【発明の詳細な説明】[Detailed description of the invention]
(発明の技術分野)
本発明は電子管や照明用管球管に用いられる非
気化性ゲツタ及びその製造方法に関する。
(発明の技術的背景及び問題点)
電子管や照明用管球にはその管内の不所望なガ
スを除去し、長寿命化を計るため、非気化性ゲツ
タが用いられる。
非気化性ゲツタの材料としてはジルコニウムや
チタニウム等の純金属系のものと、ジルコニウム
−アルミニウム、ジルコニウム−ニツケル等の金
属間化合物系のものがあり、室温で安定であるこ
と、取扱いが容易であること又ゲツタ作用が大き
いこと等の長所を有する金属間化合物が多く実用
化されている。しかしながらこれらの金属間化合
物を主成分とするゲツタ材料は成形加工が容易で
なく、粉未状に粉砕され、この粉未を鉄板等に付
着せしめ、鉄板自身を成形加工している。そのた
め製造工程が複雑で長時間を要し、ゲツタ価格の
値上りの原因となる。又電子管内の小さな空間に
取り付けるために折曲げ加工したゲツタは使用中
に熱サイクルを受けて鉄板からゲツタ粉末が脱落
し、これが電子管の電気的なリーク、耐圧特性低
下、ノイズの増加が増の原因となる。
このような状況下にあつて、ゲツタ能はもとよ
り加工性、取扱い性がよく、電気的なリーク、耐
圧特性低下をひき起こさない非気化性ゲツタの実
現が望まれている。
(発明の目的)
本発明は上記欠点に鑑みなされたもので、ゲツ
タ能加工性、取扱い性良好で、耐圧特性を低下さ
せない非気化性ゲツタ及びその製造方法を提供す
ることを目的とする。
(発明の概要)
本発明の非気化性ゲツタの製造方法は、活性化
によりゲツタ作用を呈する金属間化合物からなる
原材料を溶解させた後、回転冷却体上に射出しリ
ボン状に固化させることを特徴とする。
(発明の実施例)
実施例 1
ニツケルを24.3重量%含むジルコニウム合金塊
を内径8mmの第1図に示したような石英ガラス製
容器12に入れ、外部から高周波誘導加熱により
溶解し、その溶湯を石英ガラス製容器12の底に
設けられた1mm×8mmの開口部を備えるノズル1
4から、回転している鋼製の冷却ロール16の表
面上へ供給することによりその溶湯落下した冷却
ロール表面のほぼ接線方向に、厚さ20〜100μm
の薄肉リボン17を得た。なお、合金溶解からリ
ボン作成の間、酸化防止のために、装置全体は真
空排気と高純度アルゴンの充填を3回繰り返し、
最終的に400Torrのアルゴン雰囲気に保たれた。
このようにして得られた展延性のあるリボン状材
料はノズルと冷却ロール間の隙を0.2mmから0.7mm
の範囲で、また冷却ロールの回転速度を周速5
m/sから20m/sまでの範囲で変化させること
により表1のような表面形態を呈した。
(Technical Field of the Invention) The present invention relates to a non-vaporizable getter used in electron tubes and lighting tubes, and a method for manufacturing the same. (Technical Background and Problems of the Invention) Non-vaporizable getters are used in electron tubes and lighting tubes in order to remove undesirable gases within the tubes and extend their lifespan. Non-volatile getter materials include pure metals such as zirconium and titanium, and intermetallic compounds such as zirconium-aluminum and zirconium-nickel, which are stable at room temperature and easy to handle. Many intermetallic compounds have been put into practical use, having advantages such as a large getter effect. However, these getter materials mainly composed of intermetallic compounds are not easy to mold, and are crushed into powder, which is then adhered to an iron plate or the like, and the iron plate itself is molded. As a result, the manufacturing process is complicated and takes a long time, which causes the price of gettuta to rise. In addition, the getter, which is bent to fit into a small space inside the electron tube, is subjected to thermal cycles during use, and the getter powder falls off from the iron plate, which can lead to electrical leakage of the electron tube, decrease in voltage resistance characteristics, and increase in noise. Cause. Under these circumstances, it is desired to realize a non-vaporizable getter that not only has good getter performance but also good processability and handleability, and does not cause electrical leakage or deterioration of voltage resistance characteristics. (Objective of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a non-volatile getter that has good getterability, good workability and handleability, and does not reduce pressure resistance characteristics, and a method for manufacturing the same. (Summary of the Invention) The method for producing a non-volatile getter of the present invention involves melting a raw material made of an intermetallic compound that exhibits a getter action upon activation, and then injecting it onto a rotary cooling body and solidifying it into a ribbon shape. Features. (Embodiments of the Invention) Example 1 A zirconium alloy ingot containing 24.3% by weight of nickel was placed in a quartz glass container 12 with an inner diameter of 8 mm as shown in FIG. Nozzle 1 with a 1 mm x 8 mm opening provided at the bottom of a quartz glass container 12
4, the molten metal is supplied onto the surface of the rotating steel cooling roll 16, so that the molten metal falls in a substantially tangential direction to the cooling roll surface to a thickness of 20 to 100 μm.
A thin ribbon 17 was obtained. During the process from alloy melting to ribbon creation, the entire device was evacuated and filled with high-purity argon three times to prevent oxidation.
The final argon atmosphere was maintained at 400 Torr.
The malleable ribbon-like material thus obtained has a gap between the nozzle and the cooling roll of 0.2 mm to 0.7 mm.
In addition, the rotational speed of the cooling roll is set at a circumferential speed of 5.
By changing the speed in the range from m/s to 20 m/s, the surface morphology shown in Table 1 was obtained.
【表】
なお、表面積はBETにより測定し、見掛密度
は銅の特性X線(Kα線)の透過率を測定し、平
滑鏡面状リボンを見掛密度100%として算出した。
これらの非気化性ゲツタリボンを直径10mmのステ
ンレス円筒の表面にかしめ及び溶接により取り付
けた後、真空排気された真空容器内に設置し、外
部より高周波誘導により加熱、即ち活性化を行な
つた。この活性化の温度は熱電対を用いて測定
し、800℃、30秒間に制御した。活性化の後、外
部より気体微量調節導入弁を通して一定量の一酸
化炭素を真空容器内に導入した。次に、非気化性
ゲツタ装置を350℃に保持し、その時の真空容器
内の経時的な圧力変化をピラニ真空計及び電離真
空計を用いて測定した。その結果、初期はD、
C、B、Aの順でガス収着能が高く、長時間経過
後は、A、B、C、Dの順となることが判明し
た。この結果から、初期に真空度が悪く、経時的
には気体発生の恐れが比較的少ない装置にはD
が、また初期に真空度は良好で経時的な気体発生
などで真空度劣化の恐れがある装置などにはAが
好適と考えられる。
また、気体純化装置などについては、通気性が
あり表面積が大きいことが要請されることからD
が最も適している。また、Aの場合でもリボン幅
を極めて小さくし線条にした場合にはDと同様な
性質が付与されるものである。
次にこれらの試料とX線管へ適用した例につい
て示し、その結果を述べる。
実施例1で作成したリボン状のゲツタ材及び比
較のためにジルコニウムのリボンを第3図に示し
たようなX線管に組み込んだ。第3図においてタ
ングステンターゲツト31は銅製陽極32の先端
に取付けられており、また陰極構体33はフイラ
メント用導入線34でガラス製外囲器35内に固
定され、電気的に外部に導びかれている。またリ
ボン状非気化性ゲツタ材料36は陰極構体の底部
周辺に嵌合及び電気抵抗溶接により固定された。
外囲器35内は真空排気され、電気炉中でベーキ
ング、さらに高周波誘導加熱により構成部品の最
終ガス出しが行なわれた後、最後にゲツタ部分を
800℃で30秒間加熱し、活性化が施こされ、然る
後に封止される。
このようにして作製されたX線管を用いて管電
圧120KV(定格100KV)、管電流24mAの強制寿
命試験を行なつた。X線管内に組込まれた本発明
のAのゲツタ材と比較品のジルコニウムリボン
は、いずれも厚さ100μm幅10mmのものを使用し
た。純ジルコニウムはX線管球製作時に、既に表
面が褐色の薄い酸化層で覆れたのに対しZr2Alと
いう金属間化合物の組成を有する試料Aは表面は
酸化されることなく金属光沢を失なうことはなか
つた。強制寿命試験の結果は、比較品のジルコニ
ウムリボンをゲツタとして使用した管が500時間
程度で異常放電現象の発生が頻繁に認められるよ
うになるのに対し、本発明品のリボンをゲツタと
して使用した管は700時間経過後もなお異常放電
現象が全く認められず良好な耐高電圧特性を示し
た。A、B、C、Dの試料による差は、この場合
あまり認められなかつた。
実施例 2
アルミニウムを16重量%含むジルコニウム合金
塊を用い、実施例1で示した方法と同様な方法で
幅10mm見掛厚さ100μmの多孔質簾状のゲツタリ
ボンを作製した。簾状の凝集繊維1本の径は約
10μmである。本実施例の場合は窒素を封入した
高電力放電灯(HID)に適用した。この場合ジ
ルコニウム粉末を放電灯内電極サポートにあらか
じめ電着した従来の場合とを比較した。実施例1
の場合と同様、製造工程でジルコニウム表面が酸
化されるのに対し、本発明の場合は、金属光沢を
維持した。
この場合も、HIDの強制寿命試験の結果、寿
命を大きく左右する水素に対するゲツタ作用を充
分発揮し、これまでに問題とされてきたゲツタ材
粒子の脱落による異常放電等は全く認められなか
つた。なお金属状ジルコニウムは常温、大気中で
発火することもあり極めて不安定で酸化しやすく
工業的には取扱いにくく実用的ではないという欠
点を有するが、金属間化合物組成のアルミニウム
−ジルコニウム合金は常温ではかなり安定であ
り、取扱いも容易なものである。しかも本実施例
のように展延性のあるリボンとして取扱えること
は耐高電圧特性の改善策を実現する手段であるこ
とと併んで大きな利点の一つでもある。
変形例
この他、ZrNiの組成を有するジルコニウム−
ニツケル系、Zr3Al2などに対応する組成のジルコ
ニウム−アルミニウム系、HfNi、Hf2Niなどに
対応する組成のハフニウム−ニツケル系などに適
用し、リボン状ゲツタ材料が作成され、それぞ
れ、管球に用いられ、適当なゲツタ効果を得るこ
とができた。
(発明の効果)
以上の通り、本発明の非気化性ゲツタは金属間
化物であつてしかもリボン状をなすものであり、
その結果取扱いが容易であつて電子管製造中に酸
化されることがなく、優れたゲツタ能を有する。
又X線管等高い耐圧特性を必要とする管に適用し
てオンオフサイクルを繰返しても耐圧特性が良く
優れたゲツタである。
又、本発明の非気化性ゲツタの製造方法によれ
ば、従来製造できなかつた金属間化合物でなるゲ
ツタのリボン状成形が、きわめて早い速度で可能
となること、製造条件(例えば冷却ロールの回転
速度、ノズルからの溶湯射出圧力、溶湯温度、ノ
ズルと冷却ロール間距離)の簡単な変更により表
面状態を変えることができること、その結果目的
に見合つたガス収着能モードのゲツタが得られる
こと等数多くの効果を奏することができる。[Table] The surface area was measured by BET, and the apparent density was calculated by measuring the transmittance of copper's characteristic X-rays (Kα rays), assuming that the smooth mirror-like ribbon had an apparent density of 100%.
These non-vaporizable getter ribbons were attached to the surface of a stainless steel cylinder with a diameter of 10 mm by caulking and welding, then placed in an evacuated vacuum container, and heated, that is, activated, by high-frequency induction from the outside. The activation temperature was measured using a thermocouple and controlled at 800°C for 30 seconds. After activation, a fixed amount of carbon monoxide was introduced into the vacuum vessel from the outside through a gas micro-control introduction valve. Next, the non-vaporizable getter device was maintained at 350° C., and the pressure change within the vacuum container over time was measured using a Pirani vacuum gauge and an ionization vacuum gauge. As a result, initially D,
It was found that the gas sorption ability was highest in the order of C, B, and A, and after a long period of time, the order was A, B, C, and D. From this result, it is clear that D
However, A is considered to be suitable for devices that have a good degree of vacuum at the beginning, but where there is a risk of deterioration of the degree of vacuum due to gas generation over time. In addition, for gas purification equipment, etc., it is necessary to have good ventilation and a large surface area.
is the most suitable. In the case of A, the same properties as D are imparted when the ribbon width is made extremely small and the ribbon is made into filaments. Next, examples of application to these samples and X-ray tubes will be shown, and the results will be described. The ribbon-shaped getter material prepared in Example 1 and a zirconium ribbon for comparison were assembled into an X-ray tube as shown in FIG. In FIG. 3, a tungsten target 31 is attached to the tip of a copper anode 32, and a cathode structure 33 is fixed within a glass envelope 35 with a filament lead-in wire 34 and electrically led to the outside. There is. A ribbon-shaped non-volatile getter material 36 was also fitted around the bottom of the cathode assembly and secured by electrical resistance welding.
The inside of the envelope 35 is evacuated, baked in an electric furnace, and the final degassing of the components is performed by high-frequency induction heating.Finally, the getter part is removed.
Activation is performed by heating at 800°C for 30 seconds, followed by sealing. Using the X-ray tube thus produced, a forced life test was conducted at a tube voltage of 120 KV (rated at 100 KV) and a tube current of 24 mA. The getter material A of the present invention and the comparative zirconium ribbon incorporated into the X-ray tube were both 100 μm thick and 10 mm wide. The surface of pure zirconium was already covered with a thin brown oxide layer when the X-ray tube was manufactured, but the surface of sample A, which has an intermetallic compound composition of Zr 2 Al, lost its metallic luster without being oxidized. Nothing happened. The results of the forced life test showed that the tube using the comparison product zirconium ribbon as the getter frequently experienced abnormal discharge phenomena after about 500 hours, whereas the tube using the inventive ribbon as the getter showed that abnormal discharge phenomena frequently occurred after about 500 hours. Even after 700 hours, the tube showed no abnormal discharge phenomenon and showed good high voltage resistance. In this case, little difference between samples A, B, C, and D was observed. Example 2 Using a zirconium alloy ingot containing 16% by weight of aluminum, a porous blind-like Getsutari ribbon having a width of 10 mm and an apparent thickness of 100 μm was produced in the same manner as in Example 1. The diameter of one blind-like cohesive fiber is approx.
It is 10 μm. In this example, the present invention was applied to a high power discharge lamp (HID) filled with nitrogen. In this case, a comparison was made with a conventional case in which zirconium powder was electrodeposited on the electrode support in the discharge lamp in advance. Example 1
As in the case of , the zirconium surface was oxidized during the manufacturing process, whereas in the case of the present invention, the metallic luster was maintained. In this case as well, the forced life test results of the HID showed that the HID had a sufficient getter effect on hydrogen, which greatly affects the lifespan, and no abnormal discharges due to dropout of getter material particles, which had been a problem in the past, were observed. Metallic zirconium has the disadvantage that it can catch fire in the atmosphere at room temperature and is extremely unstable and easily oxidized, making it difficult to handle industrially and being impractical; however, aluminum-zirconium alloys with an intermetallic compound composition It is quite stable and easy to handle. Furthermore, the fact that it can be handled as a malleable ribbon as in the present embodiment is not only a means of realizing a measure for improving high voltage resistance characteristics, but also one of the great advantages. Modified example In addition, zirconium with a composition of ZrNi
Ribbon-shaped getter materials are created by applying them to nickel-based materials, zirconium-aluminum systems with compositions corresponding to Zr 3 Al 2, etc., and hafnium-nickel systems with compositions corresponding to HfNi, Hf 2 Ni, etc., respectively. It was used to obtain a suitable getter effect. (Effects of the Invention) As described above, the non-volatile getter of the present invention is an intermetallic compound and is ribbon-shaped.
As a result, it is easy to handle, is not oxidized during electron tube manufacturing, and has excellent gettering ability.
In addition, it is an excellent getter with good pressure resistance even when applied to tubes that require high pressure resistance such as X-ray tubes and subjected to repeated on-off cycles. In addition, according to the method for producing a non-volatile getter of the present invention, it is possible to form a getter made of an intermetallic compound into a ribbon shape at an extremely high speed, which was previously impossible to produce. The surface condition can be changed by simply changing the speed, molten metal injection pressure from the nozzle, molten metal temperature, distance between the nozzle and the cooling roll), and as a result, the getter of the gas sorption capacity mode that meets the purpose can be obtained. It can have many effects.
【図面の簡単な説明】[Brief explanation of drawings]
第1図、第2図は本発明の非気化性ゲツタの製
造方法を説明する図、第3図は本発明の非気化性
ゲツタをX線管に装着した状態を示す概略断面図
である。
11,21……溶湯、12,22……セラミツ
ク容器、13,23……高周波コイル、14,2
4……ノズル、16,26,28……冷却ロー
ル、17,29,36……非気化性ゲツタ、31
……ターゲツト、33……陰極構体。
1 and 2 are diagrams illustrating a method of manufacturing a non-vaporizable getter of the present invention, and FIG. 3 is a schematic cross-sectional view showing a state in which the non-vaporizable getter of the present invention is attached to an X-ray tube. 11, 21... Molten metal, 12, 22... Ceramic container, 13, 23... High frequency coil, 14, 2
4... Nozzle, 16, 26, 28... Cooling roll, 17, 29, 36... Non-vaporizable getter, 31
...Target, 33...Cathode structure.