JPH0215736Y2 - - Google Patents

Info

Publication number
JPH0215736Y2
JPH0215736Y2 JP1983062389U JP6238983U JPH0215736Y2 JP H0215736 Y2 JPH0215736 Y2 JP H0215736Y2 JP 1983062389 U JP1983062389 U JP 1983062389U JP 6238983 U JP6238983 U JP 6238983U JP H0215736 Y2 JPH0215736 Y2 JP H0215736Y2
Authority
JP
Japan
Prior art keywords
cylinder chamber
stepped cylinder
large diameter
diameter portion
stepped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983062389U
Other languages
Japanese (ja)
Other versions
JPS59167757U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6238983U priority Critical patent/JPS59167757U/en
Publication of JPS59167757U publication Critical patent/JPS59167757U/en
Application granted granted Critical
Publication of JPH0215736Y2 publication Critical patent/JPH0215736Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【考案の詳細な説明】 本考案は自動車の液圧式ブレーキのリヤホイル
シリンダ液圧が所定値よりも高い時にはリヤホイ
ルシリンダ液圧を、マスタシリンダ液圧を略一定
比率で減圧した値に制御するブレーキ液圧制御弁
に関するものである。
[Detailed description of the invention] This invention is a brake fluid that controls the rear wheel cylinder fluid pressure to a value that is reduced by a substantially constant ratio of the master cylinder fluid pressure when the rear wheel cylinder fluid pressure of an automobile's hydraulic brake is higher than a predetermined value. This relates to pressure control valves.

この種のブレーキ液圧制御弁として様々な構成
のものが知られているが、リヤホイルシリンダ液
圧制御特性における液圧上昇時と液圧下降時のヒ
ステリシスが小さく、且つ構成が簡単で小型にで
きるものとして、特公昭50−9949号公報に記載さ
れたものがある。このブレーキ液圧制御弁は、段
付きシリンダ室とこの段付きシリンダ室の大径部
及び小径部にそれぞれ連通したマスタシリンダ接
続口及びリヤホイルシリンダ接続口を有したハウ
ジングと、前記段付きシリンダ室の大径部内に配
設されていて、その一端に形成された横断面半径
の多数の放射方向突条及びその外周に形成された
横断面半円形の多数の軸方向突条で段付きシリン
ダ室大径部の端壁及び周壁にそれぞれ当接し且つ
その内周の段付きシリンダ室小径部寄りの部分で
弁座を形成する環状ベース部と、この環状ベース
部の外周及び一端と段付きシリンダ室大径部の周
壁及び端壁との間をブレーキ液が段付きシリンダ
室小径部側から段付きシリンダ室大径部側へ流れ
ることを許すがその逆に流れることを防止するべ
く段付きシリンダ室大径部の周壁に当接する環状
リツプ部とから成る弾性体製シールと、この弾性
体製シールの環状ベース部の内側を間隙を形成し
て貫通しており、その一端にはリヤホイルシリン
ダ液圧を受け、その他端は空気にさらし、且つ段
付きシリンダ室小径部側より前記弁座に着座及び
離脱する弁頭を有したピストンと、前記弁頭を前
記弁座から離脱させるように前記ピストンを付勢
するスプリングとから構成されている。
Various configurations of this type of brake fluid pressure control valve are known, but the rear wheel cylinder hydraulic pressure control characteristics have small hysteresis when the fluid pressure rises and falls, and the structure is simple and can be made small. One example is the one described in Japanese Patent Publication No. 50-9949. This brake fluid pressure control valve includes a housing having a stepped cylinder chamber, a master cylinder connection port and a rear wheel cylinder connection port communicating with a large diameter portion and a small diameter portion of the stepped cylinder chamber, respectively, and The stepped cylinder chamber is arranged within the large diameter part, and is formed by a large number of radial protrusions with a cross-sectional radius formed at one end and a large number of axial protrusions with a semicircular cross-section formed on the outer periphery. an annular base part that abuts the end wall and peripheral wall of the diameter part and forms a valve seat at a portion of the inner periphery of the stepped cylinder chamber near the small diameter part; The large stepped cylinder chamber allows brake fluid to flow from the small diameter side of the stepped cylinder chamber to the large diameter side of the stepped cylinder chamber between the peripheral wall and end wall of the diameter section, but prevents it from flowing in the opposite direction. An elastic seal consists of an annular lip that abuts the circumferential wall of the diameter part, and a gap passes through the inside of the annular base of the elastic seal, and one end of the seal is connected to the rear wheel cylinder hydraulic pressure. a piston, the other end of which is exposed to air, and which has a valve head that seats on and leaves the valve seat from the small diameter side of the stepped cylinder chamber; and the piston is attached so that the valve head leaves the valve seat. It consists of a spring that exerts force.

このような構成のブレーキ液圧制御弁において
は、制動時、リヤホイルシリンダ液圧が所定値に
達するまでの間ピストンはその弁頭がシールの弁
座から離脱した定位置に保持され、リヤホイルシ
リンダ液圧がマスタシリンダ液圧と等しくなる。
リヤホイルシリンダ液圧が所定値を越えるとピス
トンは他端側へ変位してその弁頭がシールの弁座
に着座し、この後マスタシリンダ液圧の上昇に応
じてピストンが往復動して弁頭が弁座に対し着座
及び離脱をくり返し、リヤホイルシリンダ液圧は
次の式で示されるように制御される。
In a brake fluid pressure control valve with such a configuration, during braking, the piston is held in a fixed position with its valve head disengaged from the valve seat of the seal until the rear wheel cylinder fluid pressure reaches a predetermined value, and the rear wheel cylinder fluid is The pressure becomes equal to the master cylinder hydraulic pressure.
When the rear wheel cylinder hydraulic pressure exceeds a predetermined value, the piston moves to the other end and its valve head seats on the valve seat of the seal.Then, as the master cylinder hydraulic pressure increases, the piston reciprocates and the valve head is repeatedly seated and removed from the valve seat, and the rear wheel cylinder hydraulic pressure is controlled as shown by the following equation.

PW=(1−SS/SL)PM+F/SL 但し、PW:リヤホイルシリンダ液圧 PM:マスタシリンダ液圧 SS:ピストンの他端断面積 SL:弁頭が弁座に着座した時の両者間のシ
ール径で囲まれた面積 F:弁頭が弁座に着座した時のスプリングの
荷重 ところで、リヤホイルシリンダ液圧がマスタシ
リンダ液圧より低く制御されている場合、リヤホ
イルシリンダ液圧とマスタシリンダ液圧との差圧
によつてシールが段付きシリンダ室大径部の周壁
及び端壁に押し付けられ、シールの軸方向突条及
び放射方向突条が圧縮され変形する。この軸方向
突条の圧縮変形はシールのベース部の内径の増加
をもたらし、ベース部の内周に形成された弁座の
径が増加する。この弁座の径の増加は前記式にお
けるSLの変化をもたらし、ブレーキ液圧制御弁
の性能の安定の妨げとなるので、軸方向突条は圧
縮荷重に対して変形ができるだけ少ないことが好
ましい。また、前記差圧がくり返し加わることに
よつて軸方向突条及び放射方向突条に永久変形が
生じると、軸方向突条の永久変形は前記式におけ
るSLの変形を促進し、また放射方向突条の永久
変形はシールの段付きシリンダ室大径部の端壁側
への転位をもたらし、ピストンが休止位置から弁
頭が弁座に着座する位置まで変位する変位量の減
少をもたらし、前記式におけるFの減少をもたら
して、やはりブレーキ液圧制御弁の性能安定の妨
げとなる。
PW=(1-SS/SL)PM+F/SL However, PW: Rear wheel cylinder hydraulic pressure PM: Master cylinder hydraulic pressure SS: Cross-sectional area of the other end of the piston SL: Seal between the two when the valve head is seated on the valve seat Area surrounded by the diameter F: Spring load when the valve head is seated on the valve seat By the way, when the rear wheel cylinder hydraulic pressure is controlled to be lower than the master cylinder hydraulic pressure, the rear wheel cylinder hydraulic pressure and the master cylinder hydraulic pressure are The seal is pressed against the peripheral wall and end wall of the large diameter portion of the stepped cylinder chamber due to the pressure difference, and the axial and radial ridges of the seal are compressed and deformed. This compressive deformation of the axial protrusion increases the inner diameter of the base portion of the seal, and the diameter of the valve seat formed on the inner periphery of the base portion increases. This increase in the diameter of the valve seat causes a change in SL in the above equation, which hinders the stability of the performance of the brake fluid pressure control valve, so it is preferable that the axial protrusion undergoes as little deformation as possible under compressive load. Furthermore, if permanent deformation occurs in the axial protrusions and the radial protrusions due to the repeated application of the differential pressure, the permanent deformation of the axial protrusions promotes the deformation of SL in the above equation, and also the radial protrusions The permanent deformation of the strip causes the seal to displace to the end wall side of the large diameter portion of the stepped cylinder chamber, resulting in a decrease in the amount of displacement of the piston from the rest position to the position where the valve head seats on the valve seat, and the above equation This results in a decrease in F, which also hinders the performance stability of the brake fluid pressure control valve.

しかしながら、上記した従来のブレーキ液圧制
御弁においては、弾性体製シールの環状ベース部
の一端面及び外周面に夫々形成された横断面半円
形の多数の放射方向突条及び横断面半円形の多数
の軸方向突条が段付きシリンダ室大径部の端壁及
び周壁に夫々当接しているため、上記差圧が弾性
体製シールに作用し、各放射方向突条及び各軸方
向突条が段付きシリンダ室大径部の端壁及び周壁
に夫々押し付けられると、各放射方向突条及び各
軸方向突条に大きな面圧が作用して、各放射方向
突条及び各軸方向突条がその初期段階において大
きく変形し、全体の変形量が大きくなる。そのた
め、当該ブレーキ液圧制御弁の性能が不安定にな
ると共に、弾性体製シールの各放射方向突条及び
各軸方向突条の変形量が大きいため、上記差圧が
繰り返し作用することによる各突条の永久変形量
が大きく、当該ブレーキ液圧制御弁の性能の経時
変化が大きくなるという問題がある。
However, in the conventional brake fluid pressure control valve described above, a large number of radial protrusions each having a semicircular cross section and a plurality of radial protrusions each having a semicircular cross section are formed on one end surface and the outer peripheral surface of the annular base portion of the seal made of an elastic body. Since a large number of axial protrusions are in contact with the end wall and peripheral wall of the large diameter portion of the stepped cylinder chamber, the above differential pressure acts on the elastic seal, causing each radial protrusion and each axial protrusion to is pressed against the end wall and peripheral wall of the large diameter portion of the stepped cylinder chamber, a large surface pressure acts on each radial protrusion and each axial protrusion, causing each radial protrusion and each axial protrusion to deforms greatly in its initial stage, and the amount of overall deformation increases. As a result, the performance of the brake fluid pressure control valve becomes unstable, and the amount of deformation of each radial ridge and each axial ridge of the elastic seal is large. There is a problem in that the amount of permanent deformation of the protrusion is large, and the performance of the brake fluid pressure control valve changes greatly over time.

本考案は、シールの軸方向突条及び放射方向突
条の横断形状を略台形とすることにより、横断面
が半円形であつた従来に比べて圧縮荷重による変
形量を少なくするとともに永久変形を生じにくい
ようにし、以つてブレーキ液圧制御弁の性能を従
来よりも安定させたものである。
The present invention reduces the amount of deformation due to compressive loads and prevents permanent deformation by making the transverse shapes of the axial and radial protrusions of the seal substantially trapezoidal, compared to conventional products whose cross sections were semicircular. This makes the brake fluid pressure control valve more stable in performance than the conventional brake fluid pressure control valve.

以下、本考案の一実施例を図面に基いて説明す
ることにより本考案を更に明らかとする。
Hereinafter, the present invention will be further clarified by describing one embodiment of the present invention based on the drawings.

第1図において、10はブレーキペダル、12
はブレーキブースタ、14はタンデムマスタシリ
ンダ、16及び18はフロントホイルシリンダ、
20及び22はリヤホイルシリンダ、24及び2
6はブレーキ液圧制御弁である。
In FIG. 1, 10 is a brake pedal, 12
is a brake booster, 14 is a tandem master cylinder, 16 and 18 are front wheel cylinders,
20 and 22 are rear wheel cylinders, 24 and 2
6 is a brake fluid pressure control valve.

フロントホイルシリンダ18及びリヤホイルシ
リンダ22はタンデム型マスタシリンダ14の一
方のアウトレツトからの圧液で作動し、フロント
ホイルシリンダ16及びリヤホイルシリンダ20
はタンデム型マスタシリンダ14の他方のアウト
レツトからの圧液で作動するものであり、ブレー
キ液圧制御弁24及び26はリヤホイルシリンダ
22及び20の液圧をそれぞれ制御するものであ
る。
The front wheel cylinder 18 and the rear wheel cylinder 22 are actuated by pressure fluid from one outlet of the tandem master cylinder 14, and the front wheel cylinder 16 and the rear wheel cylinder 20
The brake hydraulic pressure control valves 24 and 26 control the hydraulic pressure of the rear wheel cylinders 22 and 20, respectively.

ブレーキ液圧制御弁24のハウジング28は段
付きシリンダボア30の開口部内にプラグ32を
嵌入し且つ抜け止めして形成して成る段付きシリ
ンダ室36と、この段付きシリンダ室36の大径
部及び小径部にそれぞれ連通するマスタシリンダ
接続口38及びリヤホイルシリンダ接続口40を
有し、更にマスタシリンダ接続口38に連通する
フロントホイルシリンダ接続口42を有する。段
付きシリンダ室36の大径部内にはゴム製のシー
ル44が配設されている。このシール44の詳細
は第2〜4図に示される如くであり、その環状ベ
ース部46はその一端に形成された横断面略台形
の多数の放射方向突条48の外周短辺側の面及び
その外周に形成された横断面略台形の多数の軸方
向突条50の外周短辺側の面で段付きシリンダ室
36大径部の端壁及び周壁にそれぞれ当接し、且
つその内周の段付きシリンダ室36小径部寄りの
部分で弁座52を形成している。そしてシール4
4は、環状ベース部46の外周及び一端と段付き
シリンダ室36大径部の周壁及び端壁との間をブ
レーキ液が段付きシリンダ室36小径部側から段
付きシリンダ室36大径部側へ流れることを許す
がその逆に流れることを防止するべく段付きシリ
ンダ室36大径部の周壁に当接する環状リツプ部
54を有している。段付きシリンダ室36内のピ
ストン56はその一端を段付きシリンダ室36小
径部に摺動可能に嵌合し、またその他端はプラグ
32内に摺動可能に嵌合して空気室58を形成し
ている。ピストン56はシール44の環状ベース
部46の内側を間隙を形成して貫通しており、段
付きシリンダ室36小径部側よりシール44の弁
座52に着座及び離脱する弁頭60を有し、この
弁頭60の外周間隙をリヤホイルシリンダ接続口
40に連通する内部通路62を有している。ピス
トン56はそのフランジ64とスプリングリテー
ナ66との間に介装されたスプリング68により
弁頭60が弁座52から離脱する方向へ付勢さ
れ、非作動時にはピストン56はその一端が段付
きシリンダ室36小径部端壁に当接した第1図の
位置を占める。シール44の環状ベース部46の
他端にはピストン56のフランジ64との間にブ
レーキ液の通る間隙を確保し且つシール44の位
置決めをするための多数の突起70が形成されて
いる。図中、72はブレーキ液が空気室58に入
ることを防止するシールであり、74はプラグ3
2の外周嵌合部からのブレーキ液もれを防止する
シールであり、76はプラグ32の抜け止めをす
るスナツプリングであり、78は水等がハウジン
グ28内へ入るのを防止するカバーである。マス
タシリンダ接続口38はタンデム型マスタシリン
ダ14の一方のアウトレツトと接続され、リヤホ
イルシリンダ接続口40はリヤホイルシリンダ2
2と接続され、フロントホイルシリンダ接続口4
2はフロントホイルシリンダ18と接続される。
The housing 28 of the brake fluid pressure control valve 24 includes a stepped cylinder chamber 36 formed by fitting a plug 32 into the opening of a stepped cylinder bore 30 and preventing it from coming off; a large diameter portion of the stepped cylinder chamber 36; It has a master cylinder connection port 38 and a rear wheel cylinder connection port 40 that communicate with the small diameter portion, respectively, and further has a front wheel cylinder connection port 42 that communicates with the master cylinder connection port 38. A rubber seal 44 is disposed within the large diameter portion of the stepped cylinder chamber 36. The details of this seal 44 are as shown in FIGS. 2 to 4, and its annular base portion 46 is formed at one end thereof and has a plurality of radial protrusions 48 having a substantially trapezoidal cross section. A plurality of axial protrusions 50 having a substantially trapezoidal cross section formed on the outer periphery are in contact with the end wall and peripheral wall of the large diameter portion of the stepped cylinder chamber 36 on the short side surfaces of the outer periphery, and the steps on the inner periphery thereof are A valve seat 52 is formed in a portion of the attached cylinder chamber 36 closer to the small diameter portion. and sticker 4
4, the brake fluid flows between the outer periphery and one end of the annular base portion 46 and the peripheral wall and end wall of the large diameter portion of the stepped cylinder chamber 36 from the small diameter portion side of the stepped cylinder chamber 36 to the large diameter portion side of the stepped cylinder chamber 36. The stepped cylinder chamber 36 has an annular lip portion 54 that abuts against the circumferential wall of the large diameter portion of the stepped cylinder chamber 36 in order to allow the fluid to flow toward the outside but prevent it from flowing in the opposite direction. A piston 56 within the stepped cylinder chamber 36 has one end slidably fitted into the small diameter portion of the stepped cylinder chamber 36 and the other end slidably fitted within the plug 32 to form an air chamber 58. are doing. The piston 56 passes through the inside of the annular base portion 46 of the seal 44 with a gap formed therein, and has a valve head 60 that seats on and leaves the valve seat 52 of the seal 44 from the small diameter side of the stepped cylinder chamber 36. It has an internal passage 62 that communicates the outer peripheral gap of the valve head 60 with the rear wheel cylinder connection port 40. The piston 56 is biased in the direction in which the valve head 60 separates from the valve seat 52 by a spring 68 interposed between the flange 64 and the spring retainer 66, and when not in operation, the piston 56 has one end in a stepped cylinder chamber. 36 occupies the position shown in FIG. 1 in contact with the end wall of the small diameter section. A large number of protrusions 70 are formed at the other end of the annular base portion 46 of the seal 44 to ensure a gap for passage of brake fluid between the annular base portion 46 and the flange 64 of the piston 56 and for positioning the seal 44. In the figure, 72 is a seal that prevents brake fluid from entering the air chamber 58, and 74 is a seal that prevents the brake fluid from entering the air chamber 58.
76 is a snap ring that prevents the plug 32 from coming off, and 78 is a cover that prevents water etc. from entering the housing 28. The master cylinder connection port 38 is connected to one outlet of the tandem type master cylinder 14, and the rear wheel cylinder connection port 40 is connected to the rear wheel cylinder 2.
2 and is connected to the front wheel cylinder connection port 4.
2 is connected to the front wheel cylinder 18.

斯有る構成のブレーキ液圧制御弁24は特公昭
50−9949号公報に記述された如く作用する。ブレ
ーキ液圧制御弁24がリヤホイルシリンダ液圧を
マスタシリンダ液圧よりも低く制御している場合
においてリヤホイルシリンダ液圧とマスタシリン
ダ液圧との差圧によりシール44の軸方向突条5
0及び放射方向突条48に圧縮荷重が加わるが、
横断面台形の多数の放射方向突条48の各外周短
辺側の面及び横断面台形の多数の軸方向突条50
の各外周短辺側の面が段付きシリンダ室36大径
部の端壁及び周壁に夫々当接していることによ
り、各放射方向突条48及び各軸方向突条50に
作用する面圧は横断面半円形にされた従来のもの
よりも小さいので、シール44の各放射方向突条
48及び各軸方向突条50の変形量を従来に比し
少なくすることができる。そのため、本実施例に
よれば、各軸方向突条50の変形による弁座52
の径の変化や、各放射方向突条48の変形による
ピストン56のストロークの変化及びスプリング
68の荷重の変化を小さくでき、当該ブレーキ液
圧制御弁の性能を従来に比し安定させることがで
きる。また、シール44の各放射方向突条48及
び各軸方向突条50の変形量を少なくすることが
できるので、上記差圧が繰り返し作用することに
よる各突条48,50の永久変形量を少なくで
き、当該ブレーキ液圧制御弁の性能の経時変化を
少なくできると共にシール44の耐久性を向上す
ることができる。尚、第5図は、軸方向突条50
及び放射方向突条48の横断面形状を従来の如く
半円形にした場合と本願の如く台形にした場合と
における、圧縮荷重に対する圧縮変形量(各突条
の突出高さ減少量)を示すものである。また、本
実施例によれば、横断面台形の多数の放射方向突
条48の各外周短辺側の面及び横断面台形の多数
の軸方向突条50の各外周短辺側の面が段付きシ
リンダ室36大径部の端壁及び周壁に夫々当接す
るようにされているため、その変形時に互いに隣
り合う突条が干渉し合うことなく、多数の突条を
設けることができ、それにより局部的に大きな変
形が生じることなく各突条48,50が均一に且
つ円滑に変形をすることができる。そのため、各
突条48,50の耐久性を向上することができる
と共に、当該ブレーキ液圧制御弁の性能を安定さ
せることができる。また更に、本実施例によれ
ば、多数の放射方向突条48及び多数の軸方向突
条50の横断面形状が、その外側面を形成する直
線が夫々各突条48,50の基部を結ぶ直線に対
して平行で該直線よりも短い台形に形成されてい
るため、シール44の型成形時に外側面の外縁部
に軟化したゴムが回り込み易く、回り込み不足に
よる各突条48,50の成形不良が少なくでき、
その生産性を向上することができる。
The brake fluid pressure control valve 24 having such a configuration is manufactured by Tokukosho.
It operates as described in Publication No. 50-9949. When the brake fluid pressure control valve 24 controls the rear wheel cylinder fluid pressure to be lower than the master cylinder fluid pressure, the axial protrusion 5 of the seal 44 is caused by the differential pressure between the rear wheel cylinder fluid pressure and the master cylinder fluid pressure.
A compressive load is applied to the 0 and radial protrusions 48,
The surface of each outer periphery short side of a large number of radial protrusions 48 with a trapezoidal cross section and a large number of axial protrusions 50 with a trapezoidal cross section.
Since the surfaces on the short sides of the outer circumference are in contact with the end wall and peripheral wall of the large diameter portion of the stepped cylinder chamber 36, the surface pressure acting on each radial protrusion 48 and each axial protrusion 50 is Since it is smaller than the conventional one having a semicircular cross section, the amount of deformation of each radial protrusion 48 and each axial protrusion 50 of the seal 44 can be reduced compared to the conventional one. Therefore, according to this embodiment, the valve seat 52 due to the deformation of each axial protrusion 50
Changes in the stroke of the piston 56 and changes in the load of the spring 68 due to changes in the diameter of the valve and the deformation of each radial protrusion 48 can be reduced, and the performance of the brake fluid pressure control valve can be made more stable than in the past. . Furthermore, since the amount of deformation of each radial protrusion 48 and each axial protrusion 50 of the seal 44 can be reduced, the amount of permanent deformation of each protrusion 48, 50 due to the repeated action of the differential pressure can be reduced. This makes it possible to reduce changes in the performance of the brake fluid pressure control valve over time and to improve the durability of the seal 44. In addition, FIG. 5 shows the axial protrusion 50.
and the amount of compressive deformation (amount of reduction in protrusion height of each protrusion) in response to compressive load when the cross-sectional shape of the radial protrusion 48 is semicircular as in the past and trapezoidal as in the present application. It is. Further, according to this embodiment, the surface of each short side of the outer periphery of the large number of radial protrusions 48 having a trapezoidal cross section and the surface of each short side of the outer circumference of the large number of axial protrusions 50 having a trapezoidal cross section are stepped. Since the attached cylinder chamber 36 comes into contact with the end wall and peripheral wall of the large diameter portion, a large number of protrusions can be provided without interference between adjacent protrusions during deformation. Each protrusion 48, 50 can be deformed uniformly and smoothly without large local deformation. Therefore, the durability of each protrusion 48, 50 can be improved, and the performance of the brake fluid pressure control valve can be stabilized. Furthermore, according to this embodiment, the cross-sectional shapes of the many radial protrusions 48 and the many axial protrusions 50 are such that straight lines forming the outer surfaces connect the bases of the respective protrusions 48 and 50. Since it is formed into a trapezoid that is parallel to a straight line and shorter than the straight line, softened rubber easily wraps around the outer edge of the outer surface during molding of the seal 44, resulting in poor molding of each protrusion 48, 50 due to insufficient wrapping. can be reduced,
Its productivity can be improved.

ブレーキ液圧制御弁26はブレーキ液圧制御弁
24と実質的に同一であるから、その説明は省略
する。
Since the brake fluid pressure control valve 26 is substantially the same as the brake fluid pressure control valve 24, a description thereof will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す図、第2図は
シールの断面部分図、第3図は第2図の−線
断面図、第4図は第2図の−線断面図、第5
図はシールの軸方向突条及び放射条突条の圧縮荷
重と圧縮変形量との関係を示す線図である。 28……ハウジング、36……段付きシリンダ
室、44……シール、46……環状ベース部、4
8……放射方向突条、50……軸方向突条、54
……環状リツプ部、68……スプリング。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a partial cross-sectional view of a seal, Fig. 3 is a cross-sectional view taken along the - line in Fig. 2, Fig. 4 is a cross-sectional view taken along the - line in Fig. 2, Fifth
The figure is a diagram showing the relationship between the compressive load and the amount of compressive deformation of the axial protrusions and radial protrusions of the seal. 28... Housing, 36... Stepped cylinder chamber, 44... Seal, 46... Annular base portion, 4
8... Radial protrusion, 50... Axial protrusion, 54
...Annular lip portion, 68...Spring.

Claims (1)

【実用新案登録請求の範囲】 段付きシリンダ室とこの段付きシリンダ室の大
径部及び小径部にそれぞれ連通したマスタシリン
ダ接続口及びリヤホイルシリンダ接続口を有した
ハウジングと、 前記段付きシリンダ室の大径部内に配設されて
いて、その一端面に形成された横断面台形の多数
の放射方向突条及びその外周面に形成された横断
面台形の多数の軸方向突条の各外周短辺側の面で
段付きシリンダ室大径部の端壁及び周壁にそれぞ
れ当接し且つその内周の段付きシリンダ室小径部
側の部分で弁座を形成する環状ベース部と、この
環状ベース部の外周面及び一端面と前記段付きシ
リンダ室大径部の周壁及び端壁との間をブレーキ
液が前記段付きシリンダ室小径部から前記段付き
シリンダ大径部へ流れることを許すがその逆に流
れることを防止するべく段付きシリンダ室大径部
周壁に当接する環状リツプとから成る弾性体製シ
ールと、 前記弾性体製シールの前記環状ベース部の内側
を間隙を形成して貫通しており、その一端にはリ
ヤホイールシリンダ液圧を受け、その他端は空気
にさらし、且つ前記段付きシリンダ室小径部側よ
り前記弁座に着座及び離脱する弁頭を有したピス
トンと、 前記弁頭を前記弁座から離脱させるように前記
ピストンを付勢するスプリングとを備えたブレー
キ液圧制御弁。
[Scope of Claim for Utility Model Registration] A housing having a stepped cylinder chamber, a master cylinder connection port and a rear wheel cylinder connection port communicating with the large diameter portion and the small diameter portion of the stepped cylinder chamber, respectively; A large number of radial protrusions with a trapezoidal cross section formed on one end surface of the large diameter part, and each short side of the outer periphery of a large number of axial protrusions with a trapezoidal cross section formed on the outer peripheral surface of the large diameter part. an annular base portion that abuts the end wall and peripheral wall of the large diameter portion of the stepped cylinder chamber on its side surfaces, and forms a valve seat at a portion of its inner periphery on the side of the small diameter portion of the stepped cylinder chamber; Brake fluid is allowed to flow from the stepped cylinder chamber small diameter section to the stepped cylinder large diameter section between the outer peripheral surface and one end surface and the circumferential wall and end wall of the stepped cylinder chamber large diameter section, but vice versa. an annular lip that abuts against a peripheral wall of a large diameter portion of a stepped cylinder chamber to prevent flow; and an annular lip that penetrates the inner side of the annular base portion of the elastic seal with a gap formed therein. , a piston having one end receiving rear wheel cylinder hydraulic pressure and the other end being exposed to air, and having a valve head that seats on and leaves the valve seat from the small diameter side of the stepped cylinder chamber; A brake fluid pressure control valve comprising a spring that urges the piston to disengage from the valve seat.
JP6238983U 1983-04-26 1983-04-26 Brake hydraulic pressure control valve Granted JPS59167757U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238983U JPS59167757U (en) 1983-04-26 1983-04-26 Brake hydraulic pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238983U JPS59167757U (en) 1983-04-26 1983-04-26 Brake hydraulic pressure control valve

Publications (2)

Publication Number Publication Date
JPS59167757U JPS59167757U (en) 1984-11-09
JPH0215736Y2 true JPH0215736Y2 (en) 1990-04-26

Family

ID=30192589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238983U Granted JPS59167757U (en) 1983-04-26 1983-04-26 Brake hydraulic pressure control valve

Country Status (1)

Country Link
JP (1) JPS59167757U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946027A (en) * 1972-08-28 1974-05-02
JPS509949A (en) * 1973-05-31 1975-01-31

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946027A (en) * 1972-08-28 1974-05-02
JPS509949A (en) * 1973-05-31 1975-01-31

Also Published As

Publication number Publication date
JPS59167757U (en) 1984-11-09

Similar Documents

Publication Publication Date Title
JPS5830192B2 (en) Brake force regulator for motorcycle hydraulic brake system
JP2853721B2 (en) Booster
JPH0215736Y2 (en)
US4932312A (en) Master cylinder piston valve
US4483145A (en) Master cylinder
US6295915B1 (en) Brake booster
US4936635A (en) Brake booster
US5544485A (en) Master cylinder having restriction means with piston
US4413861A (en) Fluid pressure control valve unit of the inertia-controlled type
JPH0580939U (en) Reservoir structure
US5064252A (en) Brake fluid pressure controller
JPH0357565Y2 (en)
JPH08216853A (en) Reservoir structure
JPH0227259Y2 (en)
JPS6230828Y2 (en)
JPH0338051Y2 (en)
JPH0353959Y2 (en)
JPH044927Y2 (en)
JPS6351864U (en)
JPH0237650Y2 (en)
JPH0228134Y2 (en)
JPS6237797Y2 (en)
JPH0234131Y2 (en)
JPH0234132Y2 (en)
JPH042122Y2 (en)