JPH0215789B2 - - Google Patents

Info

Publication number
JPH0215789B2
JPH0215789B2 JP57227310A JP22731082A JPH0215789B2 JP H0215789 B2 JPH0215789 B2 JP H0215789B2 JP 57227310 A JP57227310 A JP 57227310A JP 22731082 A JP22731082 A JP 22731082A JP H0215789 B2 JPH0215789 B2 JP H0215789B2
Authority
JP
Japan
Prior art keywords
temperature
degree
expansion valve
tube
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57227310A
Other languages
Japanese (ja)
Other versions
JPS59122875A (en
Inventor
Tomoo Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP57227310A priority Critical patent/JPS59122875A/en
Publication of JPS59122875A publication Critical patent/JPS59122875A/en
Publication of JPH0215789B2 publication Critical patent/JPH0215789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0681Expansion valves combined with a sensor the sensor is heated

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 本発明は常に適正過熱度において弁開度を調整
しうる温度式膨張弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermostatic expansion valve whose opening degree can always be adjusted at an appropriate degree of superheat.

蒸発器、圧縮機、凝縮器及び感温膨張弁をそれ
ぞれ直列に連結したサイクルからなる冷凍装置に
おいて、温度式膨張弁は蒸発器内の液冷媒の蒸発
の割合によつて変化する蒸発器出口側の冷媒ガス
の過熱度を感温筒で検出することによつて、膨張
弁の圧力室にガス圧として伝達し、蒸発器内に流
入させる液冷媒の割合を精密に制御調節する機器
であるが、負荷条件や外気条件が大幅に変動する
条件で冷凍装置が運転される場合には膨張弁の制
御を精密に調節することは一般に困難である。
In a refrigeration system consisting of a cycle in which an evaporator, a compressor, a condenser, and a temperature-sensitive expansion valve are connected in series, the temperature-type expansion valve is located on the evaporator outlet side and changes depending on the evaporation rate of the liquid refrigerant in the evaporator. This is a device that precisely controls and adjusts the proportion of liquid refrigerant that is transmitted to the pressure chamber of the expansion valve as gas pressure and flows into the evaporator by detecting the degree of superheat of the refrigerant gas with a temperature-sensitive cylinder. It is generally difficult to precisely adjust the control of the expansion valve when the refrigeration system is operated under conditions where load conditions and outside air conditions vary widely.

即ち、例えば負荷が大幅に増えた場合には、過
熱度が上昇して膨張弁の開度は大きくなるが、膨
張弁の開度は過熱度に比例している為に結果的に
システムの過熱度が大きくなつてしまい、蒸発器
の蒸発有効面積が少なくなつてしまう。又、逆に
負荷が大幅に減少した場合には、過熱度が小さく
なり、蒸発器内における冷媒の蒸発が不十分とな
つて、液状の冷媒を混入した状態で圧縮機に吸い
込まれ、その結果液圧縮による圧縮機の効率低下
のみならず、強いては圧縮機の破損を来す場合が
ある。
In other words, for example, if the load increases significantly, the degree of superheat will increase and the opening of the expansion valve will increase, but since the degree of opening of the expansion valve is proportional to the degree of superheat, the system will eventually become overheated. As a result, the effective evaporation area of the evaporator decreases. Conversely, if the load decreases significantly, the degree of superheating will decrease, and the refrigerant in the evaporator will not evaporate sufficiently, and the refrigerant will be sucked into the compressor mixed with liquid refrigerant. This may not only reduce the efficiency of the compressor due to liquid compression, but may even cause damage to the compressor.

従つて、かかる上記の問題点を解消するために
は、蒸発器出口側における冷媒過熱度の変動幅を
極力減少させて常に適正な設定過熱度(例えば+
5℃)に保持して運転することが望ましく、膨張
弁の過熱度による弁開度の特性を少しの過熱度の
変化で弁開度を大きく動かす事により、過熱度の
変動幅を少なくする事ができるが、この場合には
弁開度の変化が大きい為に、冷凍サイクルのむだ
時間やサクシヨンの圧力変動による影響で膨張弁
の弁開度を適宜な値に保つ事が難しく、冷凍サイ
クルのハンチングを起こす要因となる為、従来の
膨張弁では一台で冷媒過熱度の変動幅の全域にわ
たつて制御することは困難であるので、負荷の大
きさ或いは蒸発温度範囲の程度によりその設定値
を使い分けるか、或いは特公昭57−47380号公報
記載のように膨張弁の静止過熱度を標準値よりも
高く設定し、その手段として傍熱電気ヒーターを
感温筒に設け、冷媒ガスの過熱度が適正になる如
く膨張弁のばね圧を調整する等の試みも行われて
いる。
Therefore, in order to solve the above-mentioned problems, it is necessary to reduce the fluctuation range of the degree of superheating of the refrigerant at the evaporator outlet side as much as possible so as to always maintain an appropriate set degree of superheating (for example, +
It is desirable to operate the expansion valve at a temperature of 5°C), and the variation range of superheat degree can be reduced by changing the valve opening degree largely with a small change in superheat degree. However, in this case, since the valve opening changes greatly, it is difficult to maintain the expansion valve opening at an appropriate value due to the effects of dead time in the refrigeration cycle and suction pressure fluctuations, and the refrigeration cycle It is difficult for a single conventional expansion valve to control the refrigerant superheat degree over the entire range of fluctuations, as this can cause hunting. Alternatively, as described in Japanese Patent Publication No. 57-47380, the static superheating degree of the expansion valve can be set higher than the standard value, and as a means of doing so, an indirect electric heater can be installed in the temperature sensing tube to adjust the superheating degree of the refrigerant gas. Attempts have also been made to adjust the spring pressure of the expansion valve so that the

しかし、蒸発器出口側の冷媒ガス管に添着した
感温筒に電気ヒーターを付設し、ヒーターへの印
加電圧を調整して膨張弁の静止過熱度を調整する
方法には以下のような種々の欠点がある。即ち、
膨張弁の全閉から全開までの過熱度差は通常5℃
前後であるため、温度が1℃変化すると弁開度は
20%変化してしまう。従つて、弁開度誤差を10%
以内にするには、停止過熱度を±0.5℃以内に調
節しなければならないが、この方法では感温筒内
のガス温度を設定値温度に対して例えば±0.5℃
以内という精密な温度範囲に調整することは、感
温筒と冷媒配管との接触による配管への熱伝達、
管内を流れる冷媒の熱容量の相違による熱伝達率
の差、感温筒への結露、着霜による熱伝達、感温
筒周辺の風速、感温筒の冷媒配管への装着方法の
相違による熱伝達の差及び装着具の熱容量の相違
等多岐にわたる影響を被り易い感温筒の装着条件
からみて不可能と考えられる。
However, there are various methods for adjusting the static superheating degree of the expansion valve by attaching an electric heater to a temperature-sensitive tube attached to the refrigerant gas pipe on the evaporator outlet side and adjusting the voltage applied to the heater. There are drawbacks. That is,
The difference in degree of superheating between fully closed and fully opened expansion valves is usually 5°C.
Since the temperature is around 1°C, the valve opening will change when the temperature changes by 1°C.
It will change by 20%. Therefore, the valve opening error is reduced to 10%.
In order to keep it within ±0.5℃, the stop superheat degree must be adjusted to within ±0.5℃, but with this method, the gas temperature inside the thermosensor cylinder must be adjusted within ±0.5℃ relative to the set value temperature.
Adjusting the temperature to a precise temperature range within this range is due to heat transfer to the piping due to contact between the thermosensor and the refrigerant piping,
Differences in heat transfer coefficient due to differences in the heat capacity of the refrigerant flowing inside the pipes, heat transfer due to condensation on the thermosensor tube, heat transfer due to frost formation, wind speed around the thermosensor tube, heat transfer due to differences in the method of attaching the thermosensor tube to the refrigerant piping. This is considered impossible considering the mounting conditions of the thermosensor tube, which are susceptible to a wide variety of influences, such as differences in heat capacity and heat capacities of mounting tools.

本発明はかかる観点から、従来の膨張弁に付随
する上記の問題点を解消して負荷条件及び外気条
件の大幅な変動に際しても常に適正な設定値の過
熱度を保持でき、しかも設定値の変動幅の少ない
温度式膨張弁を提供することを目的としたもの
で、不活性ガスと該ガスの吸着剤を封入してなる
大小2個の感温筒を細管で膨張弁の圧力室に接続
し、大感温筒を蒸発器出口側の冷媒配管に添着す
ると共に、小感温筒に過熱度可変ヒーターを付設
することによつて小感温筒内のガス圧を可変し、
大感温筒の設定過熱度に大幅な変動を与えること
なく膨張弁の開度を精密に調節することを可能と
した温度式膨張弁を提供するものである。
From this point of view, the present invention solves the above-mentioned problems associated with conventional expansion valves, and can always maintain an appropriate set value of superheat degree even when load conditions and outside air conditions fluctuate significantly, and furthermore, the present invention can maintain an appropriate set value of superheat degree even when the load conditions and outside air conditions change significantly. The purpose is to provide a temperature-type expansion valve with a small width, and two large and small temperature-sensitive cylinders filled with an inert gas and an adsorbent for the gas are connected to the pressure chamber of the expansion valve with a thin tube. , by attaching a large temperature-sensing tube to the refrigerant pipe on the evaporator outlet side and attaching a variable superheat heater to the small temperature-sensing tube, the gas pressure inside the small temperature-sensing tube can be varied;
To provide a temperature-type expansion valve that makes it possible to precisely adjust the opening degree of the expansion valve without significantly changing the superheat setting of a large temperature-sensitive tube.

以下、本発明を実施例を示す添付の図面に基づ
いて説明する。第1図は本発明にかかる温度式膨
張弁の一部切欠部を含む断面図で、弁本体1の下
端部に凝縮器(図示せず)から送られる高温高圧
の冷媒液流入管Bから流入する冷媒液量の調節用
弁体3がばね4と一体に設けられ、該弁体3はダ
イヤフラム6の下面に固定された弁棒7の下端部
に一体に形成されている。Aは弁体3の開閉に応
じて膨張弁2に流入し、断熱膨張により低温低圧
化した冷媒液の流出管で、この流出管Aは蒸発器
(図示せず)に連設している。8は蒸発器出口側
の冷媒と連通する外部均圧管で、均圧室5bに弁
本体1内の通路を介して連通し、該均圧室5b内
の圧力はばね4の圧力とともにダイヤフラム6の
下面に作用する。5は上部蓋体でダイヤフラム6
の上面に圧力室5aが形成され、該圧力室5aは
キヤピラリー管(細管)9を介して大型の吸着型
感温筒T1の一端に連通し、又該感温筒T1の他端
はキヤピラリー管10を介して他端を封止した小
型の吸着型感温筒T2の一端に連結されている。
これら大小の吸着型感温筒に封入される吸着剤K
としては活性炭が好適に使用しうるが、加熱又は
冷却により封入された不活性ガスが容易に脱離又
は吸着しうるものであれば特に活性炭に限定され
ない。又、上記大小の吸着型感温筒に充填される
吸着剤の量比は例えば10:1等の如く適宜加減す
ることができる。又、更に小型の吸着型感温筒
T2の筒体には、例えば電圧調整等の手段によつ
て加熱温度の可変調整可能なヒーター11が巻着
又は介挿される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings showing embodiments. FIG. 1 is a cross-sectional view including a partial cutout of a thermostatic expansion valve according to the present invention, in which a high-temperature, high-pressure refrigerant liquid flows into the lower end of the valve body 1 from an inflow pipe B from a condenser (not shown). A valve body 3 for adjusting the amount of refrigerant liquid is provided integrally with a spring 4, and the valve body 3 is formed integrally with the lower end of a valve rod 7 fixed to the lower surface of a diaphragm 6. A is an outflow pipe for the refrigerant liquid that flows into the expansion valve 2 in accordance with the opening and closing of the valve body 3 and is lowered in temperature and pressure by adiabatic expansion, and this outflow pipe A is connected to an evaporator (not shown). Reference numeral 8 denotes an external pressure equalizing pipe that communicates with the refrigerant on the evaporator outlet side, and communicates with the pressure equalizing chamber 5b through a passage in the valve body 1. Acts on the lower surface. 5 is the upper lid body and diaphragm 6
A pressure chamber 5a is formed on the upper surface, and the pressure chamber 5a communicates with one end of a large adsorption type temperature sensing tube T1 via a capillary tube (thin tube) 9, and the other end of the temperature sensing tube T1 is It is connected via a capillary tube 10 to one end of a small adsorption type temperature sensing tube T2 whose other end is sealed.
Adsorbent K enclosed in these large and small adsorption type thermosensor cylinders
Activated carbon can be suitably used as the carbon, but it is not particularly limited to activated carbon as long as it can easily desorb or adsorb the enclosed inert gas by heating or cooling. Further, the ratio of the amounts of adsorbents filled in the adsorption type temperature sensing cylinders of different sizes can be adjusted as appropriate, for example, to 10:1. In addition, even smaller adsorption type thermosensor
A heater 11 whose heating temperature can be variably adjusted by means of voltage adjustment or the like is wound around or inserted into the cylindrical body of T2 .

本発明の温度式膨張弁は上記の構成からなり、
弁本体1を凝縮器出口配管及び蒸発室入口配管に
介装するとともに、大型の吸着型感温筒T1を蒸
発器出口側の冷媒配管に添着して冷媒温度を検出
させるようにし、小型の吸着型感温筒T2は蒸発
器周辺の外気温度の影響を受けない安定した周囲
温度を有する室内個所に設置する。
The thermostatic expansion valve of the present invention has the above configuration,
The valve body 1 is installed in the condenser outlet piping and the evaporation chamber inlet piping, and a large adsorption type temperature sensing tube T1 is attached to the refrigerant piping on the evaporator outlet side to detect the refrigerant temperature. The adsorption type thermosensor tube T 2 is installed in an indoor location with a stable ambient temperature that is not affected by the outside air temperature around the evaporator.

次に本発明の温度式膨張弁の作動を第2図の過
熱度と膨張弁の弁開度との関係を示すグラフにつ
いて説明すると、例えば小感温筒T2の加熱温度
を80℃に保持した場合に弁開度が1.0で、蒸発器
出口の適正過熱度が+5℃の標準値に保持されて
冷凍運転が行われるものとすれば、静止過熱度の
設定値はt2となり、線2に従つた弁動作が行われ
る。
Next, the operation of the thermostatic expansion valve of the present invention will be explained with reference to the graph shown in Figure 2 which shows the relationship between the degree of superheating and the valve opening of the expansion valve.For example, the heating temperature of the small thermosensitive tube T2 is maintained at 80℃ In this case, if the valve opening is 1.0 and the appropriate degree of superheat at the evaporator outlet is maintained at the standard value of +5°C and refrigeration operation is performed, the set value of the static degree of superheat is t 2 , and the line 2 The valve operation is performed according to the following.

しかるに、運転中蒸発器の負荷が増大して、弁
開度を1.5に増加させたい場合、従来の膨張弁で
は線2のa2からa′2に相当する過熱度即ち約+7
℃に蒸発器出口の冷媒過熱度が上昇しない限り弁
開度を1.5にすることはできない。しかし、過熱
度が標準設定値(例えば+5℃)より高くなるこ
とは前述したように望ましくない結果を来す。
However, if the load on the evaporator increases during operation and it is desired to increase the valve opening degree to 1.5, the conventional expansion valve will increase the superheat degree corresponding to a 2 to a' 2 of line 2, that is, about +7
The valve opening cannot be set to 1.5 unless the degree of superheating of the refrigerant at the evaporator outlet increases to ℃. However, increasing the degree of superheat above the standard setting (eg, +5° C.) has undesirable consequences as described above.

しかるに、本発明によれば、小感温筒T2の加
熱温度を標準値(例えば80℃)より高めることに
より容易に膨張弁の静止加熱度がt1の線1に移行
させることができるので、この場合過熱度はa1
点即ち+5℃の過熱度のままで弁開度を1.5に調
整することができる。又、逆に負荷が過小となつ
た場合には小感温筒T2の加熱温度を標準値より
低下させることによつて静止過熱度がt3の線3に
移行させることができ、同様に標準設定値の過熱
度(+5℃)のままで弁開度を0.5に調整するこ
とができる。
However, according to the present invention, the static heating degree of the expansion valve can be easily shifted to line 1 of t1 by increasing the heating temperature of the small temperature-sensitive tube T2 above the standard value (for example, 80°C). In this case, the degree of superheating can be adjusted to 1.5 while keeping the degree of superheating at point a1 , that is, +5°C. Conversely, if the load becomes too small, the static superheat degree can be shifted to line 3 with t3 by lowering the heating temperature of the small thermosensor tube T2 from the standard value, and similarly. The valve opening degree can be adjusted to 0.5 while keeping the standard setting value of superheat degree (+5℃).

このように本発明によるときは小感温筒T2
加熱温度を負荷の大小に応じて適宜調整すること
により常に一定の標準設定値の過熱度で弁開度を
調整することが可能となる。従つて冷凍能力の異
なる冷凍装置についても1台の膨張弁で充分対応
することができ、過熱度の変動はヒーターの印加
電圧によつて解消できるので、過熱度による弁開
度の調整を少なくする事ができ、膨張弁並びに冷
凍サイクルのハンチングも防止する事ができる。
In this way, according to the present invention, by appropriately adjusting the heating temperature of the small temperature-sensitive tube T2 according to the magnitude of the load, it is possible to always adjust the valve opening degree at a constant standard setting value of superheat degree. . Therefore, one expansion valve is sufficient to handle refrigeration equipment with different refrigerating capacities, and fluctuations in the degree of superheating can be eliminated by changing the voltage applied to the heater, reducing the need to adjust the valve opening degree depending on the degree of superheating. It is also possible to prevent hunting of the expansion valve and refrigeration cycle.

又、本発明では大感温筒T1と小感温筒T2を設
けて、小感温筒T2を加熱調整するようにしたか
ら、大感温筒と小感温筒に充填する吸着剤の量比
を例えば10:1等に調整することによつて、小感
温筒の加熱による影響を大感温筒においては1/10
に低減することが可能となり、従つて小感温筒の
加熱温度の変化が例えば±5℃であつたとして
も、大感温筒の温度変化は±0.5℃の微少な範囲
内に調整することができ、過熱度の増減に基づく
弁開度の調整を精密に行うことが可能となる。
In addition, in the present invention, the large temperature-sensitive tube T1 and the small temperature-sensitive tube T2 are provided to adjust the heating of the small temperature-sensitive tube T2 . By adjusting the amount ratio of the agent to, for example, 10:1, the effect of heating on the small thermosensor can be reduced to 1/10 on the large thermosensor.
Therefore, even if the change in the heating temperature of the small thermosensor is, for example, ±5°C, the temperature change of the large thermosensor can be adjusted to within a minute range of ±0.5°C. This makes it possible to precisely adjust the valve opening based on increases and decreases in the degree of superheating.

又、本発明によれば、小感温筒を周囲温度の安
定した場所に設置することができるので、周囲温
度の変動即ち負荷の変動に応じて膨張弁の過熱度
設定値をかなり正確に制御することが可能とな
り、従つて、負荷の変動と小感温筒の加熱とを連
動して自動制御することにより、自動操作又は遠
隔操作も容易に実施し得る。
Furthermore, according to the present invention, since the small temperature-sensing cylinder can be installed in a place where the ambient temperature is stable, the superheat degree setting value of the expansion valve can be controlled fairly accurately in response to changes in the ambient temperature, that is, changes in the load. Therefore, by automatically controlling load fluctuations and heating of the small temperature-sensing tube in conjunction with each other, automatic operation or remote operation can be easily carried out.

更に、本発明では小感温筒を冷凍装置から離隔
して設置することにより結露、着霜の虞がなくヒ
ーターは安全に操作し得ると共に、小感温筒内に
充填される吸着剤量は少量でよいから、加熱によ
る発生ガス圧の上昇も過大となることはなく、万
一異常加熱が生じても膨張弁のダイヤフラムを破
損する虞は全くない等種々の利点効果を有する。
Furthermore, in the present invention, by installing the small temperature-sensing tube separately from the refrigeration equipment, the heater can be operated safely without the risk of condensation or frost formation, and the amount of adsorbent filled in the small temperature-sensing tube can be reduced. Since only a small amount is required, the pressure of the generated gas does not increase excessively due to heating, and even if abnormal heating occurs, there is no risk of damaging the diaphragm of the expansion valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温度式膨張弁の一部切欠部を
含む断面図、第2図は本発明の温度式膨張弁の作
動状態を示す図である。 1……弁本体、3……調節用弁体、4……ば
ね、5……上部蓋体、5a……圧力室、5B……
均圧室、6……ダイヤフラム、8……外部均圧
管、9,10……キヤピラリー管、11……ヒー
ター、A……流出管、B……流入管、T1,T2
…吸着型感温筒、K……吸着剤。
FIG. 1 is a sectional view including a partially cut-out portion of the thermostatic expansion valve of the present invention, and FIG. 2 is a diagram showing the operating state of the thermostatic expansion valve of the present invention. DESCRIPTION OF SYMBOLS 1... Valve body, 3... Adjustment valve body, 4... Spring, 5... Upper lid body, 5a... Pressure chamber, 5B...
Pressure equalization chamber, 6...Diaphragm, 8...External pressure equalization pipe, 9, 10...Capillary tube, 11...Heater, A...Outflow pipe, B...Inflow pipe, T1 , T2 ...
...Adsorption type thermosensor, K...Adsorbent.

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍サイクルの蒸発器出口側の冷媒配管に感
温筒を添着し、冷媒ガスの過熱度を感温筒で検知
して蒸発器入口側の絞り開度を制御する膨張弁に
おいて、不活性ガスと該ガスの吸着剤を封入して
なる大小2個の感温筒を細管で膨張弁の圧力室に
接続し、大感温筒を蒸発器出口側の冷媒配管に添
着するとともに小感温筒に過熱度可変ヒーターを
付設したことを特徴とする温度式膨張弁。
1. A thermosensor tube is attached to the refrigerant pipe on the evaporator outlet side of the refrigeration cycle, and the inert gas Two large and small temperature-sensing cylinders filled with an adsorbent for the gas are connected to the pressure chamber of the expansion valve with a thin tube, and the large temperature-sensing cylinder is attached to the refrigerant pipe on the evaporator outlet side, and the small temperature-sensing cylinder is attached to the refrigerant pipe on the outlet side of the evaporator. A temperature-type expansion valve characterized by being equipped with a variable superheating heater.
JP57227310A 1982-12-28 1982-12-28 Temperature type expansion valve Granted JPS59122875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227310A JPS59122875A (en) 1982-12-28 1982-12-28 Temperature type expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227310A JPS59122875A (en) 1982-12-28 1982-12-28 Temperature type expansion valve

Publications (2)

Publication Number Publication Date
JPS59122875A JPS59122875A (en) 1984-07-16
JPH0215789B2 true JPH0215789B2 (en) 1990-04-13

Family

ID=16858796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227310A Granted JPS59122875A (en) 1982-12-28 1982-12-28 Temperature type expansion valve

Country Status (1)

Country Link
JP (1) JPS59122875A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162271U (en) * 1987-04-14 1988-10-24
JP2600713B2 (en) * 1987-09-28 1997-04-16 三菱電機株式会社 Expansion valve control device for air conditioner
JP2723533B2 (en) * 1988-04-27 1998-03-09 日本電信電話株式会社 Heat motor type condensing pressure regulating valve
KR100456520B1 (en) * 2002-09-16 2004-11-10 기아자동차주식회사 Expansion valve system of air conditioner for car
CN112944706A (en) * 2021-02-20 2021-06-11 冷王(上海)实业有限公司 Transport refrigeration unit and control method thereof

Also Published As

Publication number Publication date
JPS59122875A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
CA1054812A (en) Refrigeration system subcooling control
US5195331A (en) Method of using a thermal expansion valve device, evaporator and flow control means assembly and refrigerating machine
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
JPH0239709B2 (en)
JPS61105066A (en) Expansion valve
US3667247A (en) Refrigeration system with evaporator outlet control valve
US3435626A (en) Pressure control apparatus for refrigeration system
US3817053A (en) Refrigerating system including flow control valve
JPS581314B2 (en) Refrigerator valve equipment
JPH0694953B2 (en) Closed refrigeration circuit
JPH0215789B2 (en)
US3388558A (en) Refrigeration systems employing subcooling control means
JPH0498040A (en) Operation control device for air conditioner
JPH02263071A (en) Using method for expansion valve device and assembly of vaporizer and flow rate control means
US3803864A (en) Air conditioning control system
JP3712828B2 (en) Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve
JPH0419408Y2 (en)
JPS5821960Y2 (en) Supercooling control valve
JP3213440B2 (en) Expansion valve
JP2506377B2 (en) Air conditioner and its control method
JPH0356867Y2 (en)
JPS6325255B2 (en)
JPS5823544B2 (en) Refrigerant control device
JPH08145494A (en) Absorption type heat pump
JPS63306373A (en) Expansion valve