JPH02159561A - Estimating method of range of movement of landslide or landslip - Google Patents

Estimating method of range of movement of landslide or landslip

Info

Publication number
JPH02159561A
JPH02159561A JP31311088A JP31311088A JPH02159561A JP H02159561 A JPH02159561 A JP H02159561A JP 31311088 A JP31311088 A JP 31311088A JP 31311088 A JP31311088 A JP 31311088A JP H02159561 A JPH02159561 A JP H02159561A
Authority
JP
Japan
Prior art keywords
earth
soil
slope
movement
landslide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31311088A
Other languages
Japanese (ja)
Other versions
JPH0543970B2 (en
Inventor
Kyoji Sasa
佐々 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31311088A priority Critical patent/JPH02159561A/en
Publication of JPH02159561A publication Critical patent/JPH02159561A/en
Publication of JPH0543970B2 publication Critical patent/JPH0543970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

PURPOSE:To know the surface range of movement of landslide or landslip by sampling soil beforehand from the place where there is a possibility of unstable earth on a slope causing sliding movement, by subjecting the soil to a soil test and by determining the deformation characteristic of a moving lump of earth. CONSTITUTION:When a lump of earth due to landslide or landslip slides down on a slope, the distance of movement of the center of gravity thereof is proportional to an apparent coefficient of friction between the moving lump of earth and the firm ground, and the expansion of the moving lump of earth is proportional to a coefficient of horizontal earth pressure. Values of these two coefficients are determined from soil exploration and water content exploration, while a slope whereon the landslip is estimated to occur and the slope whereon the lump of earth is expected to run down are cut in a mesh of a prescribed width, and the movement of a columnar earth element in the mesh is computed numerically for each time step from the time of start of the movement to the time of stop thereof by using the inclination of the slope, the apparent coefficient of friction and the coefficient of horizontal earth pressure. Thereby the height and speed of the earth element in each mesh in each time are computed, and the range of movement of the landslide or the landslip and the depth of a pile of the earth are estimated from the height and the distribution of the earth element at the time when the speed turns zero.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、該当斜面で地滑り・崖崩れが発生した場合、
何処まで危険が及ぶかを予め予測し、降雨時の警戒・避
難、あるいは土地利用規制などの対策により災害を軽減
するための運動範囲の予測方法に関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention is applicable to the case where a landslide or landslide occurs on the slope in question.
This relates to a method for predicting the range of movement in order to predict in advance how far danger will extend and to reduce disasters through measures such as warning and evacuation during rain or land use regulations.

〈従来の技術〉 従来、地滑り・崖崩れの運動距離を予測するには、過去
に発生した地滑り・崖崩れにおける運動以府の土塊の重
心位置と運動停止後の土塊の重心位置との高低差と、各
重心間の水平距離との比を求め、これを運動時の牽擦係
数に等価な値と考えこれを等価串擦俤数と呼び、これが
おおむね運動土塊の規模と比例していることが多いので
、地滑りや崖崩れを起こす斜面と類似の規模を持つ過去
のものより得られる等価摩擦係数と該斜面の等価摩擦係
数は等しいと仮定し、又、ある形状、体積を持つ地滑り
・崖崩れの土塊の運動をその重心にある体積ゼロの質点
の運動におきかえて、この質点が該斜面上を滑り降りる
と考えて運動土塊の重心の運動距離を推定してきた。
<Conventional technology> Conventionally, in order to predict the movement distance of a landslide or landslide, the difference in height between the position of the center of gravity of the soil mass after the movement in landslides and landslides that occurred in the past and the position of the center of gravity of the soil mass after the movement has stopped is used. and the horizontal distance between each center of gravity, and this is considered to be equivalent to the coefficient of traction during movement, and this is called the equivalent skew number, which is roughly proportional to the scale of the moving soil mass. Therefore, it is assumed that the equivalent friction coefficient obtained from the past slope with a similar scale to the slope where the landslide or cliff collapse occurs is equal to the equivalent friction coefficient of the slope. We have estimated the distance of movement of the center of gravity of a moving soil mass by replacing the motion of a collapsed soil mass with the motion of a mass point with zero volume at its center of gravity, and assuming that this mass point slides down the slope.

〈発明が解決しようとする課題〉 上記の従来技術では、過去の類似の規模を持つ地滑り・
崖崩れにおける等偏摩擦係数を該斜面に適用してきたが
、実際の斜面の摩擦係数は、斜面毎に異なり、また雨や
融雪など水分条件の変化によっても時々変化する。さら
に流下が予想される斜面の部分毎に土質の差や水分条件
の変化のために異なった摩擦係数を示す、従来技術では
これらの影響を無視しているので運動距離の推定値の信
頼性に問題があった。
<Problem to be solved by the invention> The above-mentioned conventional technology does not solve the problem of landslides and landslides of similar scale in the past.
Although the uniform friction coefficient for landslides has been applied to the slope, the actual friction coefficient of the slope differs from slope to slope, and sometimes changes due to changes in moisture conditions such as rain and melting snow. Furthermore, each part of the slope where the flow is expected to flow has a different coefficient of friction due to differences in soil quality and changes in moisture conditions. Conventional technology ignores these effects, which reduces the reliability of estimates of travel distance. There was a problem.

又、従来技術では崩土の運動を体積ゼロの質点の運動と
して近似しているので、運動土塊の平面的な広がりは推
定できなかった。しかし、実際には崩土は進行方向にあ
る巾を持って堆積するばかりでなく、水を多量に含む場
合には横方向にも広く拡散して堆積し被害区域を増大さ
せるので、従来技術は地滑り・崖崩れの運動範囲の予測
法として極めて不十分であった。そこで本発明は、この
ような欠点のない信頼性の高い予測方法を提供しようと
するものである。
Furthermore, in the conventional technology, the movement of the collapsed earth is approximated as the movement of a mass point with zero volume, so the planar spread of the moving earth mass cannot be estimated. However, in reality, the collapsing soil not only accumulates in a certain width in the direction of movement, but also spreads widely in the horizontal direction if it contains a large amount of water, increasing the damaged area. This method was extremely inadequate as a method for predicting the range of motion of landslides and landslides. Therefore, the present invention aims to provide a highly reliable prediction method that is free from such drawbacks.

く課題を解決する為の手段〉 地滑り・崖崩れの土塊が斜面上を滑る時、その重心の運
動距離は運動土塊と不動地盤の間の見かけの摩擦係数に
比例し、運動土塊の広がりは水平上圧係数に比例する。
Means for solving problems> When a landslide/cliff slides on a slope, the moving distance of its center of gravity is proportional to the apparent coefficient of friction between the moving soil mass and the immovable ground, and the spread of the moving soil mass is horizontal. Proportional to the upper pressure coefficient.

この両者の値を土質調査・水分調査より求めると共に、
地滑り・崖崩れの発生が予測される斜面とその流下が予
測される斜面を一定の11のメツシュに切り、そのメツ
シュ内の柱状の土の要素の運動を運動開始時から停止時
まで、各時間ステップ毎に斜面傾斜と、上記の見かけの
摩擦係数と、水平土圧係数を用いて数値計算することに
より、各時間毎の各メツシュ内の土要素の高さと速度を
計算し、速度がゼロになった時の土要素の高さと分布よ
り、地滑り・崖崩れの運動範囲と堆積深度の予測を行う
ものである。
In addition to finding both values through soil and moisture surveys,
Slopes where landslides and landslides are predicted to occur and slopes where landslides are predicted to flow are cut into 11 fixed meshes, and the movement of the columnar soil elements within the meshes is measured at each time from the start of movement to the time it stops. By performing numerical calculations using the slope slope, the above-mentioned apparent friction coefficient, and horizontal soil pressure coefficient for each step, the height and velocity of the soil elements in each mesh at each time are calculated, and the velocity becomes zero. Based on the height and distribution of soil elements at the time of occurrence, the range of movement and sedimentation depth of landslides and landslides can be predicted.

〈実施例〉 以下、図面に基づいて本発明を詳述する。第1図は、傾
斜した不動地盤(1)の上を移動土塊(2)が運動して
いる様子を示している。この移動土塊について、図に示
すように水平面上にX−Y座標、鉛直方向にZ座標を取
る。そしてX方向、X方向に等間隔にメツシュを入れる
。今、X方向のi、i+1番目、X方向のj、j+1番
目のメツシュに囲まれた不動地盤から崩壊土塊の表面に
至る長さの鉛直な柱状の要素(3)を考える。
<Example> The present invention will be described in detail below based on the drawings. FIG. 1 shows a moving earth mass (2) moving on a sloped immovable ground (1). Regarding this moving earth mass, as shown in the figure, the X-Y coordinate is taken on the horizontal plane and the Z coordinate is taken in the vertical direction. Then, meshes are placed at equal intervals in the X direction and in the X direction. Now, consider a vertical columnar element (3) whose length extends from the immovable ground to the surface of the collapsed soil mass surrounded by meshes i and i+1 in the X direction and j and j+1 in the X direction.

第2図は、地滑り・崖崩れ発生時からt8−後の該柱状
要素(3)に作用する力をベクトルで示したものである
。この力は土塊の自重W(ij、t)、隣合う要素から
X方向に作用する水平土圧:Px(ij。
FIG. 2 shows the force acting on the columnar element (3) after t8 from the occurrence of the landslide/landslide using vectors. This force is the self-weight of the earth mass W (ij, t), and the horizontal earth pressure acting in the X direction from adjacent elements: Px (ij.

t)とPx(i+1.j、t)、同じくX方向に作用す
る水平土圧:Py(i、j、t)とPy(i、j+l、
t)、土塊の底面にかかる摩擦抵抗力R(i、j、t)
と垂直反力N(i、j。
t) and Px(i+1.j, t), horizontal earth pressure that also acts in the X direction: Py(i, j, t) and Py(i, j+l,
t), frictional resistance force R(i, j, t) on the bottom of the soil clod
and the vertical reaction force N(i, j.

ヒ)である、今、自重を斜面方向成分Wp(i、j、t
)と斜面に垂直な成分Wn(i、j、t)に分けると、
WnとNは方向が逆で大きさが同じなので互いに相殺す
る。従って、残る力のベクトル和がこの土塊の加速度変
化を引き起こすことになる。即ち、この土塊の質量を輸
(i、j、t)、加速度をa(i、j、t)とすると、
次の関係が成り立つ。
Now, the self-weight is expressed as the slope direction component Wp(i, j, t
) and the component Wn(i, j, t) perpendicular to the slope, we get
Since Wn and N have opposite directions and the same magnitude, they cancel each other out. Therefore, the vector sum of the remaining forces causes a change in the acceleration of this clod. That is, if the mass of this clod is expressed as (i, j, t) and the acceleration is a(i, j, t), then
The following relationship holds.

a(ij、t) ・s+(i、j、t)=Wp(i、j
、t)+(Px(i、j、t)−Px(i+1.j、t
)l+(Py(i、j、t)−Py(i、j+1.t)
)+R(ij、t)−−−−−−−−−−−−<1)こ
の式において要素底面にかかる摩擦抵抗力Rの単位面績
当りの力は、土質力学の考え方を適用すると運動土塊の
自重による斜面に垂直な力(垂直部カニσ)から滑り面
に作用する土塊の運動時の間隙水圧(u)を差し引いた
有効垂直応力に土砂の運動時の摩擦係数(janφm)
を乗じたものになるはずである。又、この摩擦抵抗力は
、間隙水圧を考慮しない場合の垂直応力に見かけの摩擦
係数(tanφa)を乗じたもので表わせる。従って、
(σ−u) −janφm= 6− tanφatan
φa=((σ−u)/σ)・janφ−−−−(2>こ
の見かけの摩擦係数(tanφa)は、該斜面の土につ
いて土質試験を行い、運動時の摩擦係数(janφ餉)
と間隙水圧(u)を求めることにより得ることができる
a(ij, t) ・s+(i, j, t)=Wp(i, j
,t)+(Px(i,j,t)-Px(i+1.j,t
)l+(Py(i,j,t)−Py(i,j+1.t)
)+R(ij, t)------------------<1) In this equation, the force per unit surface area of the frictional resistance force R applied to the bottom of the element can be calculated by applying the concept of soil mechanics. The effective normal stress obtained by subtracting the pore water pressure (u) during the movement of the soil mass acting on the sliding surface from the force perpendicular to the slope due to the soil mass's own weight (vertical part σ), and the coefficient of friction during the motion of the soil (janφm)
It should be multiplied by . Further, this frictional resistance force can be expressed as the product of the normal stress without considering the pore water pressure by the apparent coefficient of friction (tanφa). Therefore,
(σ−u) −janφm= 6− tanφatan
φa=((σ-u)/σ)・janφ----(2>This apparent coefficient of friction (tanφa) is calculated by performing a soil test on the soil on the slope and calculating the coefficient of friction during movement (janφ餉).
It can be obtained by determining the pore water pressure (u).

また水平土圧(Px、Py)は要素の自重に水平土圧係
数を乗じて算出する。更に運動土塊の密度は運動中に変
化しないという条件を入れて、上式を数値計算すると、
各時間毎、各メツシュ毎の柱状要素の高さと速度が計算
でき、速度ゼロの場合よリ、増土の堆積範囲、堆積速度
を求めることができる。
Further, the horizontal earth pressure (Px, Py) is calculated by multiplying the element's own weight by the horizontal earth pressure coefficient. Furthermore, by adding the condition that the density of the moving soil mass does not change during movement, and calculating the above equation numerically, we get
The height and velocity of the columnar elements for each mesh can be calculated for each time, and the accumulation range and accumulation rate of soil addition can be determined in contrast to the case where the velocity is zero.

第3図〜第5図に本発明を小規模な仮想斜面での崖崩れ
に対して適用した例を示す、第3図は、紙面に垂直な方
向(Y方向)には同じ高度を持つ斜面の縦断面であり、
点をつけたところが移動開始前の不安定土砂(2)であ
る。X−Y甲面を1.mメツシュに切り、各メツシュ内
の柱状要素の高さの分布を10e−の中位で示したもの
がA、である。今、斜面の土の土質試験により、水平土
庄係数とj2て0.4〈あより水を含まない砂質土の値
)が得られた場合について、見かけの摩擦係数が0.7
の場合と065の場合の2つについて増土の運動範囲を
計算してみる。
Figures 3 to 5 show examples in which the present invention is applied to landslides on small-scale hypothetical slopes. is a longitudinal section of
The dotted area is unstable soil (2) before it begins to move. X-Y back side 1. The mesh is cut into m meshes, and A shows the distribution of the heights of the columnar elements in each mesh at the median of 10e-. Now, in the case where the horizontal soil coefficient and j2 are 0.4 (value for sandy soil that does not contain water) from the soil test of the soil on the slope, the apparent friction coefficient is 0.7.
Let's calculate the movement range of soil expansion for two cases: case 065 and case 065.

まず見かけの摩擦係数が0.7の場合の面上の堆積深度
分布(A、)を平面的に示したものが第41間(a)で
ある、地滑り土塊の一部は斜面に残留し、一部は斜面脚
部に堆積している。又、見かけの摩擦係数が0.5のl
11!1合の増土の堆積深度分布くA、)を甲面的に示
したものが第4図<b)である、移動土塊はすべて斜面
脚部から少し離れたところまで移動している。即ち、こ
の両図は増土の移動距離が見かけの摩擦係数に反比例1
2て大きくなっていることを的確に示している。
First, the 41st interval (a) is a planar view of the sedimentation depth distribution (A,) when the apparent coefficient of friction is 0.7. Part of the landslide mass remains on the slope, Some of it is deposited on the foot of the slope. Also, l with an apparent friction coefficient of 0.5
Figure 4<b) shows the sedimentation depth distribution of the 11!1 soil increase A,). All of the moving soil masses have moved a little distance from the foot of the slope. . In other words, both figures show that the distance traveled by soil reinforcement is inversely proportional to the apparent coefficient of friction.
2, which accurately shows that it is increasing.

次に移動土塊が多量の水を含み木下土圧係数が0.8に
なった場合・について、見かけの摩擦係数が第4図の(
a)と(b)の中間の値0.6である場合について得ら
れた筋子の堆積深度分布(A、’)を第5図(a)に示
し、これを前記第4図と比較した場合広く拡散している
ことが良く分かる。又、第5図(b)は斜面」二部の急
傾斜の部分(Xが0〜7−の地域)では、前記第5図(
a)と同じく見かけの摩擦係数が0.6であるが、斜面
下部の緩傾斜の部分(Xが7階以J二の地域)では長雨
や融雪のために地表に供給された水がたまり、見かけの
摩擦係数が0.25まで低下している場合について計算
した堆積深度分布(A2)を示す、この場合、遠くまで
流動し、か−)広く拡散している。即ち、長雨の後や融
雪器に水を多量に含んだ崖崩れが発生ずれば、極めて広
い範囲が危険にさらされることが予測される。
Next, when the moving soil mass contains a large amount of water and the Kinoshita soil pressure coefficient is 0.8, the apparent friction coefficient is (
Figure 5 (a) shows the muscle accumulation depth distribution (A,') obtained when the value is 0.6, which is between a) and (b), and compares it with Figure 4 above. It is clear that it is widely spread. In addition, in the steeply sloped part of the second part (area where
As in a), the apparent coefficient of friction is 0.6, but in the gently sloping part at the bottom of the slope (area where Deposition depth distribution (A2) calculated for the case where the apparent coefficient of friction is reduced to 0.25, in which case it flows far and spreads widely. In other words, if a landslide occurs after a long period of rain or when a snow melter contains a large amount of water, it is predicted that an extremely wide area will be exposed to danger.

この仮想の一中純斜面での崖崩れC;対する本発明の適
用結果は、実際に発生ずる崖崩れの状態と良く対応し7
ており、本発明を用いれば、同じ形、同じ規模の崖崩れ
が同じ形の斜面で発生した場合でも、斜面の士の土質特
性や含水状官に応)二た的確な精度の高い運動範囲の予
測が可能であることを示している。
The result of applying the present invention to this hypothetical landslide C on a pure slope corresponds well to the state of landslides that actually occur7.
If the present invention is used, even if a landslide of the same shape and scale occurs on the same slope, the range of motion can be adjusted with high precision depending on the soil characteristics and water content of the slope. This shows that it is possible to predict.

一方、参考の為に同じ第3図の崖崩i1に対して、従来
技術を適用した場合を示す、過去の同じ規模の崖崩ねか
ら得られた等価*擦係数が0.5であ−)たとすると、
増土の質点は初期の重心の位置く第3図のpo)から地
点(P、)まで移動することが推定される。しかし、こ
の場合には斜面の含水率の変化に伴う滑り易さ、同じく
筋子の含水率の変化に伴う変形しりさく軟らかさ)の差
が推定できないばかりではなく、地滑り危険範囲の平面
的な推定が困難である。
On the other hand, for reference, the equivalent *friction coefficient obtained from a past landslide of the same scale is 0.5, which shows the case where the conventional technology is applied to the same landslide i1 in Figure 3. ), then
It is estimated that the mass point of soil expansion moves from the initial center of gravity (po) in Figure 3 to point (P,). However, in this case, it is not only impossible to estimate the difference in the slipperiness caused by changes in the moisture content of the slope, and also the difference in the deformation and softness caused by changes in the moisture content of the bars, but also the two-dimensional estimation of the landslide risk range. is difficult.

次に本発明を過大の起きた地滑りに適用しt:例につい
て述べる。
Next, an example will be described in which the present invention is applied to a landslide caused by an excessive amount.

昭和59年の長野県西部地震の際に御W山の一部が大地
滑りを起こ17、その増土が伝上川、濁り川へ流入し、
更に下流の王滝川本川に流れ込み、王滝川を約40mの
厚さの堆積土砂で塞ぎ止めた。崩壊上量は3.500万
i、移動距離は約10kmにおよび、大災害を引き起こ
1.た。本発明を適用すればこの大地滑りの運動範囲が
、どの程度の精度で“を測可能であったか検討する。
During the Western Nagano Prefecture Earthquake of 1981, a large landslide occurred in a part of Mt. Owa17, and the increased soil flowed into the Denjo River and the Nuri River.
It then flowed further downstream into the Otaki River main river, blocking the Otaki River with sediment approximately 40 meters thick. The volume of the collapse was 35,000,000 i, and the distance traveled was approximately 10 km, causing a major disaster.1. Ta. We will examine how accurately the range of motion of this large landslide could be measured by applying the present invention.

第6図は、御誘大地滑り(B、)とその流動・堆積範囲
(B1)を地形図に書き込んだものである。
Figure 6 is a topographical map showing the Miyake landslide (B,) and its flow/sediment range (B1).

解析範囲は縮約10km(図の右側)、槙約3km(図
のF側)で、この範囲を200m毎のメツシュに切り、
縦50(図の左側)、横15(図の下側)のメツシュの
ナンバーを図に示L7ている。
The analysis range is approximately 10 km (right side of the figure) and approximately 3 km (F side of the figure), and this range is cut into meshes every 200 m.
The mesh number L7 is shown in the figure with length 50 (left side of the figure) and width 15 (bottom side of the figure).

崩壊ト砂は、一部が伝上川の対岸(Ll)い乗り上げた
が、大部分は伝北用を流下し、川が急カーブする地点で
一一部が尾根(■1.)を乗り越えて4濁り川へ流入し
た。そして伝上川、濁り川の合流点で合体し、更に王滝
川まで流下し、約40鵠のI¥さて堆積し2て川を塞ぎ
止めた。王滝川へ流入した土砂の大半は餓鬼の喉と呼ば
れる狭窄部(L、)で停止したので、ここまでを解析範
囲として本発明を適用した。その実施の手順は次の通り
である。
Some of the collapsed sand ran aground on the opposite bank of the Denjo River (Ll), but most of it flowed down the Denkami River, and some of it climbed over the ridge (■1.) at the point where the river made a sharp curve. 4. It flowed into the muddy river. It then merged at the confluence of the Denjo River and the Miguri River, and then flowed down to the Otaki River, where about 40 pieces of water were deposited and blocked the river. Since most of the sediment that flowed into the Otaki River stopped at the narrowed part (L) called the Gaki no throat, the present invention was applied to this area as the analysis range. The steps for its implementation are as follows.

まず、不安定土砂の深度分布はこの場合、崩壊発生前後
の空中写真から図化した地形図より読み取った。そして
各区分の深度については、小規模な斜面崩壊の場合は鉄
の棒を土中に打ち込み、不安定土砂の深度を調べる貫入
試験により求め、大規模なものではボーリング調査や弾
性波探査によって求め、これらが実施できない所では斜
面の両端の渓岸に見られる基岩の露頭の走行・傾斜より
斜面内部での基岩の深さを推定する0次に、土砂が流下
する斜面の形状は地形図から読み取った。
First, in this case, the depth distribution of unstable sediment was read from a topographic map drawn from aerial photographs before and after the collapse occurred. The depth of each category is determined in the case of small-scale slope failures by driving an iron rod into the soil and a penetration test to determine the depth of unstable soil, and in the case of large-scale failures, it is determined by boring surveys and elastic wave exploration. In places where these cannot be carried out, the depth of the bedrock inside the slope is estimated from the running and inclination of the outcrops of bedrock found on the banks at both ends of the slope.Secondly, the shape of the slope on which the earth and sand flows depends on the topography. I read it from the diagram.

運動土塊と不動土塊の間の見かけの摩擦係数を求める為
に、運動土塊が湿原堆積物をえぐりながら進んだことと
、地滑り斜面及び土塊が流下した理法ともほぼ同質の火
山性堆積物であったことから、それらの代表地点として
、第6図の地点くL4)よりサンプルを採取して試験を
行った。第7図はリングせん断試験機による運動時の摩
擦角であり、34.7度、摩擦係数(janφ−)にし
て0.69であった。
In order to find the apparent coefficient of friction between the moving soil mass and the immobile soil mass, we found that the movable mass of soil moved forward while gouging the marsh deposits, and that it was a volcanic deposit of almost the same quality as the landslide slope and the theory of the soil mass flowing down. Therefore, as a representative point, samples were taken from point L4) in Figure 6 and tested. FIG. 7 shows the friction angle during motion using a ring shear tester, which was 34.7 degrees, and the friction coefficient (janφ-) was 0.69.

また流下してきた運動土塊がこの湿原堆積物の上に乗っ
た時、理法堆積物的には間隙水圧が発生するが、発生す
る間隙水圧と運動土塊によって載荷される垂直応力の比
(間隙水圧係数Bd)を三軸試験により求めたものが第
8図である0図のごとく間隙水圧係数は飽和度によりO
〜1.0間で変化する。試験条件と試験の結果の比敦よ
り、サンプルが十分長時間湛水状態にあった時はBd値
が0.9、短時間湛水状態にあった時は0,6、十分湿
っているが湛水状態になかった時は0.2前後であるこ
とが分かった。このことから、斜面土層の含水状態は、
地滑り前にかなり雨が降ったことから、一般の斜面では
十分湿っているが湛水状態ではない時のBd[0,2、
また地滑り発生部分から伝上川の源頭部の地点(L、)
までの区間や表面水の溜り易い凹地点の斜面では豪雨の
間のみ表面水が現れるので、短時間湛水状態にある時の
間隙水圧係数0.6、また理法の中で伝上川と濁り川と
の合流点(L6)以下のところは常に十分な水量がある
ので、十分長時間湛水した時のBd値0.9、そして、
その中間の理法(地点し、〜Lm)はその中間のBd値
0.8と推定した。
In addition, when the moving soil mass that has flowed down rests on the wetland deposits, pore water pressure is generated in terms of physical deposits, but the ratio of the generated pore water pressure to the vertical stress loaded by the mobile soil mass (pore water pressure coefficient Figure 8 shows Bd) obtained by a triaxial test.As shown in Figure 0, the pore water pressure coefficient varies depending on the degree of saturation.
It varies between ~1.0. From the ratio of test conditions and test results, when the sample was submerged in water for a sufficiently long time, the Bd value was 0.9, and when it was submerged in water for a short time, it was 0.6, indicating that it was sufficiently wet. It was found that when there was no flooding, the value was around 0.2. From this, the water content state of the slope soil layer is
Since it had rained a lot before the landslide, Bd[0,2,
Also, from the landslide occurrence area to the source of the Denjo River (L,)
Since surface water appears only during heavy rains on the slopes at concave points where surface water tends to accumulate, the pore water pressure coefficient is 0.6 when the water is flooded for a short period of time. There is always a sufficient amount of water below the confluence point (L6), so the Bd value when flooded for a sufficiently long time is 0.9, and
The intermediate theory (point position, ~Lm) was estimated to have an intermediate Bd value of 0.8.

このサンプルから得られた運動時の摩擦係数(Lanφ
―)と間隙水圧係数(Bd)及び土がぜん断変形を受け
る時に生じる体積変化に関するもう1つの間隙水圧係数
Ad:(同じサンプルの定体積せん断試験により0.2
5が得られた)を用いて、移動土塊と不動地盤の間の見
かけの摩擦係数を式(2)の関係に基づいて算出して見
ると、一般斜面、地滑り発生部から理法内の地点くし、
)まで、理法内の地点(Ls〜L、)、及び地点くし、
)から下流の理法までの見かけの摩擦係数は、夫々0.
5.0.25.0,12.0.08になった。
The coefficient of friction during motion (Lanφ
-) and the pore water pressure coefficient (Bd) and another pore water pressure coefficient Ad related to the volume change that occurs when soil undergoes shear deformation: (0.2 by constant volume shear test of the same sample
5), the apparent coefficient of friction between the moving soil mass and the immovable ground is calculated based on the relationship in equation (2). ,
), points within the law (Ls to L,), and point combs,
) to the downstream logic are respectively 0.
It became 5.0.25.0, 12.0.08.

更に、運動土塊の変形特性を表す水平土圧係数は、この
サンプルに鉛直土圧を加えた時にどれくらいの水平土圧
が発生するかは変化の比で求められる。運動土塊の水分
量については、御岳の斜面が地滑りを起こす条件と渓流
の水が徐々に運動土塊内に入ることから、全体の平均と
してサンプルがほぼ半ばまで湛水した状態に相当すると
考え、その時の水平土圧係数0.6を用いた。
Furthermore, the horizontal earth pressure coefficient, which represents the deformation characteristics of a moving soil mass, is determined by the ratio of change in how much horizontal earth pressure is generated when vertical earth pressure is applied to this sample. Regarding the moisture content of the moving soil mass, we considered that the overall average corresponds to a state in which the sample was almost halfway filled with water, because the slope of Mt. Mitake is subject to landslides and water from the mountain stream gradually enters the soil mass. A horizontal earth pressure coefficient of 0.6 was used.

これらの現地より採取したサンプルの土質試験及び現地
観察に基づいて推定した土質定数を用いて数値解析をし
て得られた結果が第9図である。
Figure 9 shows the results obtained by numerical analysis using soil constants estimated based on soil tests of samples taken from these sites and field observations.

まず第9図(a)は地滑り運動開始前の不安定土砂の堆
積深度0〜1401を表Fに示すように1〜9の9段階
に分けて示したものである。第9図(b)は増土が運動
して、伝上川から濁り川の方へ尾根を乗り越え始めてい
るところである。第9図(c)は伝上川と濁り川の合流
点よりさらに下流に向けて土塊が進んでいるところであ
る。第9図(d)は増土の運動が停止したところであり
、王滝川を塞ぎ止め40簡を越える厚さで堆積している
ことが分かる。この地滑り土塊の運動範囲の予測結果は
第6図の(B、)に示した実際の運動範囲と一致し、ま
た王滝川での土砂の堆積深度40請も実際の現象と一致
している。
First, FIG. 9(a) shows the accumulation depth of unstable earth and sand before the start of the landslide movement, divided into nine levels 1 to 9 as shown in Table F, from 0 to 1401. Figure 9 (b) shows the soil being moved and starting to climb over the ridge from the Denjo River to the Muddy River. Figure 9(c) shows the area where the clod is progressing further downstream from the confluence of the Denjo River and the Muddy River. Figure 9(d) shows the area where the movement of soil expansion has stopped, and it can be seen that the soil has accumulated to a thickness of over 40 meters, blocking the Otaki River. The predicted range of motion of the landslide mass matches the actual range of motion shown in Figure 6 (B), and the sediment depth of 40 cm in the Otaki River also matches the actual phenomenon.

tJg岳の大地滑りの運動に関する本発明の実施例は、
斜面と谷が入り組んだ複雑な地形を流下する地滑り土塊
の運動を極めて的確に予測しており、本発明が信顆皮の
高い運動範囲の予測jE法を提供するものであることを
示j−ている。
An example of the present invention regarding the movement of a large landslide on Mt.tJg is as follows:
The movement of a landslide mass flowing down a complex topography with intricate slopes and valleys was predicted very accurately, demonstrating that the present invention provides a method for predicting a high range of movement of a landslide. ing.

都 車載での人家に隣接した急斜面での小規模な土塊の移動
を川筋れど叶A2でいるが2イカニズム的には同じで!
)る。土た、理法内を土塊が長距離高速τ゛移動る場合
土石流と叶ぶが、水を含んだ1砂が土      抵抗
   水圧 ら移動ずろ現象全体<6″一対j7て本発明は適用V+
Hm−cある。そし−C5定数の決定方法が異なると思
われるか、雪崩の運動予測C=も利用jjl能と思われ
る。
The movement of small-scale earth clods on steep slopes adjacent to human residences on Miyako's vehicles is carried out by Kawasujiredo Kano A2, but the two are essentially the same!
). If a clod of earth moves over a long distance and at high speed τ within the soil, it will result in a debris flow, but the present invention is applicable V +
There is Hm-c. It seems that the method for determining the C5 constant is different, or that the avalanche motion prediction C= can also be used.

〈発明の効果〉 地滑り 川筋れによる災7fが、地震や台風、梅雨、あ
るいは融雪時に発生し、多大の被害を及ぼし、ている。
<Effects of the Invention> Landslides 7F disasters caused by river lanes occur during earthquakes, typhoons, rainy seasons, or snow melting, causing great damage.

これらの斜面崩壊を防【l:するろに5、これまで崩壊
の発生を十木丁事により防止する努ツJがなされてきた
が、地滑り・川筋れ危険箇所は無数にあり、これらすべ
てに防止工事を行うことは経済的に不iJ能に近い。従
−)で、坤滑り・川筋れによる災害を防止・舒滅するに
は、このような直接的な防止]−事だけでなく、危険地
帯をf′−測1.5、危険地帯は居住用に使わないよう
に広報するか、又は行政的に1−地利用規制することが
必要て゛あり、ま/ご、1−て′に家屋、学校、病院な
と゛がlF)る場合には、降雨時の警戒・避難が・g−
要で、ちる。そ12.て、(−のバ、礎となるのはどグ
)範囲が危険なV)かを予め知ることである。
Efforts have been made to prevent these slope failures [l:Surouni 5]. Efforts have been made so far to prevent the occurrence of collapses, but there are countless areas at risk of landslides and river curvature, and all of these It is almost economically impossible to carry out preventive work. In order to prevent and eliminate disasters caused by slides and river channels, it is necessary to not only directly prevent such disasters, but also to measure the f'-measure of 1.5, and the danger zone is a residential area. It is necessary to publicize or administratively regulate land use so that buildings, schools, hospitals, etc. are not used during rainfall. Warning and evacuation of ・g-
Kaname de chiru. Part 12. Therefore, it is important to know in advance whether the (-) range is dangerous (V).

j、Y末技(なでは筋子の移動が点の移動で1.か推定
で    ・ 動 離  礎 な 摩擦係数が通人1.
::発生し5た同規模の地滑り・川筋れの運動からの逆
算によって得られる等価摩擦係数、l二j、てしか求め
られなかったので、その運動距術のイ、〜題性・精度に
も問題があ、)プ、・6 1、か1〜、本発明により、地滑り 1v崩ノ)、の運
動範囲を面的に知る。−とが可能となり、まf、:運動
距離の4人礎となる摩擦係数、及び−■塊の拡散度の基
礎となる水3171−圧係数を現地から採取1−1.た
上の土質試験より棺定する。二とがn1能となり、地滑
り、川筋れによる危険地帯の予測技術は飛躍的に改善さ
れることになるに れまで、危険地帯を地図の1.で線引きする4:とが困
難であり、主観的要素が多号にあったのに対17、本発
明により危険範囲が定量的かつ客間的に示ぜるため、危
険地帯に住む住民が自らの危険度を確認し、予め災゛占
へ備えることができるばかりでなく、災′8防11−の
/、:めの土地利用規制、警戒・避難など住民の同、依
を得られなければならない災害防止行政の人:めにも極
めて−h効な毛「)を捉fjtするものでりす895害
1+ji 、+t−・督減に太き・く寄与できるイ「効
な発明′ぐある。
j, Y end technique (it is estimated that the movement of the sujiko is 1. by the movement of the point.) The coefficient of friction is 1.
::Since the equivalent friction coefficient, l2j, obtained by back calculation from the movement of landslides and river stripes of the same scale that occurred, could only be determined, There is also a problem.) By the present invention, the range of motion of a landslide (1v collapse) can be known in terms of area. - It became possible to collect the friction coefficient, which is the basis of the distance of movement, and the water 3171 pressure coefficient, which is the basis of the degree of dispersion of lumps, from the field 1-1. The coffin is determined by the above soil test. Until 2 and 1 became n1 capabilities, and technology for predicting dangerous areas due to landslides and river lanes was dramatically improved, dangerous areas were defined as 1 on the map. 4: It was difficult to draw a line using Not only must it be possible to confirm the degree of risk and prepare for disasters in advance, but it must also be possible to gain the support of residents regarding land use regulations, warnings, and evacuations in order to prevent disasters. Person in charge of disaster prevention administration: There are some very effective inventions that can greatly contribute to the prevention of disasters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、移動−ト魂とその中の柱状要素の模式第2図
は、柱状委素にかかる力、 第3図は、本発明を実施する仮想斜面の断面IA、第4
図(a)は、水平土庄係数04、見かけの摩擦係数0.
7の場なの11を禎深度分布1・・4、第4図(b)は
、水y上圧係数0.4、見かけの摩擦係数0.5の場合
の堆積深度分布図、 第5図(a)は、水平上圧係数0.8、見かけの摩擦係
数0.f3の場合の堆積深度分布IM、第5図(1))
は、水平上圧係数0.8、見かi−tの摩擦係数が部分
的に異なる場合の堆積深度分布図、第6図は、御畠大地
滑りの地形図と運動範囲、第7図は、伝上用のン父床堆
積物から採取しj:サンプルのリングぜん断試験にJ、
る運動時の摩擦係数の測〉i!結υ、 第81Mは、同じサンプルについて三軸圧12+試験よ
り得られた飽和度と間隙水圧係数t3dの関係、第9図
(&)は、1fl畠大地滑りの運動前のt安定土砂のj
Q積深度分作、 第0図(b)は、fjl!、大地滑りに対l1.て本発
明を適用した結果〈運動開始初期の土砂の土砂分布)第
9図(c)は、1卸済人地滑りに対し、て本発明を適用
した結果(さらI”運動が進んだ時の土砂の深度分布) 第9図(d)は、tn畠大地滑りに対!−c本発明を適
用した結束(3’ぎ動停止後の土砂の堆積深度分布)で
ある。 】・・不動地盤   、 2・・移動l−塊3・・・柱
状要素   、 N・・・垂直反力Px、Py・・・水
平土圧、 R・・・R擦抵抗力W・・・自重
Fig. 1 shows a schematic diagram of the moving target and the columnar elements therein. Fig. 2 shows the force applied to the columnar elements.
Figure (a) shows a horizontal Tonosho coefficient of 04 and an apparent friction coefficient of 0.
Figure 4 (b) is the sedimentation depth distribution map when the upper pressure coefficient of water is 0.4 and the apparent friction coefficient is 0.5. Figure 5 ( a) has a horizontal upper pressure coefficient of 0.8 and an apparent friction coefficient of 0. Deposition depth distribution IM in case of f3, Fig. 5 (1))
Figure 6 is the topographic map and range of movement of the Great Mibata landslide. , taken from the sediments for transmission: Ring shear test of the sample J,
Measuring the coefficient of friction during motion〉i! Conclusion υ, 81M is the relationship between the degree of saturation and pore water pressure coefficient t3d obtained from the triaxial pressure 12+ test for the same sample, and Figure 9 (&) is the j of the t-stable sediment before the movement of the 1fl Hatake landslide.
Q product depth division, Figure 0 (b) is fjl! , against large landslides l1. Figure 9 (c) shows the result of applying the present invention to the 1-slide landslide (sediment distribution at the beginning of the movement). Depth distribution of sediment) Figure 9(d) shows the bundling to which the present invention is applied for the tn Hatake landslide (depth distribution of sediment after cessation of 3' girding). ]... Immobile ground , 2...Movement l-mass 3...Columnar element, N...Vertical reaction force Px, Py...Horizontal earth pressure, R...R friction resistance force W...Self weight

Claims (1)

【特許請求の範囲】[Claims] 1、斜面上の不安定土砂が滑り運動を起こすような恐れ
のある現場より予めサンプリングした土を土質試験して
運動土塊の変形特性を求めると共に、該運動土塊と不動
地盤の間の摩擦係数を求め、地形図または測量により土
砂の流下が予想される斜面の形状を求めると共にボーリ
ング、貫入試験、弾性波検査等により崩壊前の不安定土
砂の深度分布を求め、これら4つの要素を一定条件のも
とで数値解析することにより、発生した地滑り・崖崩れ
の土塊が何処まで流動し、どれだけ拡散するかを面的に
予測することを特徴とする地滑り・崖崩れの運動範囲の
予測方法。
1. Test the soil sampled in advance from a site where there is a risk of sliding movement of unstable soil on a slope to determine the deformation characteristics of the moving soil mass, and also calculate the coefficient of friction between the moving soil mass and the immovable ground. The shape of the slope where sediment is expected to flow down is determined using topographic maps or surveys, and the depth distribution of unstable sediment before collapse is determined by boring, penetration tests, elastic wave tests, etc., and these four elements are calculated under certain conditions. A method for predicting the range of motion of landslides and landslides, which is characterized by using numerical analysis to predict in terms of how far and how far the soil mass of a landslide or landslide will flow and how much it will spread.
JP31311088A 1988-12-12 1988-12-12 Estimating method of range of movement of landslide or landslip Granted JPH02159561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31311088A JPH02159561A (en) 1988-12-12 1988-12-12 Estimating method of range of movement of landslide or landslip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31311088A JPH02159561A (en) 1988-12-12 1988-12-12 Estimating method of range of movement of landslide or landslip

Publications (2)

Publication Number Publication Date
JPH02159561A true JPH02159561A (en) 1990-06-19
JPH0543970B2 JPH0543970B2 (en) 1993-07-05

Family

ID=18037265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31311088A Granted JPH02159561A (en) 1988-12-12 1988-12-12 Estimating method of range of movement of landslide or landslip

Country Status (1)

Country Link
JP (1) JPH02159561A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312362C (en) * 2004-05-28 2007-04-25 中国科学院力学研究所 Analogic testing device for water induced landslide and method for monitoring shift of land top surface
JP2008121185A (en) * 2006-11-08 2008-05-29 Railway Technical Res Inst Equipment and method for computing safety factor
CN102998029A (en) * 2012-11-07 2013-03-27 中国地质大学(武汉) Multi-field information monitoring method for physical model of landslide evolution process
CN103884555A (en) * 2014-03-19 2014-06-25 河海大学 Assembling reference testing device of landslide physical model
CN107687968A (en) * 2017-05-15 2018-02-13 长安大学 A kind of loess tableland side landslide physical
CN107807223A (en) * 2017-09-29 2018-03-16 中冶交通建设集团有限公司 One kind landslide experimental rig
CN110468887A (en) * 2019-07-31 2019-11-19 青岛理工大学 A kind of miniature steel pipe stake body soil pressure and displacement monitoring method
CN111005392A (en) * 2019-12-12 2020-04-14 武汉科技大学 Treatment method for high and steep landslide of mine with gentle-dip weak interlayer
CN111537698A (en) * 2020-05-18 2020-08-14 中国科学院、水利部成都山地灾害与环境研究所 Rock-soil mass slope surface water movement simulation device with root stone structure and experiment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308663B (en) * 2013-05-13 2016-02-24 西南交通大学 Geotechnical Engineering slope model test case

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312362C (en) * 2004-05-28 2007-04-25 中国科学院力学研究所 Analogic testing device for water induced landslide and method for monitoring shift of land top surface
JP2008121185A (en) * 2006-11-08 2008-05-29 Railway Technical Res Inst Equipment and method for computing safety factor
CN102998029A (en) * 2012-11-07 2013-03-27 中国地质大学(武汉) Multi-field information monitoring method for physical model of landslide evolution process
CN103884555A (en) * 2014-03-19 2014-06-25 河海大学 Assembling reference testing device of landslide physical model
CN103884555B (en) * 2014-03-19 2016-08-03 河海大学 A kind of landslide physical assembles with reference to assay device
CN107687968B (en) * 2017-05-15 2020-11-24 长安大学 Loess highland side landslide physical model
CN107687968A (en) * 2017-05-15 2018-02-13 长安大学 A kind of loess tableland side landslide physical
CN107807223A (en) * 2017-09-29 2018-03-16 中冶交通建设集团有限公司 One kind landslide experimental rig
CN110468887A (en) * 2019-07-31 2019-11-19 青岛理工大学 A kind of miniature steel pipe stake body soil pressure and displacement monitoring method
CN110468887B (en) * 2019-07-31 2021-05-04 青岛理工大学 Method for monitoring soil pressure and displacement of miniature steel pipe pile body
CN111005392A (en) * 2019-12-12 2020-04-14 武汉科技大学 Treatment method for high and steep landslide of mine with gentle-dip weak interlayer
CN111005392B (en) * 2019-12-12 2021-06-29 武汉科技大学 Treatment method for high and steep landslide of mine with gentle-dip weak interlayer
CN111537698A (en) * 2020-05-18 2020-08-14 中国科学院、水利部成都山地灾害与环境研究所 Rock-soil mass slope surface water movement simulation device with root stone structure and experiment method

Also Published As

Publication number Publication date
JPH0543970B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
Jakob et al. Runout prediction methods
Dietrich et al. Bed load transport in a river meander
Sophocleous Combining the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects
Bjerklie Estimating the bankfull velocity and discharge for rivers using remotely sensed river morphology information
Green et al. Relating stream‐bank erosion to in‐stream transport of suspended sediment
Fávero Neto et al. Simulation of debris flow on an instrumented test slope using an updated Lagrangian continuum particle method
Luna Dynamic numerical run-out modelling for quantitative landslide risk assessment
Stock et al. Controls on alluvial fan long-profiles
Yao et al. Critical conditions for rill initiation
Khazai et al. Assessment of seismic slope stability using GIS modeling
Simon et al. Measurement and analysis of alluvial channel form
JPH02159561A (en) Estimating method of range of movement of landslide or landslip
Benedict et al. Development and evaluation of clear-water pier and contraction scour envelope curves in the Coastal Plain and Piedmont provinces of South Carolina
Persi et al. Numerical modelling of uncongested wood transport in the Rienz river
Di Stefano et al. Rill flow velocity and resistance law: A review
CN113836630A (en) Method and system for rapidly predicting river bank collapse by considering vegetation root influence
Bulmer et al. An empirical approach to studying debris flows: Implications for planetary modeling studies
Barros et al. Surface roughness for shallow overland flow on crushed stone surfaces
Kailey Debris flows in New Zealand alpine catchments
Soong et al. Manning’s roughness coefficients for Illinois streams
Allen et al. ERODIBILITY OF URBAN BEDROCK AND ALLUVIAL CHANNELS, NORTH TEXAS 1
Fitzpatrick et al. Sedimentation Investigation of Lake Springfield, Springfield, Illinois
Saber et al. Reservoir sedimentation at Wadi System: Challenges and management strategies
Pereira et al. Entropy model to assess sediment resuspension probability and trap efficiency of small dams
JP2007051987A (en) Evaluation method by energy of slope collapse, and structural damage and energy measuring system