JPH02159399A - Method and device for electrolytic treatment - Google Patents

Method and device for electrolytic treatment

Info

Publication number
JPH02159399A
JPH02159399A JP31572188A JP31572188A JPH02159399A JP H02159399 A JPH02159399 A JP H02159399A JP 31572188 A JP31572188 A JP 31572188A JP 31572188 A JP31572188 A JP 31572188A JP H02159399 A JPH02159399 A JP H02159399A
Authority
JP
Japan
Prior art keywords
electrode
counter electrode
electrodes
target component
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31572188A
Other languages
Japanese (ja)
Inventor
Kishio Miwa
輝之男 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31572188A priority Critical patent/JPH02159399A/en
Publication of JPH02159399A publication Critical patent/JPH02159399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To deposit and elute a desired component with excellent electric power efficiency by incorporating a specific mediator into a counter electrode liquid at the time of electrolytically depositing or eluting the desired component in an electrolyte on working electrodes and recovering or thickening the same in a diaphragm type electrolytic cell. CONSTITUTION:The soln. contg. the desired component is passed to the working electrodes 2a, 2b and while the counter electrode liquid is passed to the counter electrodes 3a, 3b, both the electrodes are energized to deposit and recover the desired component on the working electrodes 2a, 2b or the elute is passed to the working electrodes deposited with the desired component to elute and thicken the desired component in the diaphragm type electrolytic cell 1 constituted by repeatedly laminating electron conductive partition plates 5, the working electrodes 2a, 2b, diaphragms 4, the counter electrodes 3a, 3b, and the electron conductive partition plates 5. The carbon electrodes which contain 1 to 30%C of carbon atoms C of at least one kind of O, N and halogen and are deposited with 1 to 1000mg/cm<2> Ag are used as the working electrodes of this case. The mediator having the oxidation reduction potential of <=1V difference from the oxidation reduction potential of the desired component is incorporated into the counter electrode liquid. The deposition and recovery of the desired component and the thickening by the elution thereof are executed with the excellent voltage efficiency and current efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶液中に含まれている有用な成分の回収、濃
縮または不純成分の除去を電気化学的に行う方法および
その装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for electrochemically recovering and concentrating useful components contained in a solution or removing impure components. be.

(従来の技術) 溶液中の目的とする成分をカソーデイックな電着によっ
て不溶化し、析出したのち、再度溶出することによって
、目的成分を回収、濃縮または除去する方法、すなわち
、電解処理方法は、酸化還元電位が比較的貴なる成分、
特に責なる金属に対しては、効率よく行われている。
(Prior art) A method of recovering, concentrating, or removing a target component in a solution by making it insolubilized by cathodic electrodeposition, precipitating it, and eluting it again, that is, an electrolytic treatment method A component with a relatively noble reduction potential,
This is particularly effective for metals that are responsible.

しかし、目的とする成分の酸化還元電位が卑なる場合は
、責なる成分を電解する場合とは異なり、たとえば水素
発生反応のような副反応が起こりやすいために効率よく
電着することが難しい。酸化還元電位の卑なる成分に対
してカソーデイックな電着が成功した例としては、水素
過電圧が高いために水素の発生を低く抑えられる水銀電
極を用いたアマルガム法があげられる。この方法は、水
酸化ナトリウムの濃縮および精製に利用されているが、
水銀が使用されるので、環境衛生上好ましい方法ではな
い。そこで、卑なる成分についても、環境衛生上の問題
がなく、責なる成分に対するのと同様にコストが安く、
効率的な電解処理方法および電解処理装置の実現が待た
れている。
However, when the oxidation-reduction potential of the target component is base, it is difficult to electrodeposit it efficiently because side reactions such as hydrogen generation reactions are likely to occur, unlike when the responsible component is electrolyzed. An example of successful cathodic electrodeposition for components with a base redox potential is the amalgam method using a mercury electrode, which can suppress hydrogen generation due to its high hydrogen overvoltage. This method is used to concentrate and purify sodium hydroxide, but
Since mercury is used, it is not a desirable method from an environmental hygiene perspective. Therefore, the base ingredients have no environmental health problems, and the cost is low, just like the culprit ingredients.
The realization of efficient electrolytic treatment methods and electrolytic treatment equipment is awaited.

(発明が解決しようとする課題) 本発明の目的は、電極表面での目的成分の反応性を向上
し、水素過電圧を高くして水素の発生を抑え、特にハロ
ゲンを含む卑なる成分に対しても電圧効率および電流効
率の高い電解処理方法と、その方法の実施に適合し、し
かも、安全衛生上の問題の少ない電解処理装置とを提供
することにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to improve the reactivity of target components on the electrode surface, increase the hydrogen overvoltage, and suppress hydrogen generation, especially against base components including halogens. Another object of the present invention is to provide an electrolytic treatment method with high voltage efficiency and high current efficiency, and an electrolytic treatment apparatus that is suitable for implementing the method and that causes fewer health and safety problems.

(課題を解決するための手段) 本発明は、上述した課題を解決するために、(1) 作
用極と対極との間に隔膜が配置されて両極間が仕切られ
ている隔膜式電解槽を用い、作用極には目的成分を含む
溶液を、対極には対極液をそれぞれ流通させながら、溶
液中に含まれている目的成分を作用極に電着した後、作
用極には溶出液を流通させてその作用極に電着されてい
る目的成分を溶出する電解処理方法において、電着およ
び溶出時に、目的成分の酸化還元電位との差が1V以下
の酸化還元電位を有するメディエータを含む対極液を用
いることを特徴とする電解処理方法、(2) 電着し、
溶出しようとする目的成分を含む溶液が流される作用極
と、電着し、溶出しようとする目的成分の酸化還元電位
との差が1V以下の酸化還元電位を有するメディエータ
を含む対極液が流される対極との間に隔膜が配置されて
両極間が仕切られている隔膜式電解槽を有し、かつ、作
用極が、X線光電子分光分析法(ESCA)によって分
析したとき、酸素、窒素またはハロゲンの少なくとも一
つの原子数が炭素の原子数の1〜30%の範囲内にある
炭素材で構成されていることを特徴とする電解処理装置
、および、(3) 電着し、溶出しようとする目的成分
を含む溶液が流される作用極と、電着し、溶出しようと
する目的成分の酸化還元電位との差が1V以下の酸化還
元電位を有するメディエータを含む対極液が流される対
極との間に隔膜が配置されて両極間が仕切られている隔
膜式電解槽を有し、かつ、作用極が、1〜1000 m
g/ cm2の銀を担持してなる炭素材で構成されてい
ることを特徴とする電解処理装置、 を提供する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides (1) a diaphragm-type electrolytic cell in which a diaphragm is arranged between a working electrode and a counter electrode to partition the two electrodes. The target component contained in the solution is electrodeposited on the working electrode while flowing a solution containing the target component to the working electrode and a counter electrode solution to the counter electrode, and then the eluate is passed to the working electrode. In an electrolytic treatment method in which a target component electrodeposited on the working electrode is eluted, a counter electrode solution containing a mediator having an oxidation-reduction potential with a difference of 1 V or less from the oxidation-reduction potential of the target component during electrodeposition and elution. An electrolytic treatment method characterized by using (2) electrodeposition;
A working electrode is flowed with a solution containing the target component to be eluted, and a counter electrode containing a mediator having a redox potential with a difference of 1 V or less between the redox potential of the target component to be electrodeposited and eluted is flowed. It has a diaphragm type electrolytic cell in which a diaphragm is placed between the two electrodes and a diaphragm is placed between them, and when the working electrode is analyzed by X-ray photoelectron spectroscopy (ESCA), oxygen, nitrogen or halogen (3) an electrolytic treatment device comprising a carbon material in which the number of at least one of the atoms is within the range of 1 to 30% of the number of carbon atoms; Between the working electrode through which a solution containing the target component is flowed and the counter electrode through which a counter electrode containing a mediator having a redox potential difference of 1 V or less from the redox potential of the target component to be electrodeposited and eluted is flown. It has a diaphragm type electrolytic cell in which a diaphragm is arranged to partition the two electrodes, and the working electrode is 1 to 1000 m
An electrolytic treatment apparatus is provided, characterized in that it is made of a carbon material supporting silver in an amount of g/cm2.

以下に、本発明1.2および3の詳細を、図面に示した
実施例のフローシートを参照しつつ説明する。
The details of the present inventions 1.2 and 3 will be explained below with reference to the flow sheets of the embodiments shown in the drawings.

図中、隔膜式電解槽1は、電子導電性仕切板5、流通型
電極(作用極)2aおよび2b、隔膜4、流通型電極(
対極)3aおよび3b、電子導電性仕切板5を繰り返し
積層することによって構成されている。流通型電極は、
たとえば電着および溶出用としての作用極2aおよび2
bと、対極用の電極3aおよび3bとからなる。カソー
デイックな電着を目的とする場合、作用極は、電着時に
はカソード、溶出時にはアノードとされる。対極は、作
用極の逆にされる。また、アノ−デイックな電着を目的
とする場合は、電極は、カソーデイックな電着の場合と
は逆にされる。
In the figure, a diaphragm electrolytic cell 1 includes an electronically conductive partition plate 5, flow-through electrodes (working electrodes) 2a and 2b, a diaphragm 4, and a flow-through electrode (
It is constructed by repeatedly laminating counter electrodes 3a and 3b and an electronically conductive partition plate 5. The flow-through electrode is
For example, working electrodes 2a and 2 for electrodeposition and elution
b, and counter electrodes 3a and 3b. When the purpose is cathodic electrodeposition, the working electrode is used as a cathode during electrodeposition and as an anode during elution. The counter electrode is the opposite of the working electrode. Also, when anodic electrodeposition is intended, the electrodes are reversed from those for cathodic electrodeposition.

隔膜4には、イオン交換膜または微多孔膜が用いられる
。イオン交換膜は、電解における電流効率を向上させる
点で効果的である。たとえば、酸性溶液で陽イオン交換
膜を用いた場合、隔膜を透過する物質は、主にプロトン
(ヒドロニウムイオン)であって、透過抵抗が小さく、
電圧効率、電流効率がともに優れた電解が可能となる。
As the diaphragm 4, an ion exchange membrane or a microporous membrane is used. Ion exchange membranes are effective in improving current efficiency in electrolysis. For example, when using a cation exchange membrane in an acidic solution, the substances that permeate through the membrane are mainly protons (hydronium ions), which have low permeation resistance;
Electrolysis with excellent voltage efficiency and current efficiency becomes possible.

微多孔膜は、イオンの選択透過性の点ではイオン交換膜
に劣るために、電流効率はイオン交換膜より高くならな
いが、透過抵抗が十分に小さいので、総合的には、本発
明にかかる電解処理装置の隔膜式電解槽の隔膜として好
ましく用いられる。
Microporous membranes are inferior to ion exchange membranes in terms of ion permselectivity, so the current efficiency is not higher than that of ion exchange membranes, but their permeation resistance is sufficiently low, so overall, they are It is preferably used as a diaphragm in a diaphragm-type electrolytic cell of a processing device.

電子導電性仕切板5には、金属板やカーボンプレートな
どが用いられる。
For the electronically conductive partition plate 5, a metal plate, a carbon plate, or the like is used.

本発明1では、目的とする成分の電着および溶出反応電
位に近い、すなわち上記電位との電位差が1V以下の酸
化還元電位をもつメディエータが対極反応に利用される
。そのようなメディエータを、卑なものから順にあげる
と、 Zn0/Zn’ 、Fe’ /Fe” 、Cr” /C
r”、Ti” /Ti’、Pb0/Pb”N i’ /
N i” 、  F e’ edta/F e” ed
ta。
In the first invention, a mediator having an oxidation-reduction potential close to the electrodeposition and elution reaction potential of the target component, that is, a potential difference from the above potential of 1 V or less, is used for the counter electrode reaction. Listing such mediators in descending order of magnitude, they are: Zn0/Zn', Fe'/Fe", Cr"/C
r", Ti"/Ti', Pb0/Pb"N i'/
N i", F e' edta/F e" ed
ta.

Fe”nta/Fe″nta 、Cu’ /Cu”フェ
ロシアンイオン/フェリシアンイオン。
Fe"nta/Fe"nta, Cu'/Cu" ferrocyan ion/ferricyan ion.

ナフトキノンスルホン酸還元態/酸化態、ハイドロキノ
ン/キノン、I−/I’−、Br/Br3 (ただし、
F66d11:!チレンヂアミンテトラカルボラート鉄
。Fenta:ニトリロトリ酢酸鉄錯体。) 等がある。
Naphthoquinone sulfonic acid reduced/oxidized state, hydroquinone/quinone, I-/I'-, Br/Br3 (however,
F66d11:! Iron tylenediaminetetracarborate. Fenta: iron nitrilotriacetic acid complex. ) etc.

隔膜式電解槽1において、処理液は、処理液配管6から
作用極2aに送られる。一方、メディエータを含む対極
液は、ポンプ12によって対極液槽8から対極3aに送
られ、さらに、対極液循環配管10によって対極3bに
導かれ、対極液槽8へと循環される。作用極2aでは、
処理液中の目的とする成分が還元され、析出されて電極
に電着される。処理を終わった処理液は、処理液排出管
11を通って、処理液中に残存する目的成分の電着を進
めるためにさらに作用極2aに循環されるか、あるいは
所望の電着が終了したときに系外に排出される。この間
、作用極2bでは後述の溶出が行われる。
In the diaphragm electrolytic cell 1, the processing liquid is sent from the processing liquid piping 6 to the working electrode 2a. On the other hand, the counter electrode containing the mediator is sent from the counter electrode tank 8 to the counter electrode 3a by the pump 12, further led to the counter electrode 3b by the counter electrode circulation pipe 10, and circulated to the counter electrode tank 8. At the working electrode 2a,
The target component in the treatment solution is reduced, precipitated, and electrodeposited on the electrode. After the treatment, the treatment liquid passes through the treatment liquid discharge pipe 11 and is further circulated to the working electrode 2a in order to proceed with electrodeposition of the target components remaining in the treatment liquid, or after the desired electrodeposition is completed. Sometimes it is discharged outside the system. During this time, elution, which will be described later, is performed at the working electrode 2b.

作用極2aで所定の電着が終了すると、処理液の送液は
溶出液槽7aからの溶出液の送液に切り替えられ、電着
した成分の溶出が開始される。溶出液は、作用極2aか
ら目的成分を溶出して回収または濃縮液となり、回収・
濃縮液配管9を通って、溶出を進めるために作用極2a
にさらに循環されるか、あるいは系外に導かれる。この
とき作用極2bには、処理液が送液され、目的成分の電
着に切り替えられている。上記の操作を繰り返すことに
よって、作用極2aと同2bとの間で交互に電着と溶出
が行われる。
When a predetermined electrodeposition is completed on the working electrode 2a, the feeding of the processing liquid is switched to feeding the eluate from the eluate tank 7a, and elution of the electrodeposited components is started. The eluate elutes the target component from the working electrode 2a and becomes a recovered or concentrated liquid.
The working electrode 2a passes through the concentrate pipe 9 and advances the elution.
further circulated or led out of the system. At this time, a treatment liquid is fed to the working electrode 2b, and the electrodeposition of the target component is switched to. By repeating the above operations, electrodeposition and elution are performed alternately between the working electrodes 2a and 2b.

処理液および対極液は、水溶液に限られない。The treatment liquid and the counter electrode are not limited to aqueous solutions.

たとえば、アルカリ金属やアルカリ土類金属の電着、溶
出を目的として、電解を有機溶媒中で行う場合では、対
極液にも当然、非水溶液系が用いられる。
For example, when electrolysis is performed in an organic solvent for the purpose of electrodeposition or elution of alkali metals or alkaline earth metals, a non-aqueous solution type is naturally used as the counter electrode.

上記の操作は、酸化還元電位の卑なる成分が処理の目的
とされている場合であっても、対極にその成分の酸化還
元電位との差の小さい酸化還元電位をもつメディエータ
を用いることによって、電圧効率は著しく改善され、目
的とする成分の円滑な電着と溶出とを行うことができる
。特に、上記の両者の電位の差が1V以内の領域では、
水素の発生が抑えられ、安定した電解が行われるのであ
る。たとえば、酸性溶液中でニッケルの回収を行うとき
、メディエータにCr’/Cr”イオン系を用いると、
ニッケルを非常に効率よく回収できるようになる。
The above operation can be carried out by using a mediator with a redox potential that is small in difference from the redox potential of the component as a counter electrode, even if the target is a component with a base redox potential. Voltage efficiency is significantly improved, and target components can be smoothly electrodeposited and eluted. In particular, in the region where the difference between the two potentials is within 1V,
Hydrogen generation is suppressed and stable electrolysis takes place. For example, when recovering nickel in an acidic solution, if a Cr'/Cr'' ion system is used as a mediator,
This makes it possible to recover nickel very efficiently.

本発明2について説明する。図において、隔膜式電解槽
1の作用極(流通型電極)2a 、2bは、炭素材から
なる織物、不織布、編物、多孔質成型体などが用いられ
る。これらの炭素材は、表面に酸素、ハロゲン、窒素の
少なくとも一つの原子数の割合が、炭素の原子数の1%
ないし30%存在するように処理されている。このよう
な作用極に電着、溶出しようとする目的成分を含む溶液
が流される。この作用極の表面に導入される上記の原子
数が、炭素の原子数の1%以下になると、作用極におけ
る反応性が大きく低下して過電圧が上昇するとともに、
水素過電圧が低下し、カソードから水素が発生するよう
になる。たとえば、酸素原子数の割合が炭素原子数の1
%未満の電極は、それが1.5〜2.5%の電極に較べ
ると、4N−HCl中、−0,5V(飽和甘木電極基準
)で数倍の水素を発生し、本発明が目的としている電解
を遂行することができない。
Present invention 2 will be explained. In the figure, working electrodes (flow-through type electrodes) 2a and 2b of a diaphragm type electrolytic cell 1 are made of a woven fabric, a nonwoven fabric, a knitted fabric, a porous molded body, or the like made of a carbon material. These carbon materials have a ratio of at least one of oxygen, halogen, and nitrogen atoms on the surface to 1% of the number of carbon atoms.
It is processed so that it exists in the amount of 30% to 30%. A solution containing a target component to be electrodeposited and eluted is flowed onto such a working electrode. When the number of the above-mentioned atoms introduced onto the surface of the working electrode is less than 1% of the number of carbon atoms, the reactivity at the working electrode decreases significantly and the overvoltage increases.
The hydrogen overvoltage decreases and hydrogen begins to be generated from the cathode. For example, the ratio of the number of oxygen atoms to the number of carbon atoms is 1
% generates several times more hydrogen at -0.5 V (based on saturated Amagi electrode) in 4N-HCl than an electrode with 1.5-2.5%, which is the object of the present invention. Unable to carry out electrolysis.

一方、上記元素の原子数の割合が、30%を超えると、
電極表面の電気抵抗が飛躍的に増大する。
On the other hand, if the ratio of the number of atoms of the above elements exceeds 30%,
The electrical resistance of the electrode surface increases dramatically.

この割合が37〜38%の場合には25〜27%の場合
の約2倍の電気抵抗があり、効率のよい電解ができなく
なり、本発明の目的を達することができない。
When this ratio is 37 to 38%, the electrical resistance is about twice as high as when it is 25 to 27%, making it impossible to carry out efficient electrolysis and thus failing to achieve the object of the present invention.

上記の表面の原子数の定量には、ESCAによる測定値
が用いられる。これは、AIK、またはMgK、X線源
を用い、サンプルを板状に束ねて、検出器に対して直角
において測定する。カーボンの原子数に対して、O,、
、Nまたはハロゲンの原子数は百分率として検出される
Measured values by ESCA are used to quantify the number of atoms on the surface. This uses an AIK, or MgK, X-ray source, and the sample is bundled into a plate and measured at right angles to the detector. O, for the number of carbon atoms,
, N or halogen atoms are detected as a percentage.

また、これらの元素を電極となる炭素材の表面に存在さ
せる方法は、 (イ)酸素、窒素、窒素化合物、ハロゲン等を含む雰囲
気ガス中での熱処理 (ロ)上記雰囲気中でのプラズマ処理 (ハ)酸性水溶液中での熱処理 (ニ)電解処理 等を用いることができる。
In addition, methods for making these elements exist on the surface of the carbon material serving as the electrode include (a) heat treatment in an atmospheric gas containing oxygen, nitrogen, nitrogen compounds, halogens, etc. (b) plasma treatment in the above atmosphere ( c) Heat treatment in an acidic aqueous solution (d) Electrolytic treatment, etc. can be used.

これらの元素が、炭素の表面に存在することによって、
金属イオンとの電子交換反応などが速やかに行われ、水
素過電圧が大きくなって電極の抵抗が下がり、その結果
、電圧効率、電流効率がともに向上し、たとえば、Fe
−Cr系のレドックスフロー型電池の、窒素導入炭素電
極、ハロゲン導入炭素電極、酸素導入炭素電極および無
処理の炭素電極のセル抵抗を比較すると、無処理の炭素
電極に対し、酸素導入電極を使用すると約70%、窒素
導入電極およびハロゲン導入電極を使用すると約50%
に低下する。これに伴い、電極の寿命が大きく延長され
る。
Due to the presence of these elements on the surface of carbon,
Electron exchange reactions with metal ions occur quickly, increasing the hydrogen overvoltage and lowering the electrode resistance. As a result, both voltage efficiency and current efficiency improve.
- Comparing the cell resistances of a nitrogen-introduced carbon electrode, a halogen-introduced carbon electrode, an oxygen-introduced carbon electrode, and an untreated carbon electrode in a Cr-based redox flow battery, it is found that the oxygen-introduced electrode is compared to the untreated carbon electrode. Approximately 70% when using a nitrogen introduction electrode and a halogen introduction electrode, and approximately 50% when using a nitrogen introduction electrode and a halogen introduction electrode.
decreases to Accordingly, the life of the electrode is greatly extended.

上記の電極を作用極とする本発明2にかかる電解処理装
置は、カソーデイックな電着を実施する場合に好適であ
る。
The electrolytic treatment apparatus according to the second aspect of the present invention using the above electrode as a working electrode is suitable for carrying out cathodic electrodeposition.

対極(流通型電極)3aおよび3bは、必ずしも作用極
と同じ処理を施す必要はないが、同様の表面処理を施し
たほうが、電圧および電流効率が向上する傾向にある。
Although the counter electrodes (flow-through type electrodes) 3a and 3b do not necessarily need to be subjected to the same treatment as the working electrode, voltage and current efficiency tend to improve when the same surface treatment is applied.

作用極において目的成分を電着または溶出するとき、対
極には、作用極において電着し、溶出しようとする目的
成分の酸化還元電位との差が1V以下の酸化還元電位を
有するメディエータを含む対極液を流す。
When the target component is electrodeposited or eluted at the working electrode, the counter electrode contains a mediator that is electrodeposited at the working electrode and has a redox potential that is 1 V or less different from the redox potential of the target component to be eluted. Drain the liquid.

本発明3にかかる電解処理装置において、隔膜式電解槽
の対極には、本発明2と同様に作用極において電着し、
溶出しようとする目的成分の酸化還元電位との差が1V
以下の酸化還元電位を有するメディエータを含む対極液
が流される。作用極の電極には、1〜1000mg/c
m2の銀が担持されていて、目的成分を含む溶液が流さ
れる。銀の担持量が1mg/cm2未満になると、銀電
極とじての機能を失い、1000 mg/ cm”を超
えると、析出された銀のために電解液の浸透が妨げられ
、ついには流通型電極の機能を喪失するようになる。
In the electrolytic treatment apparatus according to the third invention, the counter electrode of the diaphragm electrolytic cell is electrodeposited at the working electrode as in the second invention,
The difference between the redox potential of the target component to be eluted is 1V.
A counter-electrolyte containing a mediator having a redox potential of: For the working electrode, 1 to 1000 mg/c
m2 of silver is supported and a solution containing the target component is flowed. When the supported amount of silver is less than 1 mg/cm2, it loses its function as a silver electrode, and when it exceeds 1000 mg/cm, the permeation of the electrolyte is hindered by the deposited silver, and eventually the electrode becomes a flow-through type electrode. begins to lose its function.

銀を担持する方法には、電着や無電解メツキなどがある
Methods for supporting silver include electrodeposition and electroless plating.

この電極を有する隔膜式電解槽は、、アノ−デイックな
電着に適し、ハロゲンや硫黄を含むイオンの分離が可能
である。
A diaphragm electrolytic cell having this electrode is suitable for anodic electrodeposition and is capable of separating ions containing halogens and sulfur.

本発明の実施態様は、図面に示されるような一体化され
た隔膜式電解槽を使用するものに限らない。独立した2
個の隔膜式電解槽を用い、一方の電解槽において電着操
作中、他方の電解槽で溶出操作を行い、この操作を交互
に繰返すこともできる。この場合、双方の電解槽の対極
には、ともに目的とする成分の酸化還元電位との差が1
V以下の酸化還元電位をもつメディエータを含む対極液
が流される。双方の電解槽の電極のうち、少なくとも作
用極には、処理する目的成分に応じて、上記の表面処理
された炭素材からなる電極を使用することが好ましい。
Embodiments of the present invention are not limited to those using an integrated diaphragm cell as shown in the drawings. independent 2
It is also possible to use two diaphragm-type electrolytic cells, perform the electrodeposition operation in one electrolytic cell, and perform the elution operation in the other electrolytic cell, and repeat this operation alternately. In this case, the opposite electrodes of both electrolytic cells have a difference of 1 from the redox potential of the target component.
A counter-electrolyte containing a mediator with a redox potential of V or less is flowed. Among the electrodes of both electrolytic cells, it is preferable to use an electrode made of the above-mentioned surface-treated carbon material as at least the working electrode, depending on the target component to be treated.

1個の隔膜式電解槽を使用する場合であっても、対極液
に同じメディエータを使用し、経時的に電着と溶出とを
交互に繰り返すことができる。
Even when one diaphragm type electrolytic cell is used, electrodeposition and elution can be alternately repeated over time by using the same mediator as the counter electrode.

(作 用) 本発明において、対極液に用いるメディエータは、被電
解物質を良好に電極反応させる触媒的作用を有する物質
である。すなわち、被電解物質および電極の双方と反応
して触媒的に被電解物質の電極反応を助ける。
(Function) In the present invention, the mediator used in the counter electrode is a substance that has a catalytic action to cause a good electrode reaction of the substance to be electrolyzed. That is, it reacts with both the electrolyte and the electrode to catalytically assist the electrode reaction of the electrolyte.

本発明1の方法では、電着操作時、溶出操作時を問わず
、対極に対象とする成分の酸化還元電位に近い酸化還元
電位のメディエータ、すなわち、目的とする成分の酸化
還元電位との差が1V以下の酸化還元電位をもつメディ
エータを対極での反応に利用することによって、電圧効
率が著しく向上し、電解を安定して行うことができるよ
うになる。
In the method of the present invention 1, irrespective of the electrodeposition operation or the elution operation, the counter electrode is a mediator with a redox potential close to that of the target component, that is, a mediator with a redox potential close to the redox potential of the target component. By using a mediator having an oxidation-reduction potential of 1 V or less for the reaction at the counter electrode, voltage efficiency is significantly improved and electrolysis can be performed stably.

本発明2にかかる電解処理装置は、上記メディエータを
含む対極液が流される対極と、表面処理された炭素材よ
りなる作用極、すなわち、炭素電極の表面が化学処理さ
れ、1%ないし30%の酸素、窒素またはハロゲンが電
極の表面に存在する電極を用いてなる隔膜式電解槽を有
する。このような隔膜式電解槽を用いることによって、
その電極と対象とされている物質のイオン、特に金属イ
オンとの反応性が向上し、水素過電圧が大きくなり、水
銀を用いないにもかかわらず電圧効率と電流効率の高い
電解処理装置を構成できるようになる。
The electrolytic treatment apparatus according to the second aspect of the present invention includes a counter electrode through which a counter electrode containing the above-mentioned mediator is flowed, and a working electrode made of a surface-treated carbon material, that is, the surface of the carbon electrode is chemically treated, and the surface of the carbon electrode is chemically treated. It has a diaphragm type electrolytic cell using an electrode in which oxygen, nitrogen or halogen is present on the surface of the electrode. By using such a diaphragm electrolytic cell,
The reactivity between the electrode and the ions of the target substance, especially metal ions, is improved, the hydrogen overvoltage is increased, and an electrolytic treatment device with high voltage efficiency and current efficiency can be constructed despite not using mercury. It becomes like this.

本発明3にかかる電解処理装置は、上記メディエータを
含む溶液が流される対極と、ハロゲンなどと安定な塩を
形成する銀電極を使用してなる作用極をもつ隔膜式電解
槽を有するので、ハロゲンや硫黄化合物などのアノ−デ
イックな電着が可能となる。
The electrolytic treatment apparatus according to the third aspect of the present invention has a diaphragm electrolytic cell having a counter electrode through which a solution containing the above-mentioned mediator is flowed, and a working electrode made of a silver electrode that forms a stable salt with halogen etc. Anodic electrodeposition of sulfur compounds, etc. is possible.

(実 施 例) 実施例1 隔膜式電解槽の電極にするために、縦10cm。(Example) Example 1 10cm long to use as an electrode for a diaphragm electrolytic cell.

幅1 cm、厚さ0. 3cm、目付量的400 g/
m’のカーボンフェルトを硝酸に浸漬し、約15分間煮
沸して酸化処理した。これをよく水洗し、風乾したもの
を電極に使用した。
Width 1 cm, thickness 0. 3cm, basis weight 400g/
m' carbon felt was immersed in nitric acid and boiled for about 15 minutes to undergo oxidation treatment. This was thoroughly washed with water, air-dried, and used as an electrode.

このカーボンフェルトの表面および切断面をESCA(
株式会社島津製作所製ESCA750)で分析した。こ
のとき、励起X線にはMgK、を用いた。炭素の定量は
C□、ピ°−り(結合エネルギー値286.6eV)を
用い、ステップ幅0.1el/。
The surface and cut surfaces of this carbon felt were examined using ESCA (
The analysis was performed using ESCA750 (manufactured by Shimadzu Corporation). At this time, MgK was used as the excitation X-ray. Carbon was quantified using C□ and peak (bond energy value 286.6 eV) with a step width of 0.1 el/.

スキャニング幅20eV、サンプリング時間100Q 
m5ec/チヤンネル、繰返し数8、測定温度20℃で
行った。酸素の定量には01.ピーク(結合エネルギー
値533.1eV)を用い、ステップ幅0゜l eV、
スキャニング幅20e■、サンプリング時間1000m
5ec/チヤンネル、繰返し数8、測定温度20℃で行
った。なお、各ピークの感度係数として、C1sは1.
00を、08.は2.85を用いた。炭素と酸素の原子
数の比は、測定された各ピーク面積を感度係数で割った
値の比として求めた。
Scanning width 20eV, sampling time 100Q
The measurement was performed at m5ec/channel, 8 repetitions, and a measurement temperature of 20°C. 01 for oxygen determination. Using the peak (binding energy value 533.1 eV), step width 0°l eV,
Scanning width 20e■, sampling time 1000m
The measurement was carried out at 5 ec/channel, 8 repetitions, and a measurement temperature of 20°C. In addition, as a sensitivity coefficient of each peak, C1s is 1.
00, 08. 2.85 was used. The ratio of the number of carbon and oxygen atoms was determined as the ratio of each measured peak area divided by the sensitivity coefficient.

測定結果は、フェルトの表面、切断面ともに、酸素の原
子数が炭素の原子数の3%であった。
The measurement results showed that the number of oxygen atoms was 3% of the number of carbon atoms on both the felt surface and the cut surface.

このカーボンフェルトを作用極と対極に、陽イオン交換
膜を隔膜に、カーボンプレートを電子導電性仕切板とし
て小型単電解槽を製作した。電解槽の構成は、電子導電
性仕切板/作用極/ネット/隔膜/対極/電子導電性仕
切板とし、弱酸性水溶液中の亜鉛の回収を試みた。ネッ
トは、亜鉛の電着に伴って生成するデンドライトが隔膜
を破るのを防ぐためのものである。
A small single electrolytic cell was fabricated using this carbon felt as a working electrode and a counter electrode, a cation exchange membrane as a diaphragm, and a carbon plate as an electronically conductive partition plate. The structure of the electrolytic cell was an electronic conductive partition plate/working electrode/net/diaphragm/counter electrode/electron conductive partition plate, and an attempt was made to recover zinc from a weakly acidic aqueous solution. The purpose of the net is to prevent dendrites generated as a result of zinc electrodeposition from breaking the diaphragm.

処理液中の亜鉛の濃度は、約6501+I1mであった
。対極には、メディエータに塩化クロムを用いた塩酸酸
性水溶液を対極液として循環使用した。
The concentration of zinc in the treatment solution was approximately 6501+I1m. For the counter electrode, an acidic aqueous solution of hydrochloric acid using chromium chloride as a mediator was used in circulation as a counter electrode.

一方、処理液中の亜鉛は、電解槽を1回通過させると約
5Qppmが、カソードである作用極に電着された。そ
こで、処理液にも循環方式を採用し、亜鉛を作用極に完
全に電着させた。亜鉛は、ポーラログラフイーで定量し
た。
On the other hand, about 5 Qppm of zinc in the treatment solution was electrodeposited on the working electrode, which is the cathode, when it passed through the electrolytic cell once. Therefore, we adopted a circulation method for the treatment solution to completely electrodeposit zinc on the working electrode. Zinc was determined by polarography.

電着が終わったところで上記の作用極をアノードとして
、亜鉛を溶出し、回収を行った。3mlの2N−HCI
を回収液として電解槽を循環させ、亜鉛を溶出させた。
After the electrodeposition was completed, zinc was eluted and recovered using the above working electrode as an anode. 3ml of 2N-HCI
was used as a recovery liquid and circulated through the electrolytic cell to elute zinc.

その結果、回収液中の亜鉛の濃度は、約2%になった。As a result, the concentration of zinc in the recovered liquid was approximately 2%.

第1表に、このほかの条件と結果を以下の比較例ととも
に示した。
Table 1 shows other conditions and results along with the following comparative examples.

比較例1 実施例1と同じ処理液に対し、対極液にメディエータを
使用せずに、単なる2N−HCIを用いて亜鉛の回収を
試みた場合の電着電圧等を、第1表に示した。
Comparative Example 1 Table 1 shows the electrodeposition voltage, etc. when attempting to recover zinc using the same treatment solution as in Example 1 but using simple 2N-HCI without using a mediator as the counter electrode. .

比較例2 実施例1と同じ処理液に対し、対極液に亜鉛との酸化還
元電位との電位差が1.1Vであるフェロシアン/フェ
リシアン系のメディエータを使用して、亜鉛の回収を試
みた場合の電着電圧等を第1表に示した。
Comparative Example 2 An attempt was made to recover zinc using the same treatment solution as in Example 1, using a ferrocyan/ferricyan mediator with a potential difference of 1.1 V between the redox potential and zinc as the counter electrode solution. Table 1 shows the electrodeposition voltage, etc. in each case.

電着における所要電力は、電着電圧にほぼ比例するので
、第1表に示した実施例1と、これに対応する比較例1
および比較例2の結果とをくらべると、実施例1は、比
較例1の約25%、比較例2の約40%の所要電力であ
ったことがわかる。
Since the power required for electrodeposition is approximately proportional to the electrodeposition voltage, Example 1 shown in Table 1 and Comparative Example 1 corresponding thereto
When compared with the results of Comparative Example 2, it can be seen that Example 1 required about 25% of the power of Comparative Example 1 and about 40% of Comparative Example 2.

しかも、実施例では、溶出時に外部電力を必要としてい
ない。
Moreover, in the example, no external power is required during elution.

実施例2 レドックスフロー型二次電池に使用する電解液の精製を
連続的に行った。すなわち、低品位フェロクロムの溶解
液にHCIを加えて3N−HCIとし、そのまま上記の
電解液として使用した。しかし、この電解液には、数十
ppmのニッケルが含まれていて、充放電に際し、レド
ックスフロー型二次電池のカソードであるCr極に多量
の水素を発生する。
Example 2 An electrolytic solution used in a redox flow type secondary battery was continuously purified. That is, HCI was added to a solution of low-grade ferrochrome to obtain 3N-HCI, which was used as it was as the above electrolyte. However, this electrolytic solution contains several tens of ppm of nickel, and during charging and discharging, a large amount of hydrogen is generated at the Cr electrode, which is the cathode of the redox flow type secondary battery.

そこで、実施例1で用いた小型車電解槽を2個用いて、
上記の電解液を処理液として、一方の電解槽に処理液を
流通し、一定時間電着処理を行ってニッケルを除去した
のち流路を切り替え、他の電解槽で同様に一定時間の電
着処理を行った。−方の電解槽で電着処理されている間
に、他の電解槽では、3N−HCI水溶液で溶出処理が
行われ、電極が洗浄された。対極液のメディエータには
、Cr”7Cr”を用いた。
Therefore, using the two small car electrolyzers used in Example 1,
Using the above electrolyte as a treatment solution, the treatment solution is passed through one electrolytic cell, and after electrodeposition is performed for a certain period of time to remove nickel, the flow path is switched, and the other electrolytic cell is subjected to electrodeposition for a certain period of time. processed. While electrodeposition was being performed in one electrolytic cell, elution treatment was performed in the other electrolytic cell with a 3N-HCI aqueous solution to clean the electrodes. Cr"7Cr" was used as the mediator of the counter electrode.

このようにして精製された電解液を使用したレドックス
フロー型二次電池の充放電実験の結果を第2表に示す。
Table 2 shows the results of a charge/discharge experiment of a redox flow type secondary battery using the electrolyte purified in this manner.

比較例3 実施例2の精製をしなかった電解液を使用したレドック
スフロー型二次電池の充放電実験の結果を、第2表に示
す。
Comparative Example 3 Table 2 shows the results of a charge/discharge experiment of a redox flow type secondary battery using the unpurified electrolyte of Example 2.

実施例3 無電解法によって銀が担持されているカーボンフェルト
電極を用い、水溶液中のハロゲンイオンの除去と回収を
行った。作用極は、実施例1で用′いたものと同じであ
るが、酸化処理されていないカーボンフェルトに、無電
解メツキ法で銀を担持させた。まず、0.3Nの硝酸銀
水溶液をピペットを用いて少量づつカーボンフェルトに
含浸せしめ、次いでヒータ上でホルムアルデヒドをふり
かけて銀を還元、析出させた。最終的に銀を200〜3
00 mg/ cm2を担持させ、作用極とした。
Example 3 Halogen ions in an aqueous solution were removed and recovered using a carbon felt electrode on which silver was supported by an electroless method. The working electrode was the same as that used in Example 1, but silver was supported on non-oxidized carbon felt by electroless plating. First, carbon felt was impregnated little by little with a 0.3N silver nitrate aqueous solution using a pipette, and formaldehyde was then sprinkled on a heater to reduce and precipitate silver. Finally silver 200-3
00 mg/cm2 was loaded and used as a working electrode.

この作用極と、対極に無処理のカーボンフェルトを用い
て実施例1と同じ構成の小形単電池を2個製作し、電解
槽とした。メディエータには、0゜2MのF e ””
 edta水溶液を用いた。
Using this working electrode and untreated carbon felt as the counter electrode, two small cell cells having the same configuration as in Example 1 were manufactured and used as an electrolytic cell. For the mediator, 0゜2M F e ""
An aqueous edta solution was used.

0、OOIMのヨウ素を含有する水溶液を、小型単電池
の対極に対して+〇、05Vの電圧を印加し、アノード
とした銅担持のカーボン電極中に流し、ヨウ素イオンを
99%以上、ヨウ化銀として捕捉した。ヨウ素イオン濃
縮液の回収は、銅担持電極側を対極に対して−0,3v
とし、0.INのH,SO2を流して濃縮した。回収率
は、90%であった。
A voltage of +0.05 V was applied to the counter electrode of a small cell, and an aqueous solution containing iodine of 0.OOIM was poured into a copper-supported carbon electrode serving as an anode, so that more than 99% of the iodine ions were iodized. It was captured as silver. To recover the iodine ion concentrate, set the copper-supported electrode side to the opposite electrode at -0.3V.
and 0. It was concentrated by flowing IN H and SO2. The recovery rate was 90%.

なお、理論電解電圧は電着時、溶出時ともに0゜27V
である。
The theoretical electrolytic voltage is 0°27V for both electrodeposition and elution.
It is.

上記のメディエータを用いないでヨウ素の回収を試みた
が、対極をガス発生反応とすると、単電池への印加電圧
は、上記の場合の約5倍を必要とするばかりでなく、電
極電位の制御が精度よく行えず、銀の溶出というトラブ
ルが発生した。
An attempt was made to recover iodine without using the above mediator, but if the counter electrode was used for a gas generation reaction, the voltage applied to the single cell would not only require about five times the voltage applied in the above case, but also require control of the electrode potential. However, this could not be carried out with high accuracy, and a problem occurred in which silver was eluted.

(発明の効果) 本発明1によれば、作用極側において電着、溶出しよう
とする目的成分の酸化還元電位と、対極側のメディエー
タの酸化還元電位との差が1V以下であるので、電解槽
には、大きな印加電圧を必要とせず、所要電力の節減を
図れるとともに、電極全面にわたって、電解電圧の制御
が容易になるという効果を奏する。
(Effects of the Invention) According to the present invention, since the difference between the redox potential of the target component to be electrodeposited and eluted on the working electrode side and the redox potential of the mediator on the counter electrode side is 1 V or less, electrolytic It does not require a large voltage to be applied to the tank, which reduces the amount of power required, and has the effect of making it easier to control the electrolytic voltage over the entire surface of the electrode.

本発明2は、本発明1の効果を高める電解処理装置とし
てカソーデイックな電解処理に適合し、該装置の隔膜式
電解槽の電極表面では、目的とする成分の反応性が大い
に高められる。すなわち、本発明1を本発明2にかかる
電解処理装置で実施することによって、所要電力が節減
され、電解電圧が安定して制御が容易になるという効果
がある。
The present invention 2 is suitable for cathodic electrolytic treatment as an electrolytic treatment apparatus that enhances the effect of the present invention 1, and the reactivity of the target component is greatly enhanced on the electrode surface of the diaphragm electrolytic cell of the apparatus. That is, by implementing the present invention 1 with the electrolytic treatment apparatus according to the present invention 2, it is possible to reduce the required power, stabilize the electrolytic voltage, and facilitate control.

しかも、水銀などの有害物質を使用しないので、安全、
衛生上の点からも問題のない電解処理装置である。
Moreover, it is safe and does not use harmful substances such as mercury.
This is an electrolytic treatment device that poses no problems from a sanitary standpoint.

本発明3は、本発明2とは逆に、アノーディクな電着を
利用し、ハロゲンや硫黄化合物の回収、または除去を効
率よ〈実施できる電解処理装置である。
The third aspect of the present invention, contrary to the second aspect of the present invention, is an electrolytic treatment apparatus that utilizes anodic electrodeposition to efficiently recover or remove halogens and sulfur compounds.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施態様を示すフローシートである
。 1:電解槽 2a、2b:作用極 3a、3b:対極 4:隔膜 5:電子導電性仕切板 6:処理液配管 7a、7b:溶出液槽 8:対極液槽 9:回収・濃縮液配管 10:対極液循環配管 11:処理液排出管
The drawing is a flow sheet illustrating one embodiment of the invention. 1: Electrolytic cells 2a, 2b: Working electrodes 3a, 3b: Counter electrode 4: Diaphragm 5: Electronically conductive partition plate 6: Processing liquid piping 7a, 7b: Eluate liquid tank 8: Counter electrode liquid tank 9: Recovery/concentrate liquid piping 10 : Counter-electrode circulation pipe 11: Processing liquid discharge pipe

Claims (3)

【特許請求の範囲】[Claims] (1)作用極と対極との間に隔膜が配置されて両極間が
仕切られている隔膜式電解槽を用い、作用極には目的成
分を含む溶液を、対極には対極液をそれぞれ流通させな
がら、溶液中に含まれている目的成分を作用極に電着し
た後、作用極には溶出液を流通させてその作用極に電着
されている目的成分を溶出する電解処理方法において、
電着および溶出時に、目的成分の酸化還元電位との差が
1V以下の酸化還元電位を有するメディエータを含む対
極液を用いることを特徴とする電解処理方法。
(1) Using a diaphragm electrolytic cell in which a diaphragm is placed between the working electrode and the counter electrode to partition the two electrodes, a solution containing the target component is passed through the working electrode, and a counter electrode solution is passed through the counter electrode. However, in an electrolytic treatment method in which a target component contained in a solution is electrodeposited on a working electrode, an eluent is passed through the working electrode to elute the target component electrodeposited on the working electrode.
An electrolytic treatment method characterized in that during electrodeposition and elution, a counter electrode solution containing a mediator having an oxidation-reduction potential that differs from the oxidation-reduction potential of a target component by 1 V or less is used.
(2)電着し、溶出しようとする目的成分を含む溶液が
流される作用極と、電着し、溶出しようとする目的成分
の酸化還元電位との差が1V以下の酸化還元電位を有す
るメディエータを含む対極液が流される対極との間に隔
膜が配置されて両極間が仕切られている隔膜式電解槽を
有し、かつ、作用極が、X線光電子分光分析法(ESC
A)によって分析したとき、酸素、窒素またはハロゲン
の少なくとも一つの原子数が炭素の原子数の1〜30%
の範囲内にある炭素材で構成されていることを特徴とす
る電解処理装置。
(2) A mediator having a redox potential where the difference between the working electrode, through which a solution containing the target component to be electrodeposited and eluted is flowed, and the redox potential of the target component to be electrodeposited and eluted is 1V or less. The cell has a diaphragm type electrolytic cell in which a diaphragm is placed between the two electrodes and a counter electrode through which a counter electrode containing .
When analyzed by A), the number of atoms of at least one of oxygen, nitrogen, or halogen is 1 to 30% of the number of carbon atoms.
An electrolytic treatment device characterized in that it is made of a carbon material within the range of .
(3)電着し、溶出しようとする目的成分を含む溶液が
流される作用極と、電着し、溶出しようとする目的成分
の酸化還元電位との差が1V以下の酸化還元電位を有す
るメディエータを含む対極液が流される対極との間に隔
膜が配置されて両極間が仕切られている隔膜式電解槽を
有し、かつ、作用極が、1〜1000mg/cm^2の
銀を担持してなる炭素材で構成されていることを特徴と
する電解処理装置。
(3) A mediator having a redox potential in which the difference between the working electrode through which a solution containing the target component to be electrodeposited and eluted is flowed and the redox potential of the target component to be electrodeposited and eluted is 1V or less. It has a diaphragm type electrolytic cell in which a diaphragm is placed between the two electrodes and a counter electrode through which a counter electrode solution containing is flowed, and the working electrode supports 1 to 1000 mg/cm^2 of silver. An electrolytic treatment device characterized in that it is made of carbon material.
JP31572188A 1988-12-14 1988-12-14 Method and device for electrolytic treatment Pending JPH02159399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31572188A JPH02159399A (en) 1988-12-14 1988-12-14 Method and device for electrolytic treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31572188A JPH02159399A (en) 1988-12-14 1988-12-14 Method and device for electrolytic treatment

Publications (1)

Publication Number Publication Date
JPH02159399A true JPH02159399A (en) 1990-06-19

Family

ID=18068739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31572188A Pending JPH02159399A (en) 1988-12-14 1988-12-14 Method and device for electrolytic treatment

Country Status (1)

Country Link
JP (1) JPH02159399A (en)

Similar Documents

Publication Publication Date Title
US9199867B2 (en) Removal of metals from water
EP0071443B1 (en) Device for waste water treatment
JP4473456B2 (en) Water purification process
US4834850A (en) Efficient electrolytic precious metal recovery system
EP0074167A1 (en) Metal contaminant removal
US5894077A (en) Radioactive effluent treatment
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
CN113772787B (en) Electrochemical filter for removing total nitrogen in water
Kishimoto et al. Rapid removal of bromate ion from water streams with an electrolytic flow cell
RU2181150C2 (en) Method of pickling steel
EP2877613B1 (en) Selective reductive electrowinning method
US5411645A (en) Hydrogen assisted reduced oxide soldering system
KR101214824B1 (en) Improved COD abatement process for electrochemical oxidation
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
CN106673285B (en) A kind of recycling recoverying and utilizing method containing golden electroplating wastewater
US4564432A (en) Apparatus for recovering metals dissolved in a solution
JPH11226576A (en) Method and apparatus for treating wastewater
JP2002219464A (en) Electrolytic treatment method and system
RU2404927C2 (en) Method of extracting noble metals from aqueous solutions and device for realising said method
JP2520674B2 (en) Method and device for recovering metal supported on carrier
US5225054A (en) Method for the recovery of cyanide from solutions
JPH02159399A (en) Method and device for electrolytic treatment
CN114249399A (en) Photoelectrocatalysis system for efficiently removing nitrate nitrogen in high-salt system and application
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
JP2004073926A (en) Treatment method of nitrate nitrogen-containing wastewater