JPH02159356A - Production of laminated material - Google Patents
Production of laminated materialInfo
- Publication number
- JPH02159356A JPH02159356A JP31467488A JP31467488A JPH02159356A JP H02159356 A JPH02159356 A JP H02159356A JP 31467488 A JP31467488 A JP 31467488A JP 31467488 A JP31467488 A JP 31467488A JP H02159356 A JPH02159356 A JP H02159356A
- Authority
- JP
- Japan
- Prior art keywords
- layers
- base material
- mold
- sprayed layer
- sprayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000002648 laminated material Substances 0.000 title abstract 3
- 239000000463 material Substances 0.000 claims abstract description 54
- 238000001513 hot isostatic pressing Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 27
- 239000002131 composite material Substances 0.000 claims description 23
- 238000005507 spraying Methods 0.000 claims description 7
- 238000007751 thermal spraying Methods 0.000 abstract description 14
- 239000007921 spray Substances 0.000 abstract description 9
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 abstract 4
- 239000000843 powder Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000005422 blasting Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010290 vacuum plasma spraying Methods 0.000 description 1
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
この発明は、複合材の製造方法に係わり、特に異種材料
を順次溶射して複数の層を形成した後、熱間静水圧成形
プレス処理を行うことにより、複雑な形状の19合材を
ら製造し得ろようにした方法に関4゛る。Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for manufacturing a composite material, and in particular, a method for manufacturing a composite material, in which a plurality of layers are formed by sequentially thermally spraying different materials, and then a hot isostatic pressing process is performed. The present invention relates to a method that makes it possible to manufacture 19 compound materials with complex shapes by performing the following steps.
f−従来の技術」
一般に1(合材としては、21類以上の異種材料を接合
してなるクラツド材などが知られている。f-Prior Art" Generally, 1 (as a composite material, a clad material made by joining 21 or more types of different materials is known.
ところで、従来このようなりラッド材を製造ずろには、
鋳込、溶接、プラズマガンによる溶射、ろう付け、拡散
接合、圧接、押出し、場打などの手段により異種材料を
互いに接合していた。By the way, in the past, when manufacturing rad materials like this,
Different materials were joined together by means such as casting, welding, thermal spraying with a plasma gun, brazing, diffusion bonding, pressure welding, extrusion, and spot casting.
[発明が解決しようとする課題」
しかしながら上記の方法にあっては、多層化が可能であ
り、層間の十分な接合強度が得られ、コストが安価であ
り、さらに複雑形状のものにら対応し得るといった要求
の全てを満たずにはいずれの方法でら不十分であり、し
たがってこのような要求を満たすことのできる方法の提
供が望まれていた。[Problem to be solved by the invention] However, the above method allows multi-layering, provides sufficient bonding strength between layers, is inexpensive, and can be applied to complex-shaped objects. Any method is insufficient unless it satisfies all of the requirements for obtaining the desired results, and therefore, it has been desired to provide a method that can satisfy these requirements.
「課題を解決するための手段」
本発明におけろ請求項1の発明では、母材上に2種以上
の異なった材料を順次溶射して複数の層を形成し、次い
で上記複数の層を形成した母材に熱間静水圧成形プレス
処理を行って複合材とすることを上記課題の解決手段と
した。"Means for Solving the Problem" In the invention of claim 1, two or more different materials are sequentially sprayed onto a base material to form a plurality of layers, and then the plurality of layers are The above-mentioned problem was solved by subjecting the formed base material to hot isostatic pressing to obtain a composite material.
また、請求項2の発明では、型上に2種以上の異なった
材料を順次溶射して11j、敢の層を形成し、次いで上
記複数の層を形成した型に熱間静水圧成形プレス処理を
行い、その後上記型を剥離して複合材を得ること−F記
課題の肝決手段とした。In addition, in the invention of claim 2, two or more different materials are successively sprayed onto the mold to form layers 11j and 11j, and then the mold on which the plurality of layers have been formed is subjected to hot isostatic pressing. and then peeling off the mold to obtain a composite material - the decisive means for the problem described in F.
以下、この発明の複合材の製造方法を図面を利用して詳
しく説明する。Hereinafter, the method for manufacturing a composite material of the present invention will be explained in detail with reference to the drawings.
請求項1に記載した方法に基づいて説明すると、まず第
1図に示すように所望する形状の母材!を用αし、これ
に溶射+iif処理としてブラスト処理を施す。ここで
、母材lとしては、角柱状、円柱状、さらには表面に凹
凸をHする板状など種々の複雑な形状のものが用いられ
る。また、母材1の材料としては、後にこれの上に形成
する層の材種と熱膨張率の差が少ないものが好ましい。To explain based on the method described in claim 1, first, as shown in FIG. 1, a base material of a desired shape is prepared! is used, and then subjected to blasting treatment as thermal spraying + IIF treatment. Here, as the base material 1, materials of various complicated shapes are used, such as a prismatic shape, a cylindrical shape, and a plate shape having an uneven surface. Furthermore, the material for the base material 1 is preferably one that has a small difference in coefficient of thermal expansion from the material of the layer to be formed later on.
また、ブラスト処理としては、圧縮空気を用いて砂粒を
吹き付けるサンドブラスト法や、砂の代わりに金属の細
粒を吹き付【するグリッドブラスト法などが採用される
。このようなブラスト処理により、mlと後述する溶射
によって形成される層との密着性が向上する。Blasting methods include sand blasting, which uses compressed air to spray sand particles, and grid blasting, which sprays fine metal particles instead of sand. Such blasting improves the adhesion between ml and a layer formed by thermal spraying, which will be described later.
次に、第2図に示すように母材1上に金属粉末またはセ
ラミックス粉末などを溶射して第1の溶47層2を形成
する。ここで、溶射法としてはプラズマ溶射法が好適に
採用される。プラズマ溶射法とは、例えばプラズマ溶射
ガン3を用い、これから形成する溶射層の材料粉末の溶
融物を吐出して吹き付ける方法であり、直流アークとプ
ラズマガスとの熱交換によって生ずる直流プラズマ中、
あるいは高ム1波誘導によって生成した高周波プラズマ
ガス中に搬送ガスにより上記材料粉末を導入し、該粉末
を溶融せしめて母材1上に吹き付ける方法である。なお
、搬送ガスとしては酸素が好適に用いられるが、他にア
ルゴン、窒素等の不活性ガス等を用いることらできる。Next, as shown in FIG. 2, metal powder or ceramic powder is thermally sprayed onto the base material 1 to form a first melt layer 2. Here, a plasma spraying method is suitably employed as the thermal spraying method. The plasma spraying method is a method in which, for example, a plasma spray gun 3 is used to discharge and spray a molten material powder for the sprayed layer to be formed.
Alternatively, there is a method in which the material powder is introduced by a carrier gas into a high-frequency plasma gas generated by high-frequency single-wave induction, and the powder is melted and sprayed onto the base material 1. Note that oxygen is preferably used as the carrier gas, but other inert gases such as argon and nitrogen can also be used.
また、この場合に形成した溶射層2の酸化を防止するた
め、アルゴン、N素等の不活性雰囲気下あるいは減圧下
の水素等の還元雰囲気中にて溶射を行うのが好ましい。Further, in order to prevent oxidation of the sprayed layer 2 formed in this case, it is preferable to carry out the spraying in an inert atmosphere such as argon or nitrogen, or in a reducing atmosphere such as hydrogen under reduced pressure.
次いで、第3図に示すように上記第1の溶射層2上に該
溶射層2の異種材料“からなる粉末を溶射して第2の溶
射層4を形成し、さらにこの上に第2の溶射ff4の異
種材料からなる粉末を溶射して第3の溶射層5を形成す
る。Next, as shown in FIG. 3, a powder made of a different material of the sprayed layer 2 is thermally sprayed onto the first thermally sprayed layer 2 to form a second thermally sprayed layer 4, and a second thermally sprayed layer 4 is formed on the first thermally sprayed layer 2. The third thermal spray layer 5 is formed by thermal spraying powder made of different materials of thermal spray ff4.
このような溶射法によれば、複雑形状のけ材!上にも、
少なくとも2以上の異種材料によって溶射層2.4.5
を容易に形成し積層することができる。According to this thermal spraying method, complex-shaped sills can be produced! Above too,
Sprayed layer 2.4.5 by at least two or more dissimilar materials
can be easily formed and laminated.
その後、第4図に示4−ように上記溶射層2.4.5を
形成してなるL1材1に熱間静水圧成形プレスを行い、
複合材6を得る。ここで、態量静水圧成形プレス処理を
行うには、上記の溶射層を形成してなる母材1を高圧高
温炉(図示略)に入れ、アルゴン、ヘリウムなどの不活
性ガスを圧力媒体として上記高圧高温炉に充填して高圧
を確保し、さらに加熱して母材lを加圧加熱処理するな
どの方法が採用される。そして、この場合の処理条件と
しては、圧力50 ml 80 M P a程度、温度
0.5X lap〜0 、7 X mp[’c ]程度
(ただし、mpは上記母材1および溶射層2.4.5の
材料のうち融点が最乙低い材料の融点[’C]を示す。Thereafter, as shown in FIG. 4, the L1 material 1 on which the sprayed layer 2.4.5 is formed is subjected to hot isostatic pressing,
A composite material 6 is obtained. To perform the isostatic press treatment, the base material 1 on which the above thermal sprayed layer has been formed is placed in a high-pressure, high-temperature furnace (not shown), and an inert gas such as argon or helium is used as a pressure medium. A method is employed in which the material is filled into the high-pressure, high-temperature furnace to ensure high pressure, and further heated to subject the base material 1 to pressure and heat treatment. The processing conditions in this case are a pressure of about 50 ml 80 MPa, a temperature of 0.5X lap to 0, and a temperature of about 7 .5 indicates the melting point ['C] of the material with the lowest melting point.
)、処理時間30分〜4時間程度とするのが好ましい。), and the treatment time is preferably about 30 minutes to 4 hours.
このような熱間静水圧成形プレス処理によれば、1;1
材1および第1、第2、第3の各溶射層2.4.5間の
接合が拡散接合となり、従来の機械的接合に比較して極
めて高い接合強度が得られる。According to such hot isostatic pressing process, 1;1
The bonding between the material 1 and each of the first, second, and third sprayed layers 2.4.5 is diffusion bonding, and extremely high bonding strength is obtained compared to conventional mechanical bonding.
したがって、上記複合材の製造方法にあっては、l5I
Sli形状の母材1上にら溶射によって8易に所望4゛
る材料の溶射層2.4.5を形成することができ、かつ
これら母材1および溶射!!J2.4.5 II]の接
合強度を強固なものにすることができる。Therefore, in the method for manufacturing the composite material, l5I
A sprayed layer 2.4.5 of a desired material can be easily formed on the Sli-shaped base material 1 by thermal spraying. ! J2.4.5 II] can be strengthened.
次に、本発明の請求項2に記載した方法を説明4−る。Next, the method according to claim 2 of the present invention will be explained.
この方法が先に示した請求項1に記載した方法と異なる
ところは、第2図に示すように母材!に代わって型7を
用い、これに順次溶射層2.4.5を形成した後、型7
を形成した溶射層2.4、5から剥離する点である。This method is different from the method described in claim 1 mentioned above, as shown in FIG. 2, in terms of the base material! After forming the sprayed layers 2.4.5 in sequence on the mold 7, the mold 7 is used instead of the mold 7.
This is the point at which the sprayed layers 2.4 and 5 are peeled off.
すなわち、第2図ないし第4図に示すように型7上に溶
射法によって溶射層2.4.5を形成し、さらにこれに
熱間静水圧成形プレス処理を行った後、第5図に示すよ
うに型7を剥離して溶射層2.4.5からなる複合材8
を得る。ここで、型7としては、第1の溶射層2を構成
する材料と熱膨張率の差が大きいのが好ましく、例えば
アルミナ等のセラミック材などが好適に用いられる。す
ると型7は、溶射層2.4.5からの剥離に際し、急冷
することに上り熱膨張率の差によって容易に剥離し、よ
って予め型7上に離型剤を塗布する必要がなくなる。ま
た、型7をセラミックス材料で形成した場合には、上記
急冷の他にアルカリ溶液で溶出するなどの方法によって
型7を剥離してもよい。なおこの場合、型7を溶射層2
.4.5から剥離するので、型7上ブラスト処理する必
要はない。That is, as shown in FIGS. 2 to 4, a sprayed layer 2.4.5 is formed on the mold 7 by a thermal spraying method, and then a hot isostatic press treatment is applied to the layer 2.4.5, as shown in FIG. As shown, the mold 7 is peeled off and a composite material 8 consisting of the thermally sprayed layer 2.4.5 is obtained.
get. Here, it is preferable that the mold 7 has a large difference in coefficient of thermal expansion from the material constituting the first sprayed layer 2, and for example, a ceramic material such as alumina is preferably used. Then, when the mold 7 is peeled off from the thermal sprayed layer 2.4.5, it is rapidly cooled and is easily peeled off due to the difference in the coefficient of thermal expansion, thus eliminating the need to apply a mold release agent on the mold 7 in advance. Further, when the mold 7 is formed of a ceramic material, the mold 7 may be peeled off by a method such as elution with an alkaline solution in addition to the above-mentioned rapid cooling. In this case, the mold 7 is attached to the sprayed layer 2.
.. Since it peels off from 4.5, there is no need to perform blasting on the mold 7.
このような製造方法にあっては、複雑形状の型7上にら
溶射によって容易に所望する材料の溶射層2.4.5を
形成゛4゛ることかでき、かつ熱間静水圧成形プレス処
理を行うことにより溶射層2.4.5間の接合強度を強
固なものにすることができる。In such a manufacturing method, the sprayed layer 2.4.5 of the desired material can be easily formed by thermal spraying on the complex-shaped mold 7, and the hot isostatic pressing press is used. By performing the treatment, the bonding strength between the sprayed layers 2, 4, and 5 can be strengthened.
なお、」二足例においては、いずれも溶射層を3層とじ
てか、2層以上であれば何層としてもよい。In addition, in the case of two pairs, three thermal sprayed layers may be used, or any number of layers may be used as long as there are two or more layers.
「実施例」
以下、この発明を実施例によりさらに具体的に説明する
。"Examples" The present invention will now be described in more detail with reference to Examples.
(実施例1 )
請求項1に記載した製造方法に基づいて複合材を作製し
た。(Example 1) A composite material was produced based on the manufacturing method described in claim 1.
まず、第6図に示すように外径50zm、長さ500s
xのチタン棒9を用意してこれを母材とし、これの外周
囲にサンドブラスト処理を施した。First, as shown in Figure 6, the outer diameter is 50 zm and the length is 500 s.
A titanium rod 9 of size x was prepared and used as a base material, and the outer periphery of this was subjected to sandblasting.
次に、°上記チタン棒9の処理部に粉径30〜75μl
のモリブデン粉末を減圧プラズマ溶射して0.5zi+
の厚さの第1の溶射層10を形成した。Next, add powder diameter 30 to 75 μl to the processing part of the titanium rod 9.
0.5zi+ by vacuum plasma spraying of molybdenum powder
The first sprayed layer 10 was formed to have a thickness of .
この場合の溶射条件としては、真空度20〜60’I’
orr、溶射距離100−150ziとした。In this case, the thermal spraying conditions are as follows: degree of vacuum: 20 to 60'I'
orr, and the spraying distance was 100-150zi.
次いで、第1の溶射層10上に同様の溶射条件により粉
径45〜90μlの銅粉末を真空プラズマ溶射して厚さ
0.5 xxの第2の溶射層IIを形成し、さらにこの
上に粉径【O〜45μlのニッケル粉末を同様に溶射し
て厚さ1.5J11の第3の溶射層12を形成した。Next, a copper powder having a powder diameter of 45 to 90 μl is vacuum plasma sprayed on the first sprayed layer 10 under the same spraying conditions to form a second sprayed layer II with a thickness of 0.5xx, and further on this. A third thermal sprayed layer 12 having a thickness of 1.5J11 was formed by thermally spraying nickel powder having a powder diameter of 0 to 45 μl in the same manner.
その後、各溶射層l0111.12を形成したチタン棒
9に、アルゴン雰囲気にて温度約1000℃、圧力的1
80MPaの条件で2時間熱間静水圧成形プレス処理を
行い、母材および各溶射層間を接合して円柱状の複合材
!3を得た。After that, the titanium rod 9 on which each thermal spray layer 10111.12 was formed was coated at a temperature of about 1000°C and a pressure of 100°C in an argon atmosphere.
Hot isostatic pressing was performed for 2 hours at 80 MPa to bond the base material and each sprayed layer to form a cylindrical composite! I got 3.
iすられた複合材13の接合強度を調べたところ、母材
および各層間において十分な強度を有していることが確
認された。When the bonding strength of the rubbed composite material 13 was examined, it was confirmed that it had sufficient strength in the base material and between each layer.
(実施例2 )
請求項2に記載した製造方法に基づいて複合材を作製し
た。(Example 2) A composite material was produced based on the manufacturing method described in claim 2.
まず、第7図に示すように外径40xx、長さ200y
zの円柱状のステンレス製中子14を用意してこれを型
とした。First, as shown in Figure 7, the outer diameter is 40xx and the length is 200y.
A cylindrical stainless steel core 14 of z was prepared and used as a mold.
次に、L記中子I4の側周面にアルミナ製ガスアトマイ
ズ粉末を威圧プラズマ溶射して+、OXXの厚さの第1
の溶射層15を形成した。この場合の溶射条件としては
、先の実施例と同様に真空度20〜GO’[’orr、
溶射層Mf00〜150xzとした。Next, alumina gas atomized powder was sprayed on the side circumferential surface of the L core I4 by pressure plasma spraying, and the first
A thermal sprayed layer 15 was formed. The thermal spraying conditions in this case are as in the previous example, with a degree of vacuum of 20~GO'['orr,
The sprayed layer Mf00 to 150xz.
次いで、第1の溶射層15上に同様の溶射条件により扮
径45〜90μ肩の銅粉末を真空プラズマ溶Q、t し
て厚さ0 、5 amの第2の溶射層16を形成し、さ
らにこの上に粉径10〜45μ肩のニッケル粉末を同様
に溶射して厚さ1.5mxの第3の溶射層17を形成し
た。Next, copper powder with a diameter of 45 to 90 μm is vacuum plasma melted on the first sprayed layer 15 under the same spraying conditions to form a second sprayed layer 16 with a thickness of 0.5 am. Furthermore, nickel powder having a powder diameter of 10 to 45 μm was similarly sprayed on top of this to form a third sprayed layer 17 having a thickness of 1.5 mx.
次いで、各溶射層15.16.17を形成した中子14
に、アルゴン雰囲気にて温度約1000℃(アルミナの
焼結温度以下)、圧力的180MI’aの条件で2時間
熱間静水圧成形プレス処理を行い、11子14および谷
溶射層間を接合した。Next, the core 14 with each sprayed layer 15, 16, 17 formed thereon
Then, hot isostatic pressing was performed in an argon atmosphere at a temperature of about 1000° C. (below the sintering temperature of alumina) and a pressure of 180 MI'a for 2 hours to bond the 11 elements 14 and the valley sprayed layers.
その後、中子!4を第1の溶射層(アルミナ層)15と
の膨張率の差によって剥離し、さらに第1の溶射層15
を切削し研磨して除去し、第8図に示すような円筒状の
複合材!8を得た。After that, Nakako! 4 is peeled off due to the difference in expansion coefficient from the first thermal sprayed layer (alumina layer) 15, and then the first thermal sprayed layer 15 is removed.
is removed by cutting and polishing to create a cylindrical composite material as shown in Figure 8! I got 8.
得られた複合1418の接合強度を調べたところ、第2
の溶射層!6と第3の溶射層!7とが十分な強度をもっ
て接合していることが確認された。When the bonding strength of the obtained composite 1418 was investigated, it was found that the second
Sprayed layer! 6 and the third sprayed layer! 7 was confirmed to be bonded with sufficient strength.
「発明の効果」
以上説明したように、本発明における請求項1の発明は
、母材上に2種以上の異なった材料を順次溶射して複数
の層を形成し、次いで上記複数の層を形成した母材に熱
1111静水圧成形プレス処理を行って複合材とするも
のであるから、溶射により多層化が可能であるばかりで
なく、複雑形状の母材上にも容易に所望する材料の溶射
層を形成することができる。また、熱間静水圧成形プレ
ス処理を行うことにより、上記溶射層がポーラスに形成
されていてもこれを緻密化することができ、かつけ材お
よび溶射層間の接合強度を強固なものにすることができ
る。さらに、1プロセスで多層化が可能となり、しかし
熱間静水圧成形プレス処理を行うにあたってカプセリン
グやシーリングなどが不必要であることから、生産コス
トの高騰を抑制して安1!iに製品を製JEすることが
できる。"Effects of the Invention" As explained above, the invention of claim 1 of the present invention is to thermally spray two or more different materials on a base material in sequence to form a plurality of layers, and then to form a plurality of layers. Since the formed base material is subjected to thermal 1111 isostatic press treatment to form a composite material, it is not only possible to form multiple layers by thermal spraying, but also to easily form a desired material onto a complex-shaped base material. A sprayed layer can be formed. In addition, by performing hot isostatic pressing, even if the sprayed layer is porous, it can be made denser and the bonding strength between the garnishing material and the sprayed layer can be strengthened. Can be done. Furthermore, it is possible to create multiple layers in one process, but since encapsulating and sealing are not necessary when performing hot isostatic pressing, it is possible to suppress the rise in production costs and make it easier! i can manufacture products.
また、本発明における請求項21こ記載した発明は型」
;に2種以上の異なった。材料を順次溶射して1(数の
層を形成し、次いで上記複数の層を形成した型に熱間静
水圧成形プレス処理を行い、その後1:記型を剥離して
複合材を得るしのであるから、先の請求項1に記載した
方法と同様の効果を奏するのはららろん、型を剥離する
ことにより中空状の複合材などら容易に作製することが
でき、製造に際し製品形状の自由度を大きくすることが
できろ。In addition, claim 21 of the present invention states that the invention described herein is a type.
; Two or more different types. The material is thermally sprayed sequentially to form 1 (number of layers), and then hot isostatic pressing is performed on the mold on which the plurality of layers have been formed, and then the mold is peeled off to obtain a composite material. Therefore, it is possible to easily produce hollow composite materials by peeling off the mold, and the product shape can be changed during manufacturing. You can have more freedom.
第1図ないし第5図は本発明を工程順に説明ずろ丸めの
説明図、
第6図は請求項1に記載した発明の一実施例を説明する
だめの側断面図、
第7図および第8図は請求項2に記載した発明の一実施
例を工程順に説明するための説明図である。
I・・・・・母材、2・・・・・・第1の溶射層、4・
・・・・・第2の溶QJ層、5・・・・・・第3の溶射
層、6.8・・・・・・複合材、7・・・・・・中子(
型)。1 to 5 are explanatory diagrams for explaining the present invention step by step and rounding; FIG. 6 is a side sectional view for explaining one embodiment of the invention as claimed in claim 1; FIGS. 7 and 8 The figure is an explanatory diagram for explaining one embodiment of the invention set forth in claim 2 in the order of steps. I...Base material, 2...First sprayed layer, 4.
...Second melted QJ layer, 5...Third sprayed layer, 6.8...Composite material, 7...Core (
type).
Claims (2)
複数の層を形成し、 次いで上記複数の層を形成した母材に熱間静水圧成形プ
レス処理を行って複合材とすることを特徴とする複合材
の製造方法。(1) Two or more different materials are sequentially sprayed onto a base material to form multiple layers, and then the base material on which the multiple layers have been formed is subjected to hot isostatic pressing to form a composite material. A method for manufacturing a composite material characterized by:
数の層を形成し、 次いで上記複数の層を形成した型に熱間静水圧成形プレ
ス処理を行い、 その後上記型を剥離して複合材を得ることを特徴とする
複合材の製造方法。(2) Form multiple layers by sequentially spraying two or more different materials onto the mold, then perform hot isostatic pressing on the mold with the multiple layers formed thereon, and then peel off the mold. A method for producing a composite material, the method comprising: obtaining a composite material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31467488A JPH02159356A (en) | 1988-12-13 | 1988-12-13 | Production of laminated material |
US07/416,844 US4988479A (en) | 1988-10-06 | 1989-10-04 | Method for producing a composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31467488A JPH02159356A (en) | 1988-12-13 | 1988-12-13 | Production of laminated material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02159356A true JPH02159356A (en) | 1990-06-19 |
Family
ID=18056183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31467488A Pending JPH02159356A (en) | 1988-10-06 | 1988-12-13 | Production of laminated material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02159356A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261069A (en) * | 2009-04-30 | 2010-11-18 | Sumitomo Osaka Cement Co Ltd | Spray deposit film and method for manufacturing the same |
JP2012132475A (en) * | 2010-12-20 | 2012-07-12 | Fujikin Inc | Fusible plug for safety valve |
JP2013144833A (en) * | 2012-01-16 | 2013-07-25 | Shimane Prefecture | Ceramic spraying material, forming method for ceramic spraying film, and functional ceramic spraying film |
WO2015115624A1 (en) * | 2014-01-30 | 2015-08-06 | 京セラ株式会社 | Cylinder, plasma device, gas laser device, and method for manufacturing cylinder |
-
1988
- 1988-12-13 JP JP31467488A patent/JPH02159356A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261069A (en) * | 2009-04-30 | 2010-11-18 | Sumitomo Osaka Cement Co Ltd | Spray deposit film and method for manufacturing the same |
JP2012132475A (en) * | 2010-12-20 | 2012-07-12 | Fujikin Inc | Fusible plug for safety valve |
JP2013144833A (en) * | 2012-01-16 | 2013-07-25 | Shimane Prefecture | Ceramic spraying material, forming method for ceramic spraying film, and functional ceramic spraying film |
WO2015115624A1 (en) * | 2014-01-30 | 2015-08-06 | 京セラ株式会社 | Cylinder, plasma device, gas laser device, and method for manufacturing cylinder |
JPWO2015115624A1 (en) * | 2014-01-30 | 2017-03-23 | 京セラ株式会社 | Cylindrical body, plasma apparatus, gas laser apparatus, and manufacturing method of cylindrical body |
US10090628B2 (en) | 2014-01-30 | 2018-10-02 | Kyocera Corporation | Cylinder, plasma apparatus, gas laser apparatus, and method of manufacturing cylinder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0539566A (en) | Sputtering target and its production | |
US4763828A (en) | Method for bonding ceramics and metals | |
US5836506A (en) | Sputter target/backing plate assembly and method of making same | |
KR890000912B1 (en) | Method for joining ceramic and metal | |
JPS58179584A (en) | Welding by hot hydrostatic pressure press | |
US4623087A (en) | Application of coatings to articles | |
US7343677B2 (en) | Method of manufacturing a fiber reinforced metal matrix composite article | |
JPS61249689A (en) | Production of composite member | |
JPH02159356A (en) | Production of laminated material | |
JPH07228967A (en) | Long-sized cylindrical sputtering target | |
EP1659196B1 (en) | Metal product producing method, metal product, metal component connecting method, and connection structure | |
US5874015A (en) | Method for making a rhenium rocket nozzle | |
JPH05156431A (en) | Production of rotary cathode target | |
JPH10251712A (en) | Metallic composite porous member, its production, and weld-joined body | |
JPS6174235A (en) | Manufacture of x ray tube laminated rotary anode and x ray tube rotary anode produced by the same | |
CN113510445A (en) | Preparation method of niobium steel composite component | |
JPH065376Y2 (en) | Mold for molding glass products | |
JPH0446513B2 (en) | ||
JPH1087385A (en) | Metal-ceramic composite substrate and its production | |
JP2013047359A (en) | Method for forming film of metal product | |
JPH01279699A (en) | Manufacture for diaphragm for speaker | |
JPS59153574A (en) | Production of tuyere | |
JPS58122077A (en) | Melt spraying method of two layers | |
RU2220832C2 (en) | Method for making and heat treatment of parts of alumina ceramics and precision alloys for electric thrusters | |
JP3610311B2 (en) | Ceramics-metal composite member |