity P is as follows. That is, the common point or reference point for each cross-sectional shape of the turbine airfoil is only one point, the center of gravity P, and the center of the platform 5 and the center of gravity P1 are common, and the center of gravity P is optimal as a reference point. be. Therefore, the sixth
From the dimensions shown in the drawing in Figure 7, the center of gravity P 1 is determined based on the foot of radius r of the belly and back shape of the airfoil, as shown in Figures 8 and 9.
The relationship is determined by the inclination angle by calculating the deviation of ~ P2 . Therefore, from the cross-sectional dimensions in Fig. 7a and b, the coordinates of the arc center point of each cross section are displayed on the same XY coordinate plane with the center of gravity P1 of the blade root blade plate of the twisted blade as the origin, and the blade root circular arc The degree of twist of the ventral and dorsal surfaces can be determined by the coordinates of the center point O 1 of the wing and the center point O 2 of the wing top arc. Therefore, in the case of the ventral surface, it is as shown in Fig. 10. Next, the center point of the blade root arc in Figure 10
With O 1 as the origin, the center point O 2 of the wing tip arc is superimposed on O 1 . Figure 8 shows the inclination angle of the blade in this state expressed as θ 1 . In this state, the amount of displacement of the center of gravity points P 1 and P 2 is expressed by the angle of inclination when viewed from the blade root. ∴ 1 2 = 1 2 , and the tilt angle θ 1 ° = pln -1 P 1 P 2 / -- / H (see Figure 8). The tilt direction α 1 ° = tan -1 v 1 / u 1 . θ 2 on the rear surface 7 side can also be determined in the same manner. Next, a method of calculating the machining dimensions after tilting will be explained. The cutter diameter D is D=2 as shown in Fig. 11.
It can be expressed as (r 5 cosθ 1 ). Therefore, D=2( r5cosθ1 ) = 2(13·68×cos10.24°)=26.92(mm). A method for calculating processing dimensions will be explained using the ventral surface 6 as an example. As shown in Fig. 8, the arc center point O 1 ,
As shown in Figure 10, the XY coordinate values of the overlapping state of O 2 are transposed to the state of overlapping the airfoil center of gravity points P 1 and P 2 , and the amount of movement of the arc center points O 1 and O 2 is calculated. By changing the reading, the processing dimensions can be calculated (see Tables 1 and 2). E-E cross section example K 1 =a 3-E +a GE =6.19 +9.46=15.65 A-A cross section l 1 =a GA -a GA =15.54 -5.0=10.54 E-E cross section m 1 =b 3-E −b GE =12.50 −9.76=2.74 A-A cross section n 1 =b 3-A −b GA =17.47 −7.20=10.54 v 1 =n 1 −m 1 =10.27−2.74=7.53 u 1 =K 1 −l 1 =15.65−10.54=5.11 w 1 =√ 1 2 + 1 2 =√5.11 2 +7.53 2 =9.10 θ 1゜=pln -1 w 1 /H=10.24゜β=ψ 2 cosθ 1 =24゜× 0.9841=23.62゜ψ 2 : Wing ventral exit angle (cutting approach angle) Tables 3 and 4 are values calculated proportionally from a certain shape, so they are slightly different from the above calculation. The dorsal surface 7 can also be calculated using the same method as the ventral surface 6. According to the method for processing twisted blades according to the present invention, a dedicated copying machine is not required, the cost of the processing machine is low, and a model wing for copying is not required, resulting in significant cost savings. In addition, since cutting is performed using a cylindrical cutter whose longitudinal length is greater than the longitudinal length of the blade surface, the length of the shank portion relative to the cutter portion can be shortened. The mounting axis of the cutter can be made larger, and accuracy is improved without vibration, making heavy cutting possible. Furthermore, by inclining the plane shape in the longitudinal direction of the blade surface into a single curved shape and cutting it with a cylindrical cutter, it can be finished at one time, so no cutting allowance is required, and the exit angle, The wall thickness and shape become more accurate, and there is no need for an expert to adjust the gauge during cutting, resulting in a significant reduction in overall machining time. In addition, the blade surface portion in contact with the platform can be finished at the same time as the blade surface processing.
第1図は従来のひねり翼加工方法を示す説明
図、第2図はひねり翼の翼面部分の斜視図、第3
図はひねり翼を本発明に係る加工方法で加工する
原理を示す説明図、第4図、第5図は夫々本発明
に係るひねり翼を示す説明図、第6図はひねり翼
がロータデイスクの台に取付けられた状態の側面
図、第7図a,bは夫々ひねり翼を製作するため
に設計図として与えられた第6図中A−A線断面
及び第6図中のE−E線断面形状を示す断面図、
第8図、第9図は夫々ひねり翼の腹面及び背面を
加工するために第7図a,bから変換した平面
図、第10図は第7図を曲面円弧中心で重ねた状
態の説明図、第11図はカツタ径の算出説明図で
ある。
図面中、1はボス、2は取付部、3はひねり
翼、4は据付台、5はプラツトフオーム、6は腹
面、7は背面である。
Figure 1 is an explanatory diagram showing the conventional twisted wing processing method, Figure 2 is a perspective view of the wing surface of the twisted wing, and Figure 3 is a perspective view of the wing surface of the twisted wing.
The figure is an explanatory diagram showing the principle of processing a twisted blade by the processing method according to the present invention, Figures 4 and 5 are explanatory diagrams showing the twisted blade according to the present invention, respectively, and Figure 6 shows that the twisted blade is formed on a rotor disk. A side view of the state installed on the stand, Figures 7a and 7b are the cross section taken along the line A-A in Figure 6 and the line E-E in Figure 6, respectively, which were given as design drawings for manufacturing the twisted wing. A cross-sectional view showing the cross-sectional shape,
Figures 8 and 9 are plan views converted from Figures 7a and b in order to process the ventral and rear surfaces of the twisted wing, respectively, and Figure 10 is an explanatory diagram of Figure 7 superimposed at the center of the curved arc. , FIG. 11 is an explanatory diagram for calculating the diameter of the cutter. In the drawings, 1 is a boss, 2 is a mounting portion, 3 is a twist wing, 4 is a mounting base, 5 is a platform, 6 is a ventral surface, and 7 is a back surface.
Claims (1)
形状が一つの曲線状態となつて長手方向が直線の
組合せとなる翼面を有するひねり翼の加工方法に
おいて、長手方向の長さが前記翼面の長手方向の
長さ以上の円筒状のカツタを用い、該カツタが翼
面に直線状に接する状態に該カツタを前記翼面に
対して相対的に傾斜させて該翼面の切削を行なう
ことを特徴とするひねり翼の加工方法。1. In a method for processing a twisted wing having a wing surface whose longitudinal planar shape becomes one curved state by inclination and whose longitudinal direction is a combination of straight lines, the longitudinal length of the wing surface is The blade surface is cut by using a cylindrical cutter with a length greater than or equal to the length in the longitudinal direction, and by tilting the cutter relatively to the wing surface while the cutter is in straight line contact with the wing surface. A unique twist wing processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8756381A JPS57205014A (en) | 1981-06-09 | 1981-06-09 | Working method of twisted blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8756381A JPS57205014A (en) | 1981-06-09 | 1981-06-09 | Working method of twisted blade |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57205014A JPS57205014A (en) | 1982-12-16 |
JPH021604B2 true JPH021604B2 (en) | 1990-01-12 |
Family
ID=13918450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8756381A Granted JPS57205014A (en) | 1981-06-09 | 1981-06-09 | Working method of twisted blade |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57205014A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144521A (en) * | 1984-08-02 | 1986-03-04 | Mitsubishi Heavy Ind Ltd | Method of processing curved surface of thin article |
JPS61265258A (en) * | 1985-05-21 | 1986-11-25 | Ishikawajima Harima Heavy Ind Co Ltd | Working method of thin article |
CH696429A5 (en) * | 2002-01-31 | 2007-06-15 | Alstom Technology Ltd | Method and apparatus for round-machining a blank. |
-
1981
- 1981-06-09 JP JP8756381A patent/JPS57205014A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57205014A (en) | 1982-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4109038B2 (en) | Manufacturing method of rotor monoblock turbine disk and the disk | |
KR100388766B1 (en) | A Rotary Milling Cutter | |
US4589175A (en) | Method for restoring a face on the shroud of a rotor blade | |
JP5646623B2 (en) | Machined elbow and its manufacturing method | |
US8103375B2 (en) | Fillet machining system | |
CN104959667B (en) | Knife face band Unequal distance arc head milling cutter and method for grinding after a kind of eccentric shape | |
JP2000190121A (en) | Cutting insert | |
US20100074704A1 (en) | Method of manufacturing and refinishing integrally bladed rotors | |
CN113458466A (en) | One-step forming processing method for integral large-side inclined propeller by 360-degree spiral circular cutting in space | |
SE434607B (en) | CUTTER SHEETS INCLUDING A BODY WITH TENDERS AND PROCEDURE FOR PREPARING THIS | |
CN111542409A (en) | Milling cutter and workpiece machining method | |
US6449529B1 (en) | Process for contour machining of metal blocks | |
US2577747A (en) | Method of making turbine blades | |
JPS59187411A (en) | End mill wherein spherically formed leading end part is mounted to shank-shaped chip holder | |
JPH021604B2 (en) | ||
CN114258454A (en) | Method for manufacturing integrated rotor, cutting process program for blade of integrated rotor, and integrated rotor | |
US5087159A (en) | Method of using end milling tool | |
US20090028714A1 (en) | Method of designing tool and tool path for forming a rotor blade including an airfoil portion | |
CN109955039B (en) | Large-diameter clamp machining method with precision groove | |
US20110129310A1 (en) | Angle-rounding method and tool | |
JPS5835806B2 (en) | ball end mill | |
CN111241707A (en) | Method for calculating five-axis numerical control machining full-path milling force of complex curved surface | |
JPH06134611A (en) | Throw away tip and throw away boring tool | |
CN114888342B (en) | Method for machining blisk blade by adopting drum-shaped knife | |
EP4129544A1 (en) | Cutting tool and method for machining workpiece |