JPH02159342A - Corrosion resisting material for fused carbonate fuel cell - Google Patents

Corrosion resisting material for fused carbonate fuel cell

Info

Publication number
JPH02159342A
JPH02159342A JP63312850A JP31285088A JPH02159342A JP H02159342 A JPH02159342 A JP H02159342A JP 63312850 A JP63312850 A JP 63312850A JP 31285088 A JP31285088 A JP 31285088A JP H02159342 A JPH02159342 A JP H02159342A
Authority
JP
Japan
Prior art keywords
corrosion resistance
corrosion
fused carbonate
fuel cell
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63312850A
Other languages
Japanese (ja)
Inventor
Masatoshi Kato
雅敏 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP63312850A priority Critical patent/JPH02159342A/en
Publication of JPH02159342A publication Critical patent/JPH02159342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide sufficient corrosion resistance to fused carbonate to the material by providing a composition composed principally of Cr and containing proper amounts of Ni. CONSTITUTION:A material, e.g. for vessels for holding anodic and cathodic active substances in a fused carbonate fuel cell has a composition consisting of, by weight, 50-99% Cr and the balance essentially Ni. It is desirable to regulate Cr content to >=70% in order to obtain high corrosion resistance. Further, it is desirable to regulate respective impurities of metallic Cr and Ni to >=99%. This material has superior corrosion resistance and can be easily worked into complicated shapes. This corrosion resisting material can be obtained, e.g. by melting respective powders of high-purity metallic Cr and high-purity Ni in an inert gas arc furnace, forming the molten metal into an ingot, and then subjecting the ingot to heating and rolling.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶融炭酸塩用としての耐食材料に係わり、特
に溶融炭酸塩型燃料電池における陽極、陰極活物質を収
容する容器(電槽)などに好適に用いられる耐食性に優
れた材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a corrosion-resistant material for molten carbonate, and in particular to a container (container) for accommodating anode and cathode active materials in a molten carbonate fuel cell. The present invention relates to a material with excellent corrosion resistance that is suitable for use in, etc.

[従来の技術および問題点] 近年、電力貯蔵システム用、電気自動車用などとして各
種の二次電池が検討されてきているが、なかでも溶融炭
酸塩型燃料電池は高エネルギー密度で、充電効率も優れ
ており、しかも資源的に豊富で、安価なナトリウム、カ
リウム等の炭酸塩を用いるものであるところから、極め
て有望な電池と考えられている。現在用いられている溶
融炭酸塩型燃料電池は、一般に電解質板を挟んで正極と
負極を配置した単電池をセパレーターを介して積み市ね
た構造であり、作用温度は炭酸塩の融点が400°C以
上であるので600〜800℃の高温で使用一 されている。
[Conventional technologies and problems] In recent years, various secondary batteries have been studied for use in power storage systems, electric vehicles, etc. Among them, molten carbonate fuel cells have high energy density and low charging efficiency. It is considered to be an extremely promising battery because it uses carbonates such as sodium and potassium, which are excellent, resource-rich, and inexpensive. Molten carbonate fuel cells currently in use generally have a structure in which single cells with a positive electrode and a negative electrode arranged with an electrolyte plate in between are stacked together with a separator in between. C or higher, it is used at high temperatures of 600 to 800°C.

ところで、このような溶融炭酸塩型燃料電池の開発およ
び実用化上における問題点は、電槽を構成している正極
と負極の安定化および大型化ならびに極室と燃焼供給ラ
インを隔離するセパレーター等の材質の溶融炭酸塩によ
る高温下での腐食とされている。そして、前者の電極の
問題に関しては最近はぼその解決の見通しが得られ、実
用化上の障害を取り除き得る事となったが、後者の腐食
問題は、高温下において溶融している炭酸塩の強い腐食
性の故に、解決が困難で、その実用的な解決策が見出さ
れていないのが実情である。
By the way, problems in the development and practical application of such molten carbonate fuel cells include stabilization and enlargement of the positive and negative electrodes that make up the battery case, as well as the need for separators to isolate the electrode chamber and the combustion supply line, etc. It is said that corrosion of the material is caused by molten carbonate at high temperatures. Regarding the former electrode problem, there has recently been a prospect of a solution to the problem, and it has become possible to remove the obstacles to practical application, but the latter corrosion problem is caused by the corrosion of carbonates molten at high temperatures. Due to its strong corrosivity, it is difficult to solve the problem, and no practical solution has yet been found.

実験室的な規模においては、このセパレーター材質は負
極側では還元性雰囲気におかれるのでNi系の材料が、
正極側では酸化性雰囲気になるのでステンレス系の材料
が使用され、場合によってはtill/SυS 31G
のブラッド板か使用されている。しかしながら、このよ
うな祠料を用いても、電解質による腐食、特にウェット
シール部での腐食が問題となっている。この部位におい
て、Pc−Cr−N1系合金である1neonel 8
25が高い耐食性を示すという報告もなされているが、
現状では長期試験に対して必ずしも十分には耐えられな
いようである。
On a laboratory scale, this separator material is placed in a reducing atmosphere on the negative electrode side, so Ni-based materials are
Since the positive electrode side has an oxidizing atmosphere, stainless steel materials are used, and in some cases, till/SυS 31G
brad board is used. However, even when such an abrasive is used, corrosion caused by the electrolyte, particularly at the wet seal portion, remains a problem. In this part, 1neonel 8, which is a Pc-Cr-N1 alloy,
It has also been reported that 25 shows high corrosion resistance,
At present, it appears that they cannot necessarily withstand long-term tests.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、かかる事情に鑑み、600°C1更に7
00℃にも達する高温度下に溶融している炭酸塩に対す
る耐食性について種々検討した結果、従来から実験室的
規模においてその耐食性がある程度認められているNi
、 No−Cr−N1合金に比べると遥かに優れた耐食
性を有し、また耐久性に優れた材料を見出し、本発明に
達したのである。
In view of such circumstances, the present inventors have determined that
As a result of various studies on corrosion resistance against carbonates melted at temperatures as high as 00°C, we found that Ni, whose corrosion resistance has been recognized to some extent on a laboratory scale,
The present invention was achieved by discovering a material with far superior corrosion resistance and durability compared to the No-Cr-N1 alloy.

すなわち、本発明は、クロムを50〜99重量%含aし
残部が実質的にニッケルからなる溶融炭酸塩用耐食材料
を提供するものである。
That is, the present invention provides a corrosion-resistant material for molten carbonate containing chromium in an amount of 50 to 99% by weight, and the remainder being substantially nickel.

本発明の材料は加工性に富み、そして、さらに非常に高
い耐食性ををし、塩などの微量不純物の混入した溶融炭
酸塩に対しても十分な耐食性をもつものである。
The material of the present invention has excellent processability and also has extremely high corrosion resistance, and has sufficient corrosion resistance even against molten carbonate mixed with trace impurities such as salt.

本発明の使用対象となる炭酸塩としてはナトリウム塩、
カリウム樽7、リチウム塩、セシウム塩、マグネシウム
塩、カルシウム塩、ストロンチウム塩、バリウム塩等が
あり、不純物としては前記したアルカリ金属あるいはア
ルカリ土類金属の塩化物、臭化物、天化物、弗化物等が
ある。このように各師溶融炭酸塩に対して本発明の組成
の耐食材料を適用した例は従来知られていない。また、
本発明のヰ」料は加工性に優れているため、複雑な形状
、構造のものに対してもそのまま二次加工され種々の用
途に用いることが可能である。
Carbonates to be used in the present invention include sodium salts,
There are potassium barrels 7, lithium salts, cesium salts, magnesium salts, calcium salts, strontium salts, barium salts, etc., and impurities include chlorides, bromides, natural compounds, fluorides, etc. of the alkali metals or alkaline earth metals. be. In this way, there has been no known example in which a corrosion-resistant material having the composition of the present invention is applied to various molten carbonates. Also,
Since the winter material of the present invention has excellent processability, it can be subjected to secondary processing as it is, even if it has a complicated shape or structure, and can be used for various purposes.

本発明の溶融炭酸塩用耐食材料は、耐食性の面から50
%以上99重量x以下のクロム含有量が必要であり、よ
り高い耐食性を得るためにはクロム含RQを70”A以
上とすることが望ましい。含有量が50%より低い場合
は、十分な耐食性を期待することができない。また、ク
ロムの含有が99重量%より大では加工性の著しい低下
を生じる。また、本発明の祠料に用いる金属クロムおよ
びニッケルの純度は99%以上が望ましく、不純物が多
いものを用いて?1?た材料は加工性が悪く、圧延の際
にも割れが多くなり、溶接による材料劣化が懸念される
The corrosion-resistant material for molten carbonate of the present invention has a corrosion resistance of 50%
% or more and 99% by weight or less is required, and in order to obtain higher corrosion resistance, it is desirable to set the chromium content RQ to 70"A or more. If the content is lower than 50%, sufficient corrosion resistance is required. In addition, if the chromium content exceeds 99% by weight, the workability will be significantly reduced.In addition, the purity of the metal chromium and nickel used in the abrasive of the present invention is preferably 99% or more, and impurities should be avoided. Materials made with a large amount of 1? have poor workability, are prone to cracking during rolling, and there is concern about material deterioration due to welding.

以上、本発明の溶融炭酸塩用耐食材料の製造の一例を示
す。出発原料としては純度99%以上更に好ましくは純
度99.9%以上の金属クロム粉末とニッケル粉末を用
い、これらを不活性ガスアーク炉を用いて1気圧アルゴ
ンガス下で溶解し、合金インゴットを得る、更に得られ
たインゴットから圧延用合金塊を切出し、加熱圧延を行
うことにより所望の溶融炭酸塩用耐食材料を得ることが
できる。
The above is an example of manufacturing the corrosion-resistant material for molten carbonate of the present invention. As starting materials, metal chromium powder and nickel powder with a purity of 99% or more, preferably 99.9% or more are used, and these are melted under 1 atm argon gas using an inert gas arc furnace to obtain an alloy ingot. Furthermore, a desired corrosion-resistant material for molten carbonate can be obtained by cutting out an alloy ingot for rolling from the obtained ingot and subjecting it to hot rolling.

この時の圧延に用いるロールは特に限定しないが、みぞ
型ロールを例示することができる。これらの方法は製法
としての一例であり本発明を得るにはこの方法に限定さ
れるものではない。
The rolls used for rolling at this time are not particularly limited, but groove-shaped rolls can be exemplified. These methods are only examples of manufacturing methods, and the present invention is not limited to these methods.

本発明の溶融炭酸塩用耐食材料は溶融炭酸塩型燃料電池
用材料として好適に用いられるものであるが、その他に
溶融炭酸塩が取り扱われる分野においてそれに対する耐
食材料として好適に用いられることは言うまでもない。
The corrosion-resistant material for molten carbonate of the present invention is suitably used as a material for molten carbonate fuel cells, but it goes without saying that it can also be suitably used as a corrosion-resistant material in other fields where molten carbonate is handled. stomach.

例えば、タンク、反応器、熱交換器、配管等の溶融炭酸
塩を用いるプラントに従来から用いられている材料に代
って用いられる。更に、特徴的なことは、本発明の材料
は従来加重性の問題で不可能であったクラッドやライニ
ング祠としても使用が可能であることである。本発明は
これらのブラント用に限定されるものではない。
For example, they can be used to replace materials traditionally used in plants using molten carbonate, such as tanks, reactors, heat exchangers, piping, etc. Furthermore, a characteristic feature of the material of the present invention is that it can be used as a cladding or lining, which was previously impossible due to loadability problems. The invention is not limited to use with these blunts.

[発明の効果] 本発明の溶融炭酸塩用耐食材料は、従来までの材料、特
にクロム合金に比べると極めて耐食性あるいは加工性に
優れ、このため、ル雑な形状への加コ−も容易であり、
溶接による割れ、材質劣化の問題もなく、新規の装置設
計が可能となる。さらに、本発明の溶融炭酸塩用耐食材
料は、従来品では不可能であった薄板への加工が可能で
あり、圧接材、クラツド材、ライニング祠として用いる
ことによる、材料としての価格の大幅な低減あるいは、
さらに高い加]二性をf−7Lだ材料との組合わせによ
る加工性と耐食性の双方の飛躍的向上をはかることか可
能である。
[Effects of the Invention] The corrosion-resistant material for molten carbonate of the present invention has extremely superior corrosion resistance and workability compared to conventional materials, especially chromium alloys, and therefore can be easily molded into rough shapes. can be,
It is possible to design new equipment without problems of cracking due to welding or material deterioration. Furthermore, the corrosion-resistant material for molten carbonates of the present invention can be processed into thin plates, which was impossible with conventional products, and can be used as pressure welding materials, cladding materials, and lining materials, significantly reducing the price of the material. Reduce or
It is possible to dramatically improve both workability and corrosion resistance by combining a material with even higher dielectric properties such as f-7L.

以下に実施例を示し、本発明を更に具体的に明らかにす
るが、本発明がかかる実施例の記載によってll11等
の制限をも受けるものではないことは言うまでもない。
Examples will be shown below to clarify the present invention more specifically, but it goes without saying that the present invention is not limited by the description of such Examples.

実施例1〜5 純rt !19 、9%の金属クロム粉末とニッケル粉
末を不活性ガスアーク溶解炉(Max、 to00^、
20 V)を用いて1気圧アルゴンガス雰囲気下で溶解
しインゴットを得、このインゴットから圧延用合金塊を
切出した。
Examples 1-5 Pure rt! 19. 9% metal chromium powder and nickel powder were melted in an inert gas arc melting furnace (Max, to00^,
20 V) under a 1 atm argon gas atmosphere to obtain an ingot, and an alloy ingot for rolling was cut from this ingot.

次いで、ロール径200111%ロールの回転速度17
「p−の加熱圧延装置に前記の合金塊を装入し、400
℃で熱間圧延を行い、表1に示す組成の材料をiすた。
Next, roll diameter 200111% roll rotation speed 17
The above alloy ingot was charged into a hot rolling machine of "p-", and
The materials having the compositions shown in Table 1 were prepared by hot rolling at ℃.

ii;られた溶融炭酸塩用耐食材料を用いて表1に示す
組成の溶融塩で電位走査法によりアノード、カソードの
分極曲線を711+1定し、腐食電流を求めた。その結
果を表1に示す。
ii; Using the prepared corrosion-resistant material for molten carbonate, the anode and cathode polarization curves were determined to 711+1 using the potential scanning method using the molten salt having the composition shown in Table 1, and the corrosion current was determined. The results are shown in Table 1.

比較例1〜3 従来、溶融炭酸塩用耐食材料として用いられてきた金属
材料を用いて、実施例1と同様な方法で腐食電流を測定
した。
Comparative Examples 1 to 3 Corrosion current was measured in the same manner as in Example 1 using metal materials conventionally used as corrosion-resistant materials for molten carbonates.

比較例1として純度99.9%のニッケルを、比較例2
としてSUS 347. (組成18%C「、l1%N
l、 0.13%Nb、残部No ) 、比較例3とし
てSO831[1(組成18% Or 、12X Nl
、 2 % No、残部Pc)を用いた。その結果を表
1に示す。
Comparative Example 1 uses nickel with a purity of 99.9%, Comparative Example 2 uses nickel with a purity of 99.9%.
As SUS 347. (Composition: 18%C, l1%N
SO831[1 (composition 18% Or, 12X Nl) as Comparative Example 3.
, 2% No, balance Pc) was used. The results are shown in Table 1.

比較例4〜5 実施例1で用いた金属クロムおよびニッケル粉末を用い
て、実施例1と同様の方法で表1に示す組成を有する材
料を得た。次いで得られた材料について実施例1と同様
な方゛法で腐食電流を測定した。その結果を表1に示す
Comparative Examples 4 to 5 Materials having the compositions shown in Table 1 were obtained in the same manner as in Example 1 using the metal chromium and nickel powders used in Example 1. Next, the corrosion current of the obtained material was measured in the same manner as in Example 1. The results are shown in Table 1.

表1より本発明の溶融炭酸塩用耐食材料の耐食性は、ニ
ッケルや他のN1−Cr合金あるい4.tPc−Cr−
N1合金と1を較しても遜色のない優れたものであるこ
とがわかる。
From Table 1, the corrosion resistance of the corrosion-resistant material for molten carbonate of the present invention is that of nickel, other N1-Cr alloys, or 4. tPc-Cr-
Comparing N1 alloy and 1, it can be seen that they are comparable in quality.

Claims (1)

【特許請求の範囲】[Claims] クロムを50〜99重量%含有し残部が実質的にニッケ
ルからなる溶融炭酸塩用耐食材料
Corrosion-resistant material for molten carbonate containing 50 to 99% by weight of chromium, with the remainder substantially nickel
JP63312850A 1988-12-13 1988-12-13 Corrosion resisting material for fused carbonate fuel cell Pending JPH02159342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312850A JPH02159342A (en) 1988-12-13 1988-12-13 Corrosion resisting material for fused carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63312850A JPH02159342A (en) 1988-12-13 1988-12-13 Corrosion resisting material for fused carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH02159342A true JPH02159342A (en) 1990-06-19

Family

ID=18034181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312850A Pending JPH02159342A (en) 1988-12-13 1988-12-13 Corrosion resisting material for fused carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH02159342A (en)

Similar Documents

Publication Publication Date Title
Pawlek Inert anodes: an update
CN101084594B (en) Non-aqueous electrolyte battery
NO115857B (en)
CA1276907C (en) Refining of lithium-containing aluminum scrap
CN100432294C (en) High petential magnesium alloy sacrificial anode material and its manufacturing method
JPS60241652A (en) Electrochemical electrode employing metal hydride
CN109694964A (en) A kind of preparation method of aluminium-air cell anode material
CN112921360B (en) Method for preparing rare earth metal by molten salt electrolysis
JP2643344B2 (en) Lithium-based thermal battery
CN110042278A (en) A kind of aluminium-air cell anode material and preparation method thereof
JPH02159342A (en) Corrosion resisting material for fused carbonate fuel cell
US5188711A (en) Electrolytic process for making alloys of rare earth and other metals
JPH04147570A (en) Material of air electrode for molten carbonate fuel cell
JPH06179936A (en) Negative electrode material for aluminum battery
JPH0112829B2 (en)
CN110380045A (en) A kind of magnesium-alloy anode material and its preparation method and application, magnesium air battery
JPH0922701A (en) Positive electrode member for non-aqueous secondary battery
Sakai et al. Metal hydride thin film electrodes prepared by rf sputtering
JPH05320701A (en) Corrosion-resistant material
JPH01315955A (en) Anti-corrosion material for fused carbonate
JPH01307170A (en) Corrosion resistant material for molten carbonate
JPS63236267A (en) Constituent material of fused carbonate type fuel cell
JPH0730428B2 (en) Molten salt corrosion resistant material
JPH1025531A (en) Positive electrode vessel material made of cobalt-base alloy for sodium-sulfur battery
CN1271734C (en) Metal negative electrode material for nickel-hydrogen battery and preparing process