JPH0215808B2 - - Google Patents

Info

Publication number
JPH0215808B2
JPH0215808B2 JP55015300A JP1530080A JPH0215808B2 JP H0215808 B2 JPH0215808 B2 JP H0215808B2 JP 55015300 A JP55015300 A JP 55015300A JP 1530080 A JP1530080 A JP 1530080A JP H0215808 B2 JPH0215808 B2 JP H0215808B2
Authority
JP
Japan
Prior art keywords
light
pressure
parallel
interference fringes
transparent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55015300A
Other languages
Japanese (ja)
Other versions
JPS56111998A (en
Inventor
Masami Tanitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP1530080A priority Critical patent/JPS56111998A/en
Publication of JPS56111998A publication Critical patent/JPS56111998A/en
Publication of JPH0215808B2 publication Critical patent/JPH0215808B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は光を用いた圧力測定装置に関する。[Detailed description of the invention] The present invention relates to a pressure measuring device using light.

光線を用いた圧力信号伝送装置はこれまで実用
化されていないが、圧力を受圧素子の変位に変換
し、その変位を光線を用いて測定する実験室的な
装置はある。
Although pressure signal transmission devices using light beams have not been put to practical use so far, there are laboratory devices that convert pressure into displacement of a pressure-receiving element and measure the displacement using light beams.

第1図は、受圧素子としてブルドン管を用いた
圧力測定装置の簡単な構成図である。導圧孔1に
ブルドン管の圧力入力部2が接続されている。こ
の圧力入力部2にC状のブルドン管3の一端が接
続され、供給された圧力に応じて実線および点線
で示したように変形するようになつている。ブル
ドン管3の自由端には反射板4が設けられてお
り、光源5からの光を受光面6へ反射するように
なつている。
FIG. 1 is a simple configuration diagram of a pressure measuring device using a Bourdon tube as a pressure receiving element. A pressure input section 2 of a Bourdon tube is connected to the pressure guiding hole 1 . One end of a C-shaped Bourdon tube 3 is connected to this pressure input section 2, and is configured to deform as shown by solid lines and dotted lines in response to the supplied pressure. A reflecting plate 4 is provided at the free end of the Bourdon tube 3 and is adapted to reflect light from a light source 5 onto a light receiving surface 6.

このような構成なので、圧力の変化に応じてブ
ルドン管3が変形し、このブルドン管の先端の反
射板4は光の反射方向を変える。それにより受光
面6上の光も位置的に変化する。従つて、あらか
じめ、受光面6上の光の位置と圧力の大きさとの
関係を求めておけば、逆に光の位置から圧力を測
定できることになる。
With this configuration, the Bourdon tube 3 deforms in response to changes in pressure, and the reflecting plate 4 at the tip of the Bourdon tube changes the direction of light reflection. As a result, the light on the light receiving surface 6 also changes positionally. Therefore, if the relationship between the position of the light on the light-receiving surface 6 and the magnitude of the pressure is determined in advance, the pressure can be measured from the position of the light.

ところで、圧力に対する受光面6上の光の移動
量の直線性を向上させるため、ブルドン管3の自
由端の移動量を一般的に小さくしている。そのた
め、反射板4の受光面6との距離を大きくとるこ
とが必要になるので、装置の小形化が困難であつ
た。
Incidentally, in order to improve the linearity of the amount of movement of light on the light receiving surface 6 with respect to pressure, the amount of movement of the free end of the Bourdon tube 3 is generally made small. Therefore, it is necessary to increase the distance between the reflection plate 4 and the light-receiving surface 6, making it difficult to downsize the device.

また、ブルドン管3の先端の移動量を遠隔伝送
する場合は、電気量などの遠隔伝送に適した物理
量に変換しなければならない欠点があつた。
Furthermore, when transmitting the amount of movement of the tip of the Bourdon tube 3 remotely, there is a drawback that it must be converted into a physical quantity suitable for remote transmission, such as an electric quantity.

本発明は、以上の欠点を除去するためになされ
たものであり、小形化でき、かつ、圧力を正確に
測定でき、遠隔伝送が可能である圧力測定装置を
提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a pressure measuring device that can be miniaturized, can accurately measure pressure, and can be transmitted remotely.

以下、本発明の実施例を図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

まず、本発明の基本原理を第2図を参照しなが
ら説明する。届折率nなる媒質7中に屈折率n′、
厚さhの平行板8が設けられている。この平行板
8に入射角θで波長λ0の単色光Lを入射すると、
面aで反射角θの反射光と屈折角θ′の透過光とに
分かれる。反射光は集光レンズ9によつて収束さ
れて受光面10上の点Pに焦点を結ぶ。一方透過
光は面bでさらに反射光と透過光とに分かれる。
透過光は面bで屈折されたのち集光レンズ11に
より収束されて受光面12上の点Qに焦点を結
ぶ。一方、反射光はa面でさらに反射光と透過光
とに分かれる。透過光は面aで屈折されたのち集
光レンズ9により収束されて受光面10上の点P
に焦点を結ぶ。一方、反射光はb面でさらに反射
光と透過光とに分かれる。透過光は集光レンズ1
1により収束されて受光面12上の点Qに焦点を
結ぶ。反射光はa面でさらに反射光と透過光とに
分かれる。以下の光の処理過程は前記した過程と
同様である。その結果、第2図からも明らかなよ
うに両集光レンズ9,11には平行光線が入射さ
れるので、点P、Qに干渉縞が生じる。前記した
面aとbとにおける反射によつて、反射波には位
相差δが生じる。位相差δは、ほぼ δ=4π/λ0n′hcosθ′ で表わすことができる。
First, the basic principle of the present invention will be explained with reference to FIG. In the medium 7 with the delivered refractive index n, there is a refractive index n′,
A parallel plate 8 having a thickness h is provided. When monochromatic light L of wavelength λ 0 is incident on this parallel plate 8 at an incident angle θ,
At surface a, the light is divided into reflected light with a reflection angle θ and transmitted light with a refraction angle θ'. The reflected light is converged by a condensing lens 9 and focused on a point P on the light receiving surface 10. On the other hand, the transmitted light is further divided into reflected light and transmitted light at surface b.
The transmitted light is refracted by the surface b, then converged by the condenser lens 11 and focused at a point Q on the light receiving surface 12. On the other hand, the reflected light is further divided into reflected light and transmitted light on the a-plane. The transmitted light is refracted by the surface a and then converged by the condenser lens 9 to a point P on the light receiving surface 10.
focus on. On the other hand, the reflected light is further divided into reflected light and transmitted light at the b-plane. Transmitted light is collected by condensing lens 1
1 and focuses on a point Q on the light receiving surface 12. The reflected light is further divided into reflected light and transmitted light on the a-plane. The following light processing process is similar to the process described above. As a result, as is clear from FIG. 2, since parallel light rays are incident on both the condenser lenses 9 and 11, interference fringes are generated at points P and Q. Due to the reflection at the surfaces a and b described above, a phase difference δ occurs in the reflected waves. The phase difference δ can be approximately expressed as δ=4π/λ 0 n′hcosθ′.

ただし、λ0は入射光線の波長、n′は平行板8の
屈折率、hは平行板8の厚さ、θ′は透過光の法線
に対する角度である。
Here, λ 0 is the wavelength of the incident light beam, n' is the refractive index of the parallel plate 8, h is the thickness of the parallel plate 8, and θ' is the angle of the transmitted light with respect to the normal.

従つて、位相差δが δ=2mπ ただしmは整数 であるときは、第1の透過光と、a面の反射によ
る透過光との位相が一致するので点Qの明るさは
極大になる。一方、第1の反射光とb面の反射に
よる透過光との位相がちようどπラジアンだけ異
なり正反対の位相になるので、点Pの明るさは極
小になる。また、mが1/2、3/2、5/2…のときは、
位相関係が前記のものとはちようど逆の関係にな
るので、点Qの明るさが極小になり、点Pの明る
さが極大になる。
Therefore, when the phase difference δ is δ=2mπ, where m is an integer, the first transmitted light and the transmitted light due to reflection from the a-plane match in phase, so that the brightness at point Q becomes maximum. On the other hand, since the first reflected light and the transmitted light due to reflection from the b-plane differ in phase by π radians and have opposite phases, the brightness at point P becomes minimum. Also, when m is 1/2, 3/2, 5/2...
Since the phase relationship is exactly the opposite of the above, the brightness at point Q becomes minimum and the brightness at point P becomes maximum.

特に、面a,bにおける反射率が1に近い場合
は、透過光の強度は極大の狭い範囲以外では非常
に小さくなる。そのため、点Qにおける干渉縞は
ほとんど真暗な背景の中に細く輝いた干渉縞とな
る。一方、反射光による点Pにおける干渉縞はほ
とんど均一で明るい背景の中に細く輝いた干渉縞
となる。
In particular, when the reflectance at surfaces a and b is close to 1, the intensity of transmitted light becomes extremely small outside the narrow maximum range. Therefore, the interference fringes at the point Q become thin, shining interference fringes in an almost completely dark background. On the other hand, the interference fringes at the point P due to the reflected light are almost uniform and become thin, shining interference fringes in a bright background.

そこで、単色光線のかわりに白色光線を用いて
干渉縞を作ると、極大または極小となる波長と平
行板8の厚さhとの関係は δ=2mπ=4π/λn′hcosθ′ となる。ただしλは干渉縞の波長である。従つ
て、干渉縞の波長を知ることにより、 h=mλ/2n′cosθ′ なる関係式から厚さhを知ることができる。
Therefore, when interference fringes are created using a white light beam instead of a monochromatic light beam, the relationship between the maximum or minimum wavelength and the thickness h of the parallel plate 8 becomes δ=2mπ=4π/λn′hcosθ′. However, λ is the wavelength of the interference fringe. Therefore, by knowing the wavelength of the interference fringes, the thickness h can be determined from the relational expression: h=mλ/2n'cosθ'.

第3図は、本発明の第一実施例の構造を簡単に
示した断面図である。本実施例の差圧検出部13
から離れた位置に白色光源14が設けられてい
る。この光源14からの白色光はオプテイカルフ
アイバ15を介して平行光線を得る平行光線光学
器16へ伝送される。この平行光線光学器16か
らの平行光線は差圧検出部13へ入射される。差
圧検出部13は、入光面と対向する面に反射面1
7を設けた透明板18と、この透明板18からの
光を反射させる反射板19を中央に設けた測定ダ
イヤフラム20により高圧部21と低圧部22と
に仕切られた差圧室23と、この差圧室23の高
圧部21へ導圧孔24を介して高圧を加える高圧
室25と、前記差圧室23の低圧部22へ導圧孔
26を介して低圧力を加える低圧室27とで構成
されている。なお、高圧室25と低圧室27と
は、共にシールダイヤフラム28,29によつて
圧力入力部30,31と封入部32,33とに仕
切られており、封入部32,33には非圧縮性の
液体34が封入されている。この非圧縮性液体3
4は、また導圧孔24,26を介して差圧室23
の高圧部21と低圧部22とに封入されており、
高圧室25、低圧室27の圧力入力部30,31
に加えられた圧力は非圧縮性液体34によつて差
圧室23へ伝えられるようになつている。差圧検
出部13からの反射光は集光レンズ35により集
光され、この集光レンズ35の焦点の位置に一端
が設置されたオプテイカルフアイバ36を介して
受光器37へ伝送される。受光器37は、本発明
の原理の説明で述べたように、オプテイカルフア
イバ36から投光される光に基づいて、受光面3
8に干渉波長に対応した干渉縞を形成するもので
ある。
FIG. 3 is a sectional view simply showing the structure of the first embodiment of the present invention. Differential pressure detection unit 13 of this embodiment
A white light source 14 is provided at a location away from the camera. The white light from this light source 14 is transmitted through an optical fiber 15 to a parallel beam optic 16 which obtains parallel beams. The parallel light beam from the parallel light optical device 16 is incident on the differential pressure detection section 13. The differential pressure detection unit 13 has a reflective surface 1 on a surface facing the light incident surface.
A differential pressure chamber 23 is partitioned into a high pressure part 21 and a low pressure part 22 by a measuring diaphragm 20 having a transparent plate 18 provided with a transparent plate 7 and a reflecting plate 19 provided in the center to reflect light from the transparent plate 18. A high pressure chamber 25 applies high pressure to the high pressure section 21 of the differential pressure chamber 23 through the pressure guiding hole 24, and a low pressure chamber 27 applies low pressure to the low pressure section 22 of the differential pressure chamber 23 through the pressure guiding hole 26. It is configured. The high pressure chamber 25 and the low pressure chamber 27 are both partitioned into pressure input parts 30, 31 and enclosure parts 32, 33 by seal diaphragms 28, 29, and the enclosure parts 32, 33 are incompressible. A liquid 34 is enclosed. This incompressible liquid 3
4 is also connected to the differential pressure chamber 23 via the pressure guiding holes 24 and 26.
is enclosed in a high pressure part 21 and a low pressure part 22,
Pressure input parts 30 and 31 of high pressure chamber 25 and low pressure chamber 27
The pressure applied to is transmitted to the differential pressure chamber 23 by the incompressible liquid 34. The reflected light from the differential pressure detection unit 13 is collected by a condenser lens 35 and transmitted to a light receiver 37 via an optical fiber 36 whose one end is installed at the focal point of the condenser lens 35 . As described in the explanation of the principle of the present invention, the light receiver 37 detects the light receiving surface 3 based on the light emitted from the optical fiber 36.
8 to form interference fringes corresponding to the interference wavelength.

このような構成において、光源14から白色光
を投光すると、オプテイカルフアイバ15によつ
て平行光線光学器16へ導かれた白色光は平行光
線となり差圧検出部13の透明板17へ入射す
る。この入射光は透明板18の反射面17によつ
て反射光と透過光に分かれ、反射光は集光レンズ
35によつて集光される。一方透過光は反射板1
9により反射され前記反射面17へ至る。そうし
て、この反射面17において、さらに透過光と反
射光とに分かれ、透過光は集光レンズ35によつ
て集光される。一方、反射光は反射板19により
反射され再び前記反射面17へ至る。
In such a configuration, when white light is emitted from the light source 14, the white light guided to the parallel beam optical device 16 by the optical fiber 15 becomes a parallel beam and enters the transparent plate 17 of the differential pressure detection section 13. . This incident light is separated into reflected light and transmitted light by the reflective surface 17 of the transparent plate 18, and the reflected light is focused by the condensing lens 35. On the other hand, the transmitted light is reflected by the reflector 1
9 and reaches the reflective surface 17. Then, on this reflective surface 17, the light is further divided into transmitted light and reflected light, and the transmitted light is condensed by a condensing lens 35. On the other hand, the reflected light is reflected by the reflecting plate 19 and reaches the reflecting surface 17 again.

以下、同様に反射を繰返し、集光レンズ35で
集光された光線はオプテイカルフアイバ36によ
り受光器37へ伝送され、この受光器37の受光
面38上に前記反射面17と反射板19との距離
に応じた波長の干渉縞を形成する。
Thereafter, reflection is repeated in the same way, and the light beam condensed by the condensing lens 35 is transmitted to the light receiver 37 by the optical fiber 36. It forms interference fringes with wavelengths that correspond to the distance between the two.

そこで、高圧室25と低圧室27との入力圧力
が変化し、圧力入力部30,31の圧力が変化す
ると、この圧力変化によりシールダイヤフラム2
8,29が変動する。このシールダイヤフラム2
8,29の変動は封入部31,32に満たされた
非圧縮性液体34により差圧室23の高圧部21
と低圧部とへ伝えられる。その結果生じる高圧部
21と低圧部22との圧力差に応じて測定ダイヤ
フラム20は上方または下方へ運動をする。この
測定はダイヤフラム20には反射板19が設けら
れているので、この上下運動により前記反射面1
9と透明板18の反射面17との距離は差圧に応
じて変化することになる。その結果、受光面38
上に干渉縞をつくる波長が変化する。この干渉縞
を形成している波長は、干渉縞を分析することに
よつてあらかじめ得ることができる。従つて、こ
のようにして得られる干渉縞の波長と差圧との関
係をあらかじめ得ておけば、受光面38上に得ら
れた干渉縞のパターンから逆に差圧を一義的に決
定することができる。
Therefore, when the input pressure of the high pressure chamber 25 and the low pressure chamber 27 changes, and the pressure of the pressure input parts 30 and 31 changes, this pressure change causes the seal diaphragm 2 to
8,29 fluctuate. This seal diaphragm 2
8 and 29 are caused by the high pressure part 21 of the differential pressure chamber 23 due to the incompressible liquid 34 filled in the sealed parts 31 and 32.
and is transmitted to the low pressure section. Depending on the resulting pressure difference between the high-pressure part 21 and the low-pressure part 22, the measuring diaphragm 20 moves upwards or downwards. In this measurement, since the diaphragm 20 is provided with a reflection plate 19, the reflection surface 19 is
The distance between the reflective surface 17 of the transparent plate 18 and the reflective surface 17 of the transparent plate 18 changes depending on the differential pressure. As a result, the light receiving surface 38
The wavelength that creates interference fringes changes. The wavelengths forming the interference fringes can be obtained in advance by analyzing the interference fringes. Therefore, if the relationship between the wavelength of the interference fringes obtained in this way and the differential pressure is obtained in advance, the differential pressure can be uniquely determined from the pattern of the interference fringes obtained on the light receiving surface 38. Can be done.

以上説明したように、本実施例では、光の干渉
現象を利用し、差圧を光信号に変えて、オプテイ
カルフアイバにより遠隔地へ伝送し、遠隔地にお
いて再び光学的に圧力情報に変換するようにした
ので、従来装置と比べて小型化できかつ圧力情報
を遠隔伝送できる。
As explained above, in this embodiment, the optical interference phenomenon is used to convert the differential pressure into an optical signal, transmit it to a remote location via an optical fiber, and optically convert it back into pressure information at the remote location. This makes it possible to reduce the size of the device compared to conventional devices and to transmit pressure information remotely.

第4図は、本発明の第二実施例の構成を簡単に
示した断面図である。第一実施例では反射光によ
る干渉縞を用いたが、本実施例では透過光による
干渉縞を用いる。なお、第3図と同一の箇所には
同一の符号を付して説明は省略する。
FIG. 4 is a sectional view simply showing the configuration of a second embodiment of the present invention. In the first embodiment, interference fringes based on reflected light were used, but in this embodiment, interference fringes based on transmitted light are used. Note that the same parts as in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

第二実施例の差圧室39は、下面を反射面40
とした透明板41を中央に設けた測定ダイヤフラ
ム42によつて高圧部21と低圧部22とに仕切
られている。また差圧室39の上面の中央部は透
明板18により形成され光を入光できるようにな
つており、下面の中央部は上面を反射面43とし
た透明板44により形成され光を反射かつ透過で
きるようになつている。差圧室39の下面を形成
する透明板44を透過した光は集光レンズ35に
より集光され、オプテイカルフアイバ36により
受光器37へ伝送される。
The differential pressure chamber 39 of the second embodiment has a lower surface with a reflecting surface 40.
The high pressure section 21 and the low pressure section 22 are separated by a measuring diaphragm 42 having a transparent plate 41 provided in the center. The center part of the top surface of the differential pressure chamber 39 is formed by a transparent plate 18 to allow light to enter, and the center part of the bottom surface is formed by a transparent plate 44 whose top surface is a reflective surface 43, which reflects and allows light to enter. It has become transparent. The light transmitted through the transparent plate 44 forming the lower surface of the differential pressure chamber 39 is collected by the condenser lens 35 and transmitted to the light receiver 37 by the optical fiber 36 .

このような構成なので、第一実施例の反射光を
透過光に置換えた点が違なり、その他の動作は同
一である。従つて、第一実施例と同一の効果を奏
することができる。
With this configuration, the difference is that the reflected light of the first embodiment is replaced with transmitted light, and the other operations are the same. Therefore, the same effects as the first embodiment can be achieved.

第5図は、本発明の第三実施例の構成を簡単に
示した断面図である。
FIG. 5 is a sectional view simply showing the configuration of a third embodiment of the present invention.

高静圧用差圧伝送器においては透明板が厚くな
るため、シヤープな干渉縞を得るには光線の平行
性、すなわち散乱光でないこと、や透明板と反射
板との平行度に極めて厳しい条件が要求される。
第三実施例はこのような場合に適するもので、オ
プテイカルフアイバや光学器などを封入液中に設
置するようにしたものである。第1図と同一の箇
所には同一の符号を付して説明は省略する。本実
施例の差圧検出部13は入光面と対向する面を反
対面45とした透明板46を中央に設けた測定ダ
イアフラム47により高圧部48と低圧部49と
に仕切られている。高圧部48はさらにシールダ
イアフラム50により圧力入力部54と封入部5
2とに仕切られている。封入部52には非圧縮性
液体34が封入されている。また封入部52に
は、光源14から投光される白色光を伝送するオ
プテイカルフアイバ15の一部と、このフアイバ
15からの光を平行光線に変換し測定ダイアフラ
ム47の投明板46へ投光する平行光線光学器1
6とが設置されている。一方、低圧部49はさら
にシールダイアフラム53により、圧力入力部5
4と封入部55とに仕切られている。封入部55
には、前記測定ダイアフラム47の透明板46と
所定の距離を置いて平行に透明板56が設けられ
ている。この透明板56の測定ダイアフラム47
側の面は反射面57を形成している。また、この
透明板56の両端側に連通孔58が設けられてお
り、封入部55に満たされた非圧縮性液体34が
測定ダイアフラム47と前記透明板56との平行
間隙にも満ちるようになつている。また封入部5
5のシールダイアフラム53側には前記透明板5
6からの透過光を集光する集光レンズ35と、こ
のレンズ35からの光を遠隔地の受光器37へ伝
送するオプテイカルフアイバ36の一部が設置さ
れている。
In differential pressure transmitters for high static pressure, the transparent plate is thick, so in order to obtain sharp interference fringes, extremely strict conditions are required for the parallelism of the light rays, that is, the absence of scattered light, and the parallelism between the transparent plate and the reflecting plate. required.
The third embodiment is suitable for such a case, in which an optical fiber, an optical device, etc. are placed in the sealed liquid. The same parts as in FIG. 1 are given the same reference numerals, and the explanation will be omitted. The differential pressure detection section 13 of this embodiment is partitioned into a high pressure section 48 and a low pressure section 49 by a measurement diaphragm 47 having a transparent plate 46 in the center with a surface 45 opposite to the light incident surface. The high pressure section 48 is further connected to a pressure input section 54 and an enclosure section 5 by a seal diaphragm 50.
It is divided into 2. The incompressible liquid 34 is sealed in the sealed portion 52 . Further, the enclosing part 52 includes a part of the optical fiber 15 that transmits the white light emitted from the light source 14, and a part of the optical fiber 15 that converts the light from the fiber 15 into parallel light beams and projects them onto the projection plate 46 of the measurement diaphragm 47. Lighting parallel ray optical device 1
6 is installed. On the other hand, the low pressure section 49 is further connected to the pressure input section 5 by a seal diaphragm 53.
4 and an enclosure section 55. Enclosure section 55
A transparent plate 56 is provided parallel to the transparent plate 46 of the measuring diaphragm 47 at a predetermined distance. Measuring diaphragm 47 of this transparent plate 56
The side surface forms a reflective surface 57. Furthermore, communication holes 58 are provided at both ends of the transparent plate 56, so that the incompressible liquid 34 filled in the enclosure 55 also fills the parallel gap between the measurement diaphragm 47 and the transparent plate 56. ing. Also, the enclosure part 5
The transparent plate 5 is placed on the side of the seal diaphragm 53 of 5.
A condensing lens 35 that condenses the transmitted light from 6 and a part of an optical fiber 36 that transmits the light from this lens 35 to a light receiver 37 at a remote location are installed.

このような構成なので、第一および第二実施例
のないように光線が厚い透明板を透過する必要が
ないので、シヤープな干渉縞を得ることができ
る。その他の効果は第一実施例と同様である。
With such a configuration, it is not necessary for the light beam to pass through a thick transparent plate unlike in the first and second embodiments, so that sharp interference fringes can be obtained. Other effects are similar to those of the first embodiment.

なお、本発明は前記第一ないし三の実施例に限
られるものではない。たとえば前記第一ないし三
の実施例では、白色光源を用いたが、この場合は
干渉縞の数が極めて多くなり、干渉を起した波長
を知ることが困難である。そこで、光源の波長領
域を次のように限定すると干渉を起した波長を知
ることが容易になる。すなわち、第一ないし三の
反射面間の距離hがh0からh0+Δhに変化すると
きは、 λminおよびλmaxは λmin=2π/2mπn′h0cosθ′ λmax=2π/2mπn′(h0+Δh)cosθ′ であるので、光源の波長λをλminλλmax
に限定すればよい。なお、λminとλmaxとの比
は前記した2式よりλmax/λmin=1+Δh/h0
の関係になる。
Note that the present invention is not limited to the first to third embodiments. For example, in the first to third embodiments, a white light source is used, but in this case, the number of interference fringes is extremely large, making it difficult to know the wavelength at which interference occurs. Therefore, if the wavelength range of the light source is limited as follows, it becomes easy to know the wavelength at which interference occurs. That is, when the distance h between the first to third reflecting surfaces changes from h 0 to h 0 +Δh, λmin and λmax are as follows: λmin=2π/2mπn′h 0 cosθ′ λmax=2π/2mπn′(h 0 +Δh )cosθ′, so the wavelength λ of the light source is λminλλmax
should be limited to. In addition, the ratio of λmin and λmax is calculated from the above two equations as follows: λmax/λmin=1+Δh/h 0
It becomes a relationship.

その他、本発明の要旨を逸脱しない範囲で種々
変形できることは勿論である。
It goes without saying that various other modifications can be made without departing from the gist of the present invention.

以上説明したように、本発明は所定の距離を置
いて対向して平行に設けられ圧力差に応じてその
対向距離を変化する2つの反射面に平行光線を入
射して干渉光を得、この干渉光を集光レンズで集
光した後光フアイバで遠隔地へ伝送し、この遠隔
地の受光面に形成する干渉縞の波長に基づいて圧
力を得るようにしたので、従来全く実施不可能で
あつた光信号を用いてプロセス圧力を正確に測定
でき、かつ、遠隔地から圧力を確実に測定可能で
あり、種々の外的要因に影響されずに圧力を測定
できる圧力測定装置を提供できる。
As explained above, the present invention obtains interference light by making parallel light rays incident on two reflective surfaces that are provided in parallel and facing each other with a predetermined distance apart, and whose facing distance changes according to the pressure difference. The interference light is focused by a condensing lens, then transmitted to a remote location via an optical fiber, and pressure is obtained based on the wavelength of the interference fringes formed on the receiving surface of this remote location, which was previously impossible to do. It is possible to provide a pressure measuring device that can accurately measure process pressure using a heated optical signal, can reliably measure pressure from a remote location, and can measure pressure without being influenced by various external factors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の簡単な構成図、第2図は本
発明の原理の説明図、第3図は本発明の第一実施
例の構成を示す簡単な断面図、第4図は本発明の
第二実施例の構成を示す簡単な断面図、第5図は
本発明の第三実施例の構成を示す簡単な断面図で
ある。 14……光源、15……オプテイカルフアイ
バ、16……平行光線光学器、17……反射面、
18……透明板、19……反射板、20……測定
ダイアフラム、23……差圧室、24……導圧
孔、25……高圧室、26……導圧孔、27……
低圧孔、28,29……シールダイアフラム、3
4……非圧縮性封入液体、35……集光レンズ、
36……オプテイカルフアイバ、37……受光
器、40……反射面、41……透明板、42……
測定ダイアフラム、43……反射面、44……透
明板、45……反射面、46……透明板、47…
…測定ダイアフラム、56……透明板、57……
反射面、58……連通孔。
Fig. 1 is a simple configuration diagram of a conventional device, Fig. 2 is an explanatory diagram of the principle of the present invention, Fig. 3 is a simple sectional view showing the configuration of the first embodiment of the present invention, and Fig. 4 is a diagram of the present invention. FIG. 5 is a simple sectional view showing the structure of a second embodiment of the present invention, and FIG. 5 is a simple sectional view showing the structure of a third embodiment of the present invention. 14... Light source, 15... Optical fiber, 16... Parallel ray optic, 17... Reflective surface,
18... Transparent plate, 19... Reflection plate, 20... Measurement diaphragm, 23... Differential pressure chamber, 24... Pressure guiding hole, 25... High pressure chamber, 26... Pressure guiding hole, 27...
Low pressure hole, 28, 29...Seal diaphragm, 3
4... Incompressible sealed liquid, 35... Condensing lens,
36... Optical fiber, 37... Light receiver, 40... Reflective surface, 41... Transparent plate, 42...
Measuring diaphragm, 43...Reflecting surface, 44...Transparent plate, 45...Reflecting surface, 46...Transparent plate, 47...
...Measuring diaphragm, 56...Transparent plate, 57...
Reflective surface, 58...Communication hole.

Claims (1)

【特許請求の範囲】[Claims] 1 平行光線投光器と、この平行光線投光器から
の平行光線の入射側に第1の反射板を固定配置
し、かつ、この第1の反射板に対して所定の距離
を有して平行に対向されてなる圧力差に応じて位
置変化する部材に第2の反射板を取付け、前記平
行光線投光器からの平行光線の入射を受け、圧力
の変化に伴つて変化する前記第1、第2の反射板
の対向距離に応じて変化する波長の干渉縞を得る
圧力−光変換器と、この圧力−光変換器からの干
渉縞の光信号を集光する集光レンズと、この集光
レンズからの光信号を光フアイバを通して受光し
この受光面に形成される干渉縞の波長に基づいて
圧力を測定する圧力測定手段とを備えたことを特
徴とする圧力測定装置。
1. A parallel beam projector, a first reflecting plate fixedly disposed on the incident side of the parallel beams from the parallel beam projector, and facing parallel to the first reflecting plate at a predetermined distance. a second reflecting plate is attached to a member whose position changes according to a pressure difference, and the first and second reflecting plates change in accordance with a change in pressure upon receiving a parallel ray from the parallel ray projector; A pressure-to-light converter that obtains interference fringes with a wavelength that changes depending on the facing distance between the A pressure measuring device comprising pressure measuring means for receiving a signal through an optical fiber and measuring pressure based on the wavelength of interference fringes formed on the light receiving surface.
JP1530080A 1980-02-11 1980-02-11 Pressure signal transmitter Granted JPS56111998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1530080A JPS56111998A (en) 1980-02-11 1980-02-11 Pressure signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1530080A JPS56111998A (en) 1980-02-11 1980-02-11 Pressure signal transmitter

Publications (2)

Publication Number Publication Date
JPS56111998A JPS56111998A (en) 1981-09-04
JPH0215808B2 true JPH0215808B2 (en) 1990-04-13

Family

ID=11884956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1530080A Granted JPS56111998A (en) 1980-02-11 1980-02-11 Pressure signal transmitter

Country Status (1)

Country Link
JP (1) JPS56111998A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600836A (en) * 1984-04-03 1986-07-15 The Babcock & Wilcox Company Diaphragm deflection sensor for fused silica diaphragm module
JPS61235731A (en) * 1985-04-11 1986-10-21 Sharp Corp Pressure sensing element
US7252556B2 (en) 2003-06-18 2007-08-07 Fci Electrical connector having locking claw
NL2003266A1 (en) 2008-08-11 2010-02-15 Asml Holding Nv Multi nozzle proximity sensor employing common sensing and nozzle shaping.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158971A (en) * 1974-11-20 1976-05-22 Nippon Naitoronikusu Kk ATSUMIKEI
JPS53119076A (en) * 1977-03-26 1978-10-18 Ritsuo Hasumi Optical thicknessmeter for transparent film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158971A (en) * 1974-11-20 1976-05-22 Nippon Naitoronikusu Kk ATSUMIKEI
JPS53119076A (en) * 1977-03-26 1978-10-18 Ritsuo Hasumi Optical thicknessmeter for transparent film

Also Published As

Publication number Publication date
JPS56111998A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
EP0458888B1 (en) Interferometry
JPH021251B2 (en)
JP3924211B2 (en) Integrated optical interference sensor
US4596925A (en) Fiber optic displacement sensor with built-in reference
JP2913984B2 (en) Tilt angle measuring device
US4822135A (en) Optical wave guide band edge sensor and method
JPS6147369B2 (en)
JPH0413642B2 (en)
JPH0231113A (en) Interferometer sensor and use of the same in interferometer device
US4083254A (en) Accelerometer
US4932782A (en) Channelled light spectrum analysis measurement method and device, more especially for measuring a low amplitude movement of a mobile surface, which may be representative of a variation of a physical magnitude convertible into such a movement
CA1203701A (en) Fiber-optic luminescence sensor utilising interference in a thin layer structure
US5011287A (en) Interferometer object position measuring system and device
US5418361A (en) Optical displacement sensor employing reflected light of four wavelengths to determine displacement and the refractive index of the medium
JPH0215808B2 (en)
US7933023B2 (en) Displacement detection apparatus, displacement measurement apparatus and fixed point detection apparatus
US5521884A (en) Vibrating element transducer
JP4653898B2 (en) Tilt detection device
US4717240A (en) Interferometeric beamsplitter
KR850007466A (en) System to detect the degree of deflection of the diaphragm module
US4607162A (en) Sensing apparatus for measuring a physical quantity
JPH0249115A (en) Displacement measuring instrument and pressure measuring instrument utilizing such instrument
US4861980A (en) Optical sensor having stationary co-terminus ends of the input and output optical fibres
WO2023159395A1 (en) Demodulation system for optical fiber fabry‑perot sensor
JPS61256204A (en) Optical fiber displacement sensor