JPH02158621A - Production of aromatic copolyester - Google Patents

Production of aromatic copolyester

Info

Publication number
JPH02158621A
JPH02158621A JP31196688A JP31196688A JPH02158621A JP H02158621 A JPH02158621 A JP H02158621A JP 31196688 A JP31196688 A JP 31196688A JP 31196688 A JP31196688 A JP 31196688A JP H02158621 A JPH02158621 A JP H02158621A
Authority
JP
Japan
Prior art keywords
acid
reaction
temperature
acetic acid
aromatic copolyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31196688A
Other languages
Japanese (ja)
Inventor
Yusaku Suenaga
勇作 末永
Tomohiro Ishikawa
朋宏 石川
Masaaki Ozuru
大鶴 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP31196688A priority Critical patent/JPH02158621A/en
Publication of JPH02158621A publication Critical patent/JPH02158621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title polymer having a little discoloration and excellent heat stability by adding a specific amount of isophthalic acid to a dicarboxylic acid adjusting concentration of acetic acid of ester derivative and subjecting the ester derivative to polycondensation. CONSTITUTION:(A) A dicarboxylic acid containing >=5wt.% isophthalic acid, (B) hydroxybenozoic acid and (C) a dihydroxy compound such as hydroquinone are esterified with (D) acetic anhydride and acetic anhydride prepared as a by-product is reduced to <=15wt.% to give an ester derivative. Then the derivative is subjected to polycondensation to give the aimed polymer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芳香族コポリエステルの製造方法に閃(従来の
技術) 近年、プラスチックの高性能化に対する要求が益々高く
なり、種々の高性能プラスチックが開発され、市場に供
給されている。なかでも特に剛直な分子鎖からなり、溶
融時に光学異方性を示すサーモトロピック液晶ポリマー
は溶融粘度が低く、加工性が良好であり、又優れた機械
的性質を有する点で注目されている。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing aromatic copolyester (prior art) In recent years, demands for higher performance of plastics have been increasing, and various high-performance plastics have been developed. has been developed and supplied to the market. Among them, thermotropic liquid crystal polymers, which are composed of particularly rigid molecular chains and exhibit optical anisotropy when melted, are attracting attention because they have low melt viscosity, good processability, and excellent mechanical properties.

この液晶ポリマーとして芳香族コポリエステルが知られ
ているが、重合法には例えば、ヒドロキシ安息香酸、ジ
ヒドロキシ化合物を無水酢酸と反応させ、エステル誘導
体を調製し、ジカルボン酸と重縮合反応を行う酢酸エス
テル化法がある。この方法はエステル調製時に酢酸が副
生するため、反応器材質表面が浸され、その溶出金属が
ポリマーの着色及び熱安定性に悪影響を及ぼしている。
Aromatic copolyesters are known as such liquid crystal polymers, and the polymerization method includes, for example, reacting hydroxybenzoic acid and dihydroxy compounds with acetic anhydride to prepare ester derivatives, and then carrying out a polycondensation reaction with dicarboxylic acids. There is a law. In this method, since acetic acid is produced as a by-product during ester preparation, the surface of the reactor material is soaked, and the eluted metal adversely affects the coloring and thermal stability of the polymer.

(発明が解決しようとする課題) 本発明の目的は芳香族コポリエステルを溶毀重縮合で製
造する際、ポリマーの青色の少ない熱安定性の優れた芳
香族コポリエステルを製造する方°法を提供することに
ある。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide a method for producing an aromatic copolyester with excellent thermal stability and less blue color when producing the aromatic copolyester by dissolution polycondensation. It is about providing.

(課題を解決するための手段) 本発明者らはポリマーの青色の少ない熱安定性の優れた
芳6族コポリエステルを得る方法につき鋭意検討した結
果、本発明を完成した。
(Means for Solving the Problems) The present inventors have completed the present invention as a result of intensive study on a method for obtaining a hexaaromatic copolyester having excellent thermal stability with less blue color.

即ち、本発明はヒドロキシ安息香酸、ジカルボン酸、ジ
ヒドロキシ化合物からなる芳香族コポリエステルでジカ
ルボン酸の少なくとも1種がイソフタル酸からなり、イ
ソフタル酸を全ジカルボン酸に対し5正瓜パーセント以
上含む芳香族コポリエステルを酢酸エステル化法で製造
する方法において、エステル化反応後の反応混合物中の
酢酸濃度を、15重量パーセント以下とした後、重縮合
反応を行うことを特徴とする芳香族コポリエステルの製
造方法に関する。
That is, the present invention provides an aromatic copolyester consisting of hydroxybenzoic acid, dicarboxylic acid, and a dihydroxy compound, in which at least one of the dicarboxylic acids is isophthalic acid, and the aromatic copolyester contains isophthalic acid in an amount of 5% or more relative to the total dicarboxylic acids. A method for producing an aromatic copolyester, the method comprising: reducing the acetic acid concentration in the reaction mixture after the esterification reaction to 15% by weight or less, and then carrying out a polycondensation reaction. Regarding.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

無水酢酸と原料を撹拌しながらエステル化する反応は一
般に硫酸存在下、5分足らずで完結する非常に早い反応
であり、このような例としてはオーガニック シンセシ
ス(ORGAN I C3YNTHESES)Vo l
、m  452頁に記載されている。本発明ではエステ
ル化反応時、無水酢酸が消費されると同時に酢酸が副生
じ、この副生酢酸を除去しながら反応を行うと生成ポリ
マーの色相及び熱安定性が著しく改良されることを見い
だした。又、このようにしてエステル誘導体を調製した
場合、エステル化反応は短時間で完結した。
The reaction of esterifying acetic anhydride and raw materials while stirring is generally a very fast reaction that is completed in less than 5 minutes in the presence of sulfuric acid, and an example of this is Organic Synthesis (ORGAN I C3YNTHESES) Vol.
, m page 452. In the present invention, it has been found that during the esterification reaction, acetic acid is produced as a by-product at the same time as acetic anhydride is consumed, and that when the reaction is carried out while removing this by-product acetic acid, the hue and thermal stability of the resulting polymer are significantly improved. . Moreover, when the ester derivative was prepared in this way, the esterification reaction was completed in a short time.

副生酢酸の除去は、常圧又は減圧で行えばよいか、JI
I料である無水酢酸が留出しない温度で行うか無水酢酸
の還流装置を設置して行う必要がある。
Should the by-product acetic acid be removed under normal pressure or reduced pressure?
It is necessary to carry out the reaction at a temperature at which acetic anhydride, which is the I material, does not distill off, or to install an acetic anhydride reflux device.

エステル化反応終了後の反応混合物中の酢酸濃度は15
重量パーセント以下がよい。酢酸濃度が15ニーパーセ
ントを越えると、重縮合時の高温で除去する酢酸量が増
えるため反応器材質の腐食によるポリマーの着色及び熱
安定性に悪影響を及はす。又、反応器腐食による耐久性
にも問題がある。
The acetic acid concentration in the reaction mixture after the esterification reaction is 15
Weight percentage or less is preferable. When the acetic acid concentration exceeds 15 nee percent, the amount of acetic acid removed at high temperatures during polycondensation increases, which adversely affects the coloration and thermal stability of the polymer due to corrosion of the reactor material. There is also a problem in durability due to reactor corrosion.

エステル化反応時間は30分以上5時間以下がよい。3
0分未満であるとエステル化率が低くなるため、充分な
分子量のポリマーを得ることができない。5時間を越え
るとエステル化率は充分であるが、反応器材質の腐食に
よるポリマーの着色及び熱安定性に悪影響を及ぼす。
The esterification reaction time is preferably 30 minutes or more and 5 hours or less. 3
If it is less than 0 minutes, the esterification rate will be low, making it impossible to obtain a polymer with a sufficient molecular weight. If the time exceeds 5 hours, the esterification rate is sufficient, but the coloring and thermal stability of the polymer are adversely affected due to corrosion of the reactor material.

重縮合反応は、反応温度を1〜10時間かけて徐々に昇
温し、最終的に240〜350℃、好ましくは280〜
350℃にし、重縮合を進める。
In the polycondensation reaction, the reaction temperature is gradually raised over 1 to 10 hours, and the final temperature is 240 to 350°C, preferably 280 to 350°C.
The temperature was raised to 350°C to proceed with polycondensation.

又、反応速度を速くするために減圧雰囲気下で行っても
よい。
Further, in order to speed up the reaction rate, the reaction may be carried out under a reduced pressure atmosphere.

本製造方法においては、下記の方法により最終分子量ポ
リマーを得ることも可能であるし、プレポリマーを生成
した後、固相重合により、高分子量化をすることも可能
である。
In this production method, it is possible to obtain a final molecular weight polymer by the method described below, or it is also possible to increase the molecular weight by solid phase polymerization after producing a prepolymer.

本発明で対象とする重合体はヒドロキシ安息香酸(■)
、ジヒドロキシ化合物(■)、ジカルボン酸(III)
を重縮合して成るコポリマーである。
The target polymer of the present invention is hydroxybenzoic acid (■)
, dihydroxy compound (■), dicarboxylic acid (III)
It is a copolymer formed by polycondensation of

このコポリマーの構成単位である(1)としては例えば
P−ヒドロキシ安息香酸、m−ヒドロキシ安、θ、6酸
、P−(4−ヒドロキシフェノキシ)安息香酸、2−ヒ
ドロキシ−6−ナフトエ酸、1−ヒドロキシ−4−ナフ
トエ酸、1−ヒドロキシ−5−ナフトエ酸等があり、こ
れらの1種又は2種以上を用いることができる。
Examples of the structural unit (1) of this copolymer include P-hydroxybenzoic acid, m-hydroxybenzoic acid, θ, 6-acid, P-(4-hydroxyphenoxy)benzoic acid, 2-hydroxy-6-naphthoic acid, 1 -Hydroxy-4-naphthoic acid, 1-hydroxy-5-naphthoic acid, etc., and one or more of these can be used.

構成単位(■)としては例えばヒドロキノン、クロルヒ
ドロキノン、メチルヒドロキノン、フェニルヒドロキノ
ン、レゾルシン、4,4° −ジヒドロキシジフェニル
、4.4’ −ジヒドロ牛シベ゛ンゾフェノン、4,4
° −ジヒドロキシジフェニルメタン、4,4° −ジ
ヒドロキシジフェニルエーテル、4,4° −ジヒドロ
キシジフェニルスルホン、4.4゛ −ジヒドロキシジ
フェニルスルフィド、2.2’−ビス(4−ヒドロキシ
フェニル)プロパン、2.6−ジヒドロキシナフタレン
、2゜7−ジヒドロキシナフタレン、1.5−ジヒドロ
キシナフタレン、1.4−ジヒドロキシナフタレン等が
あり、これらの1種又は2種以上を用いることができる
Examples of the structural unit (■) include hydroquinone, chlorohydroquinone, methylhydroquinone, phenylhydroquinone, resorcinol, 4,4°-dihydroxydiphenyl, 4,4'-dihydrobinzophenone, 4,4
° -dihydroxydiphenylmethane, 4,4° -dihydroxydiphenyl ether, 4,4° -dihydroxydiphenyl sulfone, 4.4゛ -dihydroxydiphenyl sulfide, 2,2'-bis(4-hydroxyphenyl)propane, 2,6-dihydroxy Examples include naphthalene, 2°7-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, and 1,4-dihydroxynaphthalene, and one or more of these can be used.

構成単位(II[)としては、少なくとも1種がイソフ
タル酸で全ジカルボン酸に対し、5重量パーセント以上
含むものである。イソフタル酸が全ジカルボン酸に対し
て5重量パーセント未満では、エステル化反応時、副生
する酢酸を除去しながら反応を行った場合と副生ずる酢
酸を除去せずに反応を行った場合で前者のほうがわずか
ながら着色及び熱安定性に効果が認められるが、顕著で
はない。イソフタル酸以外のジカルボン酸としては、例
えばテレフタル酸、4,4° −ジカルボキシジフェニ
ル、2,6−ジカルボキシナフタレン、27−・ジカル
ボキシナフタレン、1.5−ジカルボキシナフタレン、
1,2−ビス(4−カルボキシフェノキシ)エタン、1
.4−ジカルボキシナフタレン、等があり、これらの1
種又は2種以上を用いることができる。
At least one of the structural units (II[) is isophthalic acid, which is contained in an amount of 5% by weight or more based on the total dicarboxylic acids. If the isophthalic acid is less than 5% by weight based on the total dicarboxylic acids, the esterification reaction will be different when the reaction is carried out while removing the by-product acetic acid and when the reaction is carried out without removing the by-product acetic acid. Although a slight effect on coloring and thermal stability is observed in the latter case, it is not significant. Examples of dicarboxylic acids other than isophthalic acid include terephthalic acid, 4,4°-dicarboxydiphenyl, 2,6-dicarboxynaphthalene, 27-dicarboxynaphthalene, 1,5-dicarboxynaphthalene,
1,2-bis(4-carboxyphenoxy)ethane, 1
.. 4-dicarboxynaphthalene, etc., and one of these
A species or two or more species can be used.

(発明の効果) 本発明は芳呑族コポリエステル生成の重縮合反応におい
て、エステル化反応をおこなう際、副生する酢酸を除去
しながら、エステル誘導体を調製することにより、着色
及び熱安定性の優れた重合体を得ることができる。
(Effect of the invention) The present invention improves coloring and thermal stability by preparing an ester derivative while removing by-product acetic acid during the esterification reaction in the polycondensation reaction for producing an aromatic copolyester. Excellent polymers can be obtained.

(実施例) 本発明を実施例で更に詳細に説明するが、本発明はこれ
らの実施例に制限されるものではない。
(Examples) The present invention will be explained in more detail by Examples, but the present invention is not limited to these Examples.

実施例I P−ヒドロキシ安息香酸  10.21Icg4.4°
 −ビフェノール   4.65kgテレフタル酸  
      3.32kgイソフタル酸       
 0.91kg無水酢酸         15.29
Icg上記原料を501反応槽に仕込み、撹拌しながら
150℃まで加熱した後、副生酢酸を系外に除去しなが
ら3時間反応を行った。その時の反応混合物中の酢酸濃
度は10重量パーセントであった。
Example I P-hydroxybenzoic acid 10.21Icg4.4°
-Biphenol 4.65kg terephthalic acid
3.32kg isophthalic acid
0.91kg acetic anhydride 15.29
Icg The above raw materials were charged into a 501 reaction tank, heated to 150° C. with stirring, and then reacted for 3 hours while removing by-product acetic acid from the system. The acetic acid concentration in the reaction mixture at that time was 10% by weight.

続いて300℃まで4時間かけて副生酢酸を除去しなが
ら昇温し、その温度で1時間反応を続けた。
Subsequently, the temperature was raised to 300° C. over 4 hours while removing by-product acetic acid, and the reaction was continued at that temperature for 1 hour.

撹拌のトルクが2.5kgm上昇した時点で重縮合反応
を停止し、撹拌しながら冷却し、18Ic gのプレポ
リマーを得た。次にプレポリマーを室温から310℃ま
で10時間かけて昇温し、さらにその温瓜で6時間固相
重合を行った。
The polycondensation reaction was stopped when the stirring torque increased by 2.5 kgm, and the mixture was cooled while stirring to obtain 18 Ic g of prepolymer. Next, the temperature of the prepolymer was raised from room temperature to 310° C. over 10 hours, and solid phase polymerization was further performed using the warm melon for 6 hours.

得られた重合体の溶融粘度は、温度340℃で剪断速度
1.0’5ec−’で1800ポアズであった。
The melt viscosity of the resulting polymer was 1800 poise at a temperature of 340°C and a shear rate of 1.0'5 ec-'.

った。この際副生酢酸は系外に除去しなかった。It was. At this time, by-product acetic acid was not removed from the system.

更に300℃まで4時間かけて副生酢酸を除去しながら
昇温し、その温度で1時間反応を続けた。
The temperature was further increased to 300° C. over 4 hours while removing by-product acetic acid, and the reaction was continued at that temperature for 1 hour.

撹拌のトルクが2.5kgm上昇した時点で重縮合反応
を停止し、撹拌しながら冷却し9.18kgのプレポリ
マーを得た。次にプレポリマーを室温から310℃まで
10時間かけて昇温し、さらにその温度で6時間固相型
合を行った。
The polycondensation reaction was stopped when the stirring torque increased by 2.5 kgm, and the mixture was cooled while stirring to obtain 9.18 kg of prepolymer. Next, the temperature of the prepolymer was raised from room temperature to 310° C. over 10 hours, and solid phase synthesis was further performed at that temperature for 6 hours.

得られた重合体の溶融粘度は、温度340℃で剪断速度
10’5ec−’で2000ポアズであった。
The melt viscosity of the resulting polymer was 2000 poise at a temperature of 340 DEG C. and a shear rate of 10'5 ec-'.

比較例1 P−ヒドロキシ安息香酸  10.21kg4.4° 
−ビフェノール   4.65kgテレフタル酸   
     3.32kgイソフタル酸        
0.91kg無水酢酸         15.29k
g上記原料を501反応槽に仕込み、撹拌しながら15
0℃で3時間還流し、エステル化反応を行比較例2 P−ヒドロキシ安息香酸   9.36kg4.4′ 
−ビフェノール   6.31kgテレフタル酸   
     5.82kgイソフタル酸        
 200g無水酢酸         15.20Ic
g上記原料を501反応槽に仕込み、撹拌しながら15
0℃まで加熱した後、副生酢酸を系外に除去しながら3
時間反応を行った。その時の反応混合物中の酢酸濃度は
13重量パーセントであった。
Comparative example 1 P-hydroxybenzoic acid 10.21 kg 4.4°
-Biphenol 4.65kg terephthalic acid
3.32kg isophthalic acid
0.91kg Acetic anhydride 15.29k
gThe above raw materials were charged into a 501 reaction tank, and heated for 15 minutes while stirring.
Reflux at 0°C for 3 hours to perform esterification Comparative Example 2 P-hydroxybenzoic acid 9.36kg4.4'
-Biphenol 6.31kg terephthalic acid
5.82kg isophthalic acid
200g acetic anhydride 15.20Ic
gThe above raw materials were charged into a 501 reaction tank, and heated for 15 minutes while stirring.
After heating to 0℃, while removing by-product acetic acid from the system,
A time reaction was performed. The acetic acid concentration in the reaction mixture at that time was 13% by weight.

続いて300℃まで4時間かけて副生酢酸を除去しなが
ら昇温し、その温度で1時間反応を続けた。
Subsequently, the temperature was raised to 300° C. over 4 hours while removing by-product acetic acid, and the reaction was continued at that temperature for 1 hour.

撹拌のトルクが0.5kgm上昇した時点で重縮合反応
を停止し、撹拌しながら冷却し18kgのプレポリマー
を得た。
The polycondensation reaction was stopped when the stirring torque increased by 0.5 kgm, and the mixture was cooled while stirring to obtain 18 kg of prepolymer.

次にプレポリマーを室温から330℃まで13時間かけ
て昇温し、さらにその温度で6時間固相重合を行った。
Next, the temperature of the prepolymer was raised from room temperature to 330° C. over 13 hours, and solid phase polymerization was further performed at that temperature for 6 hours.

得られた重合体の溶融粘度は、温度390℃で剪断速度
10’5ec−’で650ポアズであった。
The melt viscosity of the resulting polymer was 650 poise at a temperature of 390 DEG C. and a shear rate of 10'5 ec-'.

ら150℃で3時間還流し、エステル化反応を行った。The mixture was refluxed at 150°C for 3 hours to perform an esterification reaction.

この際、副生酢酸は系外に除去しなかった。At this time, by-product acetic acid was not removed from the system.

更に300℃まで4時間かけて副生酢酸を除去しながら
昇温し、その温度で1時間反応を続けた。
The temperature was further increased to 300° C. over 4 hours while removing by-product acetic acid, and the reaction was continued at that temperature for 1 hour.

撹拌のトルクが0.5kgm上昇した時点で重縮合反応
を停止し撹拌しながら冷却し、18kgのプレポリマー
を得た。
When the stirring torque increased by 0.5 kgm, the polycondensation reaction was stopped and the mixture was cooled while stirring to obtain 18 kg of prepolymer.

次にプレポリマーを室温から330℃まで13時間かけ
て昇温し、さらにそのと度で6時間固相重合を行った。
Next, the temperature of the prepolymer was raised from room temperature to 330° C. over 13 hours, and solid phase polymerization was further performed at that temperature for 6 hours.

iすられた重合体の溶融粘度は温度390℃で剪断速度
10’secmlで700ポアズであった。
The melt viscosity of the grated polymer was 700 poise at a temperature of 390°C and a shear rate of 10'secml.

比較例3 9、 36kg 6.311cg 5、 82kg 00g 15.201cg 反応槽に仕込み、撹拌しなが P−ヒドロキシ安息香酸 4.4′ −ビフェノール テレフタル酸 イソフタル酸 無水酢酸 上記原料を501 実施例1と比較例1.2.3でiひられた重合体の着色
及び熱分解温度を第1表に示す。比較例1は、エステル
化反応の際、副生酢酸を系外に除去しなかった場合で色
相が悪く、さらに熱安定性の一つの1」安となる熱分解
温度も13℃低くなっている。比較例2.3はいずれも
全ジカルボン酸に対しイソフタル酸の含量が3.3重量
パーセントの場合で、エステル化反応の際副生酢酸を系
外に除去しても(比較例2)系外に除去しなくても(比
較例3)色相及び熱分解温度には顕著な差が認められな
い。したがって本発明の芳香族コポリエステル生成の重
縮合反応において、エステル化反応を行う際、副生する
酢酸を除去しながら、エステル誘導体を調製することに
より、着色及び熱安定性の優れた重合体が得られること
は明らかである。色相は、スガ試験機■製5M−4−2
型カラーコンピューターで白色度(W)黄色度(Yりを
Δp1定し、熱分解温度は、セイコー電子工業■製DS
C−200型により窒素雰囲気下40℃/minでil
?J定した。
Comparative Example 3 9, 36 kg 6.311 cg 5, 82 kg 00 g 15.201 cg P-hydroxybenzoic acid 4,4'-biphenol terephthalic acid isophthalic acid acetic anhydride The above raw materials were charged in a reaction tank and stirred. Table 1 shows the coloration and thermal decomposition temperature of the polymer prepared in Comparative Example 1.2.3. In Comparative Example 1, the by-product acetic acid was not removed from the system during the esterification reaction, so the hue was poor and the thermal decomposition temperature, which is one of the indicators of thermal stability, was 13°C lower. . In Comparative Examples 2 and 3, the content of isophthalic acid is 3.3% by weight based on the total dicarboxylic acids, and even if the by-product acetic acid is removed from the system during the esterification reaction (Comparative Example 2), Even if it is not removed (Comparative Example 3), no significant difference is observed in hue and thermal decomposition temperature. Therefore, in the polycondensation reaction for producing an aromatic copolyester of the present invention, a polymer with excellent coloring and thermal stability can be obtained by preparing an ester derivative while removing by-product acetic acid during the esterification reaction. The gains are clear. The hue is 5M-4-2 manufactured by Suga Test Instruments.
The whiteness (W) and yellowness (Y) were determined by Δp1 using a model color computer, and the thermal decomposition temperature was determined using a DS manufactured by Seiko Electronics Co., Ltd.
Illumination at 40°C/min under nitrogen atmosphere using C-200 type
? J was decided.

第  1 表Part 1 table

Claims (1)

【特許請求の範囲】[Claims] (1)ヒドロキシ安息香酸、ジカルボン酸、ジヒドロキ
シ化合物からなる芳香族コポリエステルでジカルボン酸
の少なくとも1種がイソフタル酸からなり、イソフタル
酸を全ジカルボン酸に対し5重量パーセント以上含む芳
香族コポリエステルを酢酸エステル化法で製造する方法
において、エステル化反応後の反応混合物中の酢酸濃度
を15重量パーセント以下とした後、重縮合反応を行う
ことを特徴とする芳香族コポリエステルの製造方法。
(1) An aromatic copolyester consisting of hydroxybenzoic acid, dicarboxylic acid, and a dihydroxy compound, in which at least one of the dicarboxylic acids is isophthalic acid, and the aromatic copolyester contains 5% by weight or more of isophthalic acid based on the total dicarboxylic acid. 1. A method for producing an aromatic copolyester by an esterification method, which comprises reducing the acetic acid concentration in the reaction mixture after the esterification reaction to 15% by weight or less, and then carrying out a polycondensation reaction.
JP31196688A 1988-12-12 1988-12-12 Production of aromatic copolyester Pending JPH02158621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31196688A JPH02158621A (en) 1988-12-12 1988-12-12 Production of aromatic copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31196688A JPH02158621A (en) 1988-12-12 1988-12-12 Production of aromatic copolyester

Publications (1)

Publication Number Publication Date
JPH02158621A true JPH02158621A (en) 1990-06-19

Family

ID=18023580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31196688A Pending JPH02158621A (en) 1988-12-12 1988-12-12 Production of aromatic copolyester

Country Status (1)

Country Link
JP (1) JPH02158621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040184A1 (en) * 2009-09-30 2011-04-07 ポリプラスチックス株式会社 Liquid-crystal polymer and molded articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040184A1 (en) * 2009-09-30 2011-04-07 ポリプラスチックス株式会社 Liquid-crystal polymer and molded articles

Similar Documents

Publication Publication Date Title
US4230817A (en) Thermotropic polyesters derived from ferulic acid and a process for preparing the polyesters
JPH021729A (en) Molding material made of thermotropic aromatic polyester
EP0088741B1 (en) Liquid crystal copolyesters and a process for making them
JPS61197629A (en) High-modulus cholesteric liquid crystal polyester
EP0218369B1 (en) Cholesteric liquid crystal copolyesters
EP0311257B1 (en) Cholesteric liquid crystal polyesters
JPH02158621A (en) Production of aromatic copolyester
US4709005A (en) Thermotropic aromatic polyesters
US4746566A (en) Optically anisotropic melt forming aromatic copolyesters based on t-butyl-4-hydroxybenzoic acid
JPH0360331B2 (en)
US4782132A (en) Process for producing a copolyester
US4983707A (en) Copolyester from 1,6-bis(phenoxy)hexane-4,4&#39;-dicarboxylate
US4843140A (en) Aromatic polyesters based on phenoxyterephthalic acid, and methods of manufacturing and using same
US4444980A (en) Liquid crystal copolyesters
US4847351A (en) Liquid crystalline polyesters
US4952663A (en) Wholly aromatic polyesters with reduced char content
US4435561A (en) Temperature stable thermotropic poly(ester carbonate) containing high amounts of readily available diols
JP2005097591A (en) Aromatic liquid crystalline polyester film
JPS63105026A (en) Aromatic polyester
JP2005290100A (en) Liquid crystal polyester solution, manufacturing process therefor and liquid crystal polyester film obtained by the method
EP0305070B1 (en) A melt-processable copolyester
JPS6392651A (en) Polyester imide
JPS62212454A (en) Composition
JPS63210127A (en) Aromatic copolyester
JPH0678428B2 (en) Method for producing cholesteric liquid crystalline polyester