JPH02157404A - Manufacture of steam turbine diaphragm - Google Patents

Manufacture of steam turbine diaphragm

Info

Publication number
JPH02157404A
JPH02157404A JP30784988A JP30784988A JPH02157404A JP H02157404 A JPH02157404 A JP H02157404A JP 30784988 A JP30784988 A JP 30784988A JP 30784988 A JP30784988 A JP 30784988A JP H02157404 A JPH02157404 A JP H02157404A
Authority
JP
Japan
Prior art keywords
diaphragm
nozzle
blade
partition plate
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30784988A
Other languages
Japanese (ja)
Inventor
Kazu Kobayashi
小林 計
Takamitsu Nakasaki
中崎 隆光
Masaki Matsuda
政喜 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30784988A priority Critical patent/JPH02157404A/en
Publication of JPH02157404A publication Critical patent/JPH02157404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To manufacture a diaphragm having high accuracy and high quality by not giving hardening treatment to the inserting part of a diaphragm to a louver when a single nozzle blade is given surface hardening treatment. CONSTITUTION:When a protective coat 2 is applied to a single nozzle blade 1, the coat is not applied to the inserting part of the blade 1 to a diaphragm 3. With this contrivance, when the nozzle 1 is joined to the diaphragm 3 by means of electron-beam welding, the hardening treatment does not exert a bad influence on the welded part, and at the same time separation of the protective coat 2 due to thermal effects of the welding can be prevented. Thus, a diaphragm having high accuracy and high quality can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気タービンに係り、特に、固体粒子による
エロージョンを防止するノズル翼を用いたダイヤフラム
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam turbine, and particularly to a method for manufacturing a diaphragm using nozzle blades that prevents erosion by solid particles.

〔従来の技術〕[Conventional technology]

通常、ノズル翼材は、12Cr鋼が用いられ、蒸気中の
固体粒子によるエロージョンを防ぐため、ノズル翼の表
層部に硬化層を形成させ対策しており、特開昭61−6
242号公報のように、熱処理により硼素を拡散処理し
、表層部を硬化させている。
Usually, 12Cr steel is used for the nozzle blade material, and in order to prevent erosion by solid particles in the steam, a hardened layer is formed on the surface of the nozzle blade.
As in No. 242, boron is diffused by heat treatment to harden the surface layer.

この硬化層は、いずれもビッカース硬さHvで1500
〜2000の値を示し、極めて高硬度である。一般に、
高硬度材は、伸び、靭性が低下するためノズル翼へコー
ティングを施した後のダイヤフラムの製造過程のコーテ
ィング部への取扱いには、充分、注意する必要があった
This hardened layer has a Vickers hardness of 1500 Hv.
It exhibits a value of ~2000, indicating extremely high hardness. in general,
High hardness materials elongate and reduce their toughness, so it is necessary to be careful when handling the coating part during the diaphragm manufacturing process after coating the nozzle blades.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

蒸気中に含まれる固体粒子からの二ローションを防ぐに
は、高硬度な層を確保することが極めて有効である。し
かし、高硬度な材質はど溶接性が悪くなることも一般的
に言われている。この対策として、■高硬度の個所に溶
接の熱影響を与えない。■溶接時に予熱等の熱管理を実
施するなどを行ない溶接による割れ、コーティング部の
剥離を防止する必要が生じた。また、これらを対策する
手段としてノズル翼とこれを支持する仕切板を一体構造
とし、円弧状に配列したノズル翼の各ピッチの中間点で
接合することにより溶接時に与える熱影響を極力少なく
することもできるが、構造が複雑でありノズル翼単品の
製作コストが高くなる。
Ensuring a layer of high hardness is extremely effective in preventing spoilage from solid particles contained in the vapor. However, it is generally said that highly hard materials have poor weldability. As a countermeasure for this, 1. Avoid the heat effect of welding on highly hard parts. ■It became necessary to perform heat management such as preheating during welding to prevent cracks caused by welding and peeling of the coating. In addition, as a measure against these problems, the nozzle blades and the partition plate that supports them are made into an integral structure, and the nozzle blades arranged in an arc shape are joined at the midpoint of each pitch, thereby minimizing the thermal influence during welding. However, the structure is complicated and the manufacturing cost of each nozzle blade increases.

また、ノズル翼の高さが大きくなる中圧初段ダイヤフラ
ムへの採用は、機械加工精度確保の点から同一構造での
製作が極めて困難となる。
In addition, when adopting a medium-pressure first-stage diaphragm with a large nozzle blade height, it is extremely difficult to manufacture the same structure from the viewpoint of ensuring machining accuracy.

本発明の目的は、予め1表面硬化処理を施したノズル翼
を複数個の翼孔をもつ仕切板へ差し込み。
The object of the present invention is to insert a nozzle blade, which has been previously subjected to a surface hardening treatment, into a partition plate having a plurality of blade holes.

ノズル翼の表面硬化層に悪影響を及ぼすことなく溶接固
定し、高精度、高品質のダイヤフラムを製造し得る蒸気
タービンダイヤフラムの製造方法を提供することにある
It is an object of the present invention to provide a method for manufacturing a steam turbine diaphragm, which can be welded and fixed without adversely affecting the hardened surface layer of a nozzle blade, and can manufacture a diaphragm with high precision and high quality.

C課題を解決するための手段フ 本発明は、これらの諸問題を解決するため、まず、ノズ
ル翼単品時に表面硬化処理を施こすが、予め複数個の翼
内を設けた仕切板とノズル翼を差込む範囲は、硬化処理
を施こさない。この時、仕切板をもたないノズル翼のみ
の単純形状であるため、取扱いが簡単であり、処理範囲
を限定し硬化処理をすることも容易に行なえる。次に、
複数個のノズル翼を仕切板の翼内に差込み、ノズル翼の
端面と仕切板とを溶接により接合する。
C. Means for Solving Problems In order to solve these problems, the present invention first performs a surface hardening treatment on a single nozzle blade, but the present invention applies a surface hardening treatment to a single nozzle blade. The area where is inserted is not hardened. At this time, since the nozzle blade has a simple shape without a partition plate, it is easy to handle, and it is also easy to limit the treatment range and perform the hardening treatment. next,
A plurality of nozzle blades are inserted into the blades of the partition plate, and the end surfaces of the nozzle blades and the partition plate are joined by welding.

〔作用〕[Effect]

前述のように、差込み部は、硬化処理がなされていない
ため、溶接時の熱影響による割れや、処理部の剥離の心
配は全くない。また、溶接は、入熱量の少ない電子ビー
ム溶接を用いているため、仕切板への溶込み制御も容易
に行なえ、変形も少なく高精度、高品質な接合が可能で
ある。
As mentioned above, since the insertion part is not hardened, there is no fear of cracking due to heat effects during welding or peeling of the treated part. Further, since electron beam welding with a small amount of heat input is used for welding, penetration into the partition plate can be easily controlled, and highly accurate and high quality joining is possible with less deformation.

一方、ノズル翼のエロージョン防止として、表面被覆材
を処理するが、耐エロージヨン防止には、高硬度材が良
好とされており、硼化処理、Crパック処理が実用化さ
れている。この方法は、いずれも、熱処理で拡散する方
法であり、加熱温度は600〜1100℃である。使用
材質が12Cr鋼の場合、材料の焼戻し温度620〜6
50”Cを越えるため、材料強度が低下する。この対策
として、拡散処理後、焼入れ、焼戻し等の調質作業を行
なう必要があり、複数の工程を経て製作している。さら
に、本発明によれば、表面硬化層を爆発溶射により形成
する。爆発溶射法は、数秒間に複数回の爆発を起こし、
粉末を溶射する方法であり、母材に対する熱影響も少な
いことから材力値を確保する調質作業も不要となり、−
工程で要求する性能が確保できる。また、得られた硬化
層は、爆発溶射で行なっているため、硬化層内のポロシ
ティ−もなく、母材への密着度も高く、拡散処理で得ら
れた物と遜色がない。従って、短期間で高品質な硬化層
が得られ、極めて経済的である。
On the other hand, surface coating materials are treated to prevent erosion of the nozzle blades, and high hardness materials are considered to be effective in preventing erosion, and boriding treatment and Cr pack treatment have been put into practical use. In both of these methods, diffusion is performed by heat treatment, and the heating temperature is 600 to 1100°C. If the material used is 12Cr steel, the tempering temperature of the material is 620~6
As the temperature exceeds 50"C, the strength of the material decreases. As a countermeasure for this, it is necessary to perform tempering operations such as quenching and tempering after the diffusion treatment, and the material is manufactured through multiple steps. According to the method, the surface hardening layer is formed by explosive thermal spraying.The explosive thermal spraying method causes multiple explosions in a few seconds,
It is a method of thermal spraying powder, and since there is little thermal influence on the base material, there is no need for tempering work to ensure material strength.
The performance required in the process can be ensured. Furthermore, since the obtained hardened layer is formed by explosive thermal spraying, there is no porosity within the hardened layer, and the degree of adhesion to the base material is high, and it is comparable to that obtained by diffusion treatment. Therefore, a high quality hardened layer can be obtained in a short period of time, and it is extremely economical.

〔実施例〕〔Example〕

本発明の一実施例を図を用いて説明する。第1図は、ノ
ズル翼1.二ローションを防止する保護被膜部2、およ
び、ノズル翼の両端を支持するため円環状に曲げた後、
翼内部を差し込み固定した仕切板3.ノズル翼と仕切板
の組立完了後ノズル翼と仕切板とを接合するため、ノズ
ル翼の端面を円環状に電子ビーム溶接4により固着して
いる。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the nozzle blade 1. 2. After bending into an annular shape to support the protective coating part 2 to prevent lotion and both ends of the nozzle blade,
Partition plate with the inside of the wing inserted and fixed 3. After the assembly of the nozzle blades and the partition plate is completed, in order to join the nozzle blade and the partition plate, the end face of the nozzle blade is fixed in an annular shape by electron beam welding 4.

特に、着目すべき点は、第2図のノズル翼1の単品時に
、保護被膜2を施すが、仕切板との差し込み部は、被膜
処理を行なっていない。このことは。
What should be noted in particular is that although the protective coating 2 is applied to the nozzle blade 1 shown in FIG. 2 when it is a single item, the part where it is inserted into the partition plate is not coated. About this.

第1図の電子ビーム溶接4により、接合時、硬化処理が
溶接部への悪影響を受けぬことと、溶接時の熱影響によ
り、保護被膜の剥離を防止するためである。第3図は、
第2図の■−■断面を示すが、二ローション防止のため
ノズル翼の出口端を保護する形状(翼の腹側、背側とも
被膜処理を実施)に被膜処理を行なっている。また、第
1図の電子ビーム溶接4は、ノズル翼の断面形状の範囲
を仕切板3とともに連続溶接している。これは、均一な
溶込みを連続させることにより、入熱を均等にすること
により収縮変形を均一にし高精度化を図るためである。
This is because the electron beam welding 4 in FIG. 1 prevents the hardening process from having an adverse effect on the welded portion during joining, and prevents the protective film from peeling off due to the thermal effect during welding. Figure 3 shows
As shown in the cross-section taken along line 2--2 in Fig. 2, a coating is applied to protect the outlet end of the nozzle blade (coating is applied to both the ventral and dorsal sides of the blade) to prevent double lotion. Further, in the electron beam welding 4 shown in FIG. 1, the range of the cross-sectional shape of the nozzle blade is continuously welded together with the partition plate 3. This is to achieve high precision by making uniform heat input and uniform shrinkage deformation by continuing uniform penetration.

第4図に、通常の12Cr鋼ノズル翼、Cr−C熱処理
ノズル、Ccscz+NiCr爆発溶射ノズルを用い、
酸化鉄粒子を衝突させ、スロートの増加量(二ローショ
ン量)を比較した結果を示す。
Figure 4 shows a typical 12Cr steel nozzle blade, a Cr-C heat treatment nozzle, and a Ccscz+NiCr explosive spray nozzle.
The results of comparing the amount of increase in the throat (two lotion amounts) after colliding with iron oxide particles are shown.

通常の12Cr鋼の硬度はビッカース硬さでHv250
程度であり、Cr−C処理でHv1500〜2000C
r 3C2+ N i CrでHv1200〜1500
の値である。
The hardness of normal 12Cr steel is Vickers hardness, Hv250.
Hv1500~2000C with Cr-C treatment
r 3C2+ N i Cr Hv1200-1500
is the value of

第4図に示すように、硬さの高い順にスロート増加量が
少ないことが解る。本発明による爆発溶射ノズルは、C
r−C熱処理とほぼ同等の効果をもつが、処理厚みが5
0μm以上とすれば、前述した結果よりも、大巾に向上
することは言うまでもない。一方、Cr−C処理厚みを
同様に増やすことも考えられるが、処理温度600〜1
100°Cで長時間保持する必要があり、極めて不経済
となる。
As shown in FIG. 4, it can be seen that the throat increase amount decreases in descending order of hardness. The explosive thermal spray nozzle according to the present invention comprises C
It has almost the same effect as r-C heat treatment, but the treatment thickness is 5.
Needless to say, if it is 0 μm or more, the results will be greatly improved compared to the results described above. On the other hand, it is also possible to increase the Cr-C treatment thickness in the same way, but the treatment temperature is 600~1
It is necessary to hold the temperature at 100°C for a long time, which is extremely uneconomical.

この点、爆発溶射は、室温での作成が可能であり、厚み
を増やすことは容易に行なえる。
In this respect, explosive thermal spraying can be performed at room temperature, and the thickness can be easily increased.

第5図は仕切板とノズル翼を接合後、内輪5゜および、
外輪6と接合するが、本図は、ブリッジ7により一体と
なった構造であるが、ノズル翼両端を固定する仕切板3
を電子ビーム溶接4により固着後、各仕切板の接合面を
定められた寸法に加工し、内外輪5,6間に組込み電子
ビーム溶接8により接合する。この場合、必要溶造み深
さに応じた1パス溶接が可能であり、変形量も少なく高
精度なものが得られる。第6図は、第5図と異なり、内
輪5.内輪6が別体となった構造である。
Figure 5 shows the inner ring 5° and the
Although it is connected to the outer ring 6, this figure shows an integrated structure with a bridge 7, but the partition plate 3 that fixes both ends of the nozzle blade is connected to the outer ring 6.
After fixing by electron beam welding 4, the joint surfaces of each partition plate are processed to a predetermined size, and the partition plates are assembled between the inner and outer rings 5 and 6 and joined by electron beam welding 8. In this case, it is possible to perform one-pass welding according to the required welding depth, and a high-precision product can be obtained with a small amount of deformation. Fig. 6 differs from Fig. 5 in that the inner ring 5. It has a structure in which the inner ring 6 is a separate body.

この場合、蒸気出口側より接合する電子ビーム溶接8.
蒸気入口側より接合する電子ビーム溶接9により溶接さ
れる。これらは、いずれも一パス溶接していることから
同様な効果が得られる。
In this case, electron beam welding is performed from the steam outlet side8.
Welding is performed by electron beam welding 9, which joins from the steam inlet side. Since these are all one-pass welded, similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、固着による悪影響を無くし、変形の無
い製造法が得られ、ノズル翼の製作コストを大巾に低減
することができる。
According to the present invention, it is possible to eliminate the adverse effects of sticking and to obtain a manufacturing method without deformation, and it is possible to significantly reduce the manufacturing cost of nozzle blades.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のノズル翼、仕切板の組立斜
視図、第2図は、ノズル翼単品の保護被膜処理範囲図、
第3図は、第2図のm−m矢視断面図、第4図は、保護
被膜処理有無による酸化鉄衝突時の二ローション発生試
験結果を示す図、第5図は、内外輪一体構造のダイヤフ
ラムの断面図、第6図は、内輪、外輪別構造ダイヤスラ
ムの断面図を示す。 1・・・ノズル翼、2・・・保護被膜、3・・・仕切板
、4゜8.9・・・電子ビーム溶接、5・・・内輪、6
・・・外輪、7・・・ブリッジ。
FIG. 1 is an assembled perspective view of a nozzle blade and a partition plate according to an embodiment of the present invention, and FIG. 2 is a diagram of the protective coating treatment range of a single nozzle blade.
Figure 3 is a cross-sectional view taken along the line mm in Figure 2, Figure 4 is a diagram showing the results of a two-lotion generation test upon collision with iron oxide with and without protective coating treatment, and Figure 5 is an integrated structure of inner and outer rings. FIG. 6 is a cross-sectional view of a diaphragm having a separate structure for inner and outer rings. DESCRIPTION OF SYMBOLS 1... Nozzle blade, 2... Protective coating, 3... Partition plate, 4°8.9... Electron beam welding, 5... Inner ring, 6
... Outer ring, 7... Bridge.

Claims (1)

【特許請求の範囲】 1、蒸気中に含まれた固体粒子による浸食を防ぐため、
ノズル翼に保護被膜を施し、前記ノズル翼を固定する複
数個の翼穴をもつ仕切板および内外輪から構成される蒸
気タービンダイヤフラムにおいて、 前記ノズル翼の前記保護被膜の処理範囲を前記仕切板と
翼差込み部以外の範囲とし、前記仕切板と前記ノズル翼
の接合に電子ビーム溶接を用いることを特徴とする蒸気
タービンダイヤフラムの製造方法。 2、特許請求項第1項において、 前記保護被膜に炭化クロム、ニッケルクロム、炭化タン
グステンまたは、コバルトの混合粉末を用い、爆発溶射
法により被膜厚を50μm以上としたことを特徴とする
蒸気タービンダイヤフラムの製造方法。
[Claims] 1. To prevent erosion by solid particles contained in steam,
In a steam turbine diaphragm comprising a partition plate having a plurality of blade holes for fixing the nozzle blades and an inner and outer ring, the nozzle blades are coated with a protective coating, and the treatment range of the protective coating of the nozzle blades is the same as that of the partition plate. A method of manufacturing a steam turbine diaphragm, characterized in that electron beam welding is used to join the partition plate and the nozzle blade in a region other than the blade insertion portion. 2. The steam turbine diaphragm according to claim 1, wherein the protective coating is made of a mixed powder of chromium carbide, nickel chromium, tungsten carbide, or cobalt, and the coating thickness is made to be 50 μm or more by explosive thermal spraying. manufacturing method.
JP30784988A 1988-12-07 1988-12-07 Manufacture of steam turbine diaphragm Pending JPH02157404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30784988A JPH02157404A (en) 1988-12-07 1988-12-07 Manufacture of steam turbine diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30784988A JPH02157404A (en) 1988-12-07 1988-12-07 Manufacture of steam turbine diaphragm

Publications (1)

Publication Number Publication Date
JPH02157404A true JPH02157404A (en) 1990-06-18

Family

ID=17973920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30784988A Pending JPH02157404A (en) 1988-12-07 1988-12-07 Manufacture of steam turbine diaphragm

Country Status (1)

Country Link
JP (1) JPH02157404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206518A1 (en) * 2008-09-05 2011-08-25 Alstom Hydro France Francis-type runner for a hydraulic machine, hydraulic machine including such a runner, and method for assembling such a runner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206518A1 (en) * 2008-09-05 2011-08-25 Alstom Hydro France Francis-type runner for a hydraulic machine, hydraulic machine including such a runner, and method for assembling such a runner
US9175662B2 (en) * 2008-09-05 2015-11-03 Alstom Renewable Technologies Francis-type runner for a hydraulic machine, hydraulic machine including such a runner, and method for assembling such a runner

Similar Documents

Publication Publication Date Title
KR930003532B1 (en) Method of manufacturing a control wheel for the high-pressure rotor of a steam turbine
US4832252A (en) Parts for and methods of repairing turbine blades
US5732468A (en) Method for bonding a turbine engine vane segment
US4962586A (en) Method of making a high temperature - low temperature rotor for turbines
US7066799B2 (en) Protection mask for surface treatment of turbomachine blades
US7624909B2 (en) Welded component
JP3291827B2 (en) Impeller, diffuser, and method of manufacturing the same
US4464094A (en) Turbine engine component and method of making the same
US4323394A (en) Method for manufacturing turborotors such as gas turbine rotor wheels, and wheel produced thereby
US4370789A (en) Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process
JPS5514960A (en) Manufacturing method of revolving blade
CA1283056C (en) Hardfacing technique and improved construction for inlet steam sealingsurfaces of steam turbines
JPH02157404A (en) Manufacture of steam turbine diaphragm
US5938403A (en) Runner, water wheel and method of manufacturing the same
JPS5857276B2 (en) Electron beam welding method for dissimilar metals
JPS6082281A (en) Production of combustor for gas turbine
US11066933B2 (en) Rotor shaft and method for producing a rotor shaft
JPS62103357A (en) Surface treatment of thermally sprayed film
JPH0772305B2 (en) Hardening method of sprocket wheel and high-frequency inductor used in this method
JPS61138802A (en) Manufacturing method of diaphragm for steam turbine
JPS58199855A (en) Surface treatment of tuyere
JPS58143103A (en) Manufacturing method of turbine nozzle diaphragm
JPH06221103A (en) Steam turbine nozzle box
JPS6073114A (en) Rotary joining body
JPH03481B2 (en)