JPH02157141A - Heat ray shielding glass showing reflected gold color - Google Patents

Heat ray shielding glass showing reflected gold color

Info

Publication number
JPH02157141A
JPH02157141A JP31320588A JP31320588A JPH02157141A JP H02157141 A JPH02157141 A JP H02157141A JP 31320588 A JP31320588 A JP 31320588A JP 31320588 A JP31320588 A JP 31320588A JP H02157141 A JPH02157141 A JP H02157141A
Authority
JP
Japan
Prior art keywords
layer
film
heat ray
ray shielding
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31320588A
Other languages
Japanese (ja)
Other versions
JP2574018B2 (en
Inventor
Yoshinari Kiuchi
木内 良成
Haruo Hashizume
橋爪 春雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63313205A priority Critical patent/JP2574018B2/en
Publication of JPH02157141A publication Critical patent/JPH02157141A/en
Application granted granted Critical
Publication of JP2574018B2 publication Critical patent/JP2574018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide

Abstract

PURPOSE:To obtain heat shielding glass which is excellent in weather resistance and wear resistance and shows reflected gold color by successively coating a TiO2 layer having specified thickness and an SiC layer or a layer contg. SiC as a main component having specified thickness on the surface of transparent glass. CONSTITUTION:A first layer consisting of TiO2 having 10 - 30nm film thickness is formed on the surface of a transparent glass base body. Then a second layer is formed on the first layer which has composition shown in SiCxOy (0.85 <=x <= 1.1, 0 <= y <= 0.25) and 35 - 70nm, preferably 40 - 55nm, film thickness and consists of SiC or contains SiC as a main component. The first layer can be formed by utilizing Ti as a target and sputtering Ti in the evacuated gaseous oxygen atmosphere. Further the second layer can be formed by utilizing SiC as the target and sputtering SiC in the evacuated gaseous Ar atmosphere. Thereby the heat ray shielding glass is obtained which is excellent in durability and can be utilized as a single plate and is capable of thermal bending or strengthening work and shows reflected uniform gold color.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽輻射エネルギーを遮へいする、主として
建築物の窓ガラスに用いる被膜付の熱線遮へいガラスで
あって、とりわけガラス面側からの反射色が金色を有す
る熱線遮へいガラスである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat ray shielding glass with a coating used mainly for window glass of buildings, which shields solar radiant energy. This is heat ray shielding glass with a golden color.

[従来の技術] 従来、金色系の反射色を有する熱線遮へいガラスは、特
公昭47−14820で開示されているように、ガラス
基体上に約80nmの炭化珪素の膜を被覆したものや、
特開昭60−187671で開示されているように、ガ
ラス基体上に酸化チタニウム膜、窒化チタニウム膜、酸
化チタニウム膜をこの順序で被覆したものが知られてい
る。さらに特開昭61−151045によれば、ステン
レスを酸化した膜、鉄膜、ステンレスを酸化した膜をこ
の順序でガラス基体上に被覆したものは、ガラス側から
みると金色を呈する、熱線遮へいガラスであるとされて
いる。
[Prior Art] Conventionally, heat ray shielding glasses having a golden reflective color include those in which a silicon carbide film of about 80 nm is coated on a glass substrate, as disclosed in Japanese Patent Publication No. 47-14820;
As disclosed in Japanese Unexamined Patent Publication No. 60-187671, it is known that a glass substrate is coated with a titanium oxide film, a titanium nitride film, and a titanium oxide film in this order. Further, according to JP-A No. 61-151045, a glass substrate is coated with a film made of oxidized stainless steel, an iron film, and a film made of oxidized stainless steel in this order, and is a heat ray shielding glass that has a golden color when viewed from the glass side. It is said that

[本発明が解決しようとする課題] しかしながら、前記した従来の熱線遮へいガラスは、ガ
ラス面側からの反射色が真空中で蒸着した金の膜の色に
近い、いわゆるゴールドの色調を有し、かつ、建築用の
窓ガラスとして単板使用が可能な被膜の耐久性をあわせ
もっていないという欠点を有する。すなわち前記した炭
化珪素膜がガラス基体上に被覆されたものや、窒化チタ
ニウムの膜を用いたものは、単板使用ができる面]天性
をもっているが、展色色調はかならずしも金色という認
識が得られるほど金の色に近いとは言えない。
[Problems to be Solved by the Present Invention] However, the conventional heat ray shielding glass described above has a so-called gold tone in which the color reflected from the glass surface side is close to the color of a gold film deposited in a vacuum. Moreover, it has the disadvantage that it does not have the durability of a coating that allows it to be used as a single panel for architectural window glass. In other words, the above-mentioned silicon carbide film coated on a glass substrate or titanium nitride film has the ability to be used as a veneer, but the developed color tone is always perceived as golden. I can't say it's that close to the color of gold.

一方前記した鉄膜を金属酸化物の膜ではさんだものは、
単板で使用するには被膜の耐久性が不十分である。本発
明にかかる熱線遮へいガラスは、」−記した問題点を解
決する、すなわちガラス面からの反射色が金色を呈し、
かつ建築用の窓ガラスとして、単板で使用可能な熱線遮
へいガラスを提供するにある。
On the other hand, the above-mentioned iron film sandwiched between metal oxide films,
The coating is not durable enough for use on veneers. The heat ray shielding glass according to the present invention solves the problems mentioned above, that is, the reflection color from the glass surface is golden,
Another object of the present invention is to provide a heat ray shielding glass that can be used as a single sheet as a window glass for architecture.

[課題を解決するための手段] 本発明にかかる熱線遮へいガラスは、透明なガラス基体
の一方の面に第1層として酸化チタニウムが被覆され、
前記第1層の一ヒに第2層として、0.85≦x≦1.
1、O≦y≦0.25の炭化珪素または炭化珪素を主成
分とするSiCxOyで示される組成の膜が第2層とし
て被覆されたものである。第1層の酸化チタニウムの膜
厚は10〜30nmの範囲内であることが好ましい。膜
厚が10nmより小さいと、ガラス面からの反射色が金
色から銀白色に変化してしまい、一方膜厚が30nm以
上であると、褐色を帯びるようになるので好ましくない
[Means for Solving the Problems] The heat ray shielding glass according to the present invention has titanium oxide coated as a first layer on one surface of a transparent glass substrate,
As a second layer on top of the first layer, 0.85≦x≦1.
1. A film having a composition represented by silicon carbide or SiCxOy mainly composed of silicon carbide with O≦y≦0.25 is coated as the second layer. The thickness of the first layer of titanium oxide is preferably within the range of 10 to 30 nm. If the film thickness is less than 10 nm, the color reflected from the glass surface changes from gold to silvery white, while if the film thickness is 30 nm or more, it becomes brownish, which is not preferable.

また第2層の炭化珪素膜との組合せから最も美しい金色
の反射色を呈する膜厚としては、15〜25nmが最も
好ましい。
Moreover, the most preferable film thickness is 15 to 25 nm, which exhibits the most beautiful golden reflective color in combination with the second layer silicon carbide film.

本発明の熱線遮へいガラスの熱線遮へい機能を有する第
2層の炭化珪素または炭化珪素を主成分すなわちXが0
.85より小さくなって、膜中に遊離したシリコンが増
加すると膜の耐久性が劣化し、一方Xカ月、1を超えて
遊離した炭素が増加しても膜の耐久性が劣化するので、
シリコンと炭素は炭化珪素の化合量論組成を含む上記し
た範囲内であることが好ましく、さらにシリコンと炭素
の原子比が1であるのが最も好ましい。またSiCxO
yの原子比率で示される第2層の膜が、熱線遮へい機能
を十分に有するためには、膜中の酸素の含有量に関係す
る前記化学式のyが、0.25以下であることが好まし
い。yが0.25より大きくなるに従い、膜中に熱線遮
へい機能を有しないSiO□成分が多く含まれるように
なり好ましくない。さらに膜中の酸素は不純物濃度レベ
ルまで少ないか、全くないのが最も好ましい。前記炭化
珪素または炭化珪素を主成分とする第2層の膜厚ば、3
5nm〜70nmが好ましく、さらに金色の色調を得る
という観点から40〜55nmの範囲が最も好ましい。
The main component of the second layer having a heat ray shielding function of the heat ray shielding glass of the present invention is silicon carbide, that is, X is 0.
.. If the silicon becomes smaller than 85 and the amount of silicon released in the film increases, the durability of the film will deteriorate.On the other hand, if the amount of carbon released exceeds 1 for X months, the durability of the film will deteriorate.
Preferably, silicon and carbon are within the above-mentioned range including the stoichiometric composition of silicon carbide, and most preferably, the atomic ratio of silicon to carbon is 1. Also, SiCxO
In order for the second layer film represented by the atomic ratio of y to have a sufficient heat ray shielding function, y in the chemical formula, which is related to the content of oxygen in the film, is preferably 0.25 or less. . As y becomes larger than 0.25, the film contains a large amount of SiO□ component which does not have a heat ray shielding function, which is not preferable. Most preferably, the amount of oxygen in the film is reduced to the level of impurity concentrations or is completely absent. The film thickness of the silicon carbide or the second layer mainly composed of silicon carbide is 3.
The range is preferably 5 nm to 70 nm, and most preferably 40 to 55 nm from the viewpoint of obtaining a golden color tone.

膜厚が35nmより小さいと熱線遮へい性能が低下し、
70nmより大きくなると金色の反射色調からずれるの
で、前記した膜厚範囲を超えることは好ましくない。
If the film thickness is less than 35 nm, the heat ray shielding performance will decrease,
If the thickness exceeds 70 nm, the reflective color tone will deviate from the golden color, so it is not preferable to exceed the above-mentioned thickness range.

本発明にかかる熱線遮へいガラスの、第1層の酸化チタ
ニウム膜および第2層のSiCxOy(0,85≦x≦
1.1.0≦y≦0.25 )なる組成の膜は、スパッ
タリング法などの物理的手段により被覆することができ
る。たとえば酸化チタニウムの膜は、チタンをターゲッ
トとして減圧されたアルゴンと酸素の混合ガスまたは純
酸素ガスの雰囲気下での直流スパツタリングにより、前
記SiCxOyの組成の膜は、炭化珪素をターゲットと
して減圧されたアルゴンガスからなる雰囲気下での直流
スパッタリングにより被覆できる。第2層のSiCxO
y膜中の酸素は前記したように少ない方が好ましく、そ
のためには被覆前の真空装置内の圧力を所定の圧力以下
にすることにより達成される。この圧力は、スパッタリ
ング装置の真空槽内の容積や膜を被覆すべきガラス基体
の大きさ、さらに1回の被覆と次の被覆との間のスパッ
タリング装置の停止時間などにより一義的に定めにくい
が、通常1.2 X 1O−2Pa以下を用いることに
より達成される。
The first layer of titanium oxide film and the second layer of SiCxOy (0,85≦x≦
A film having a composition (1.1.0≦y≦0.25) can be coated by physical means such as sputtering. For example, a film of titanium oxide is formed by direct current sputtering in an atmosphere of a mixed gas of argon and oxygen under reduced pressure or pure oxygen gas using titanium as a target, and a film with the composition of SiCxOy is formed using argon under reduced pressure using silicon carbide as a target. The coating can be performed by direct current sputtering in an atmosphere consisting of gas. 2nd layer SiCxO
As mentioned above, it is preferable that the amount of oxygen in the film is small, and this can be achieved by lowering the pressure in the vacuum device before coating to a predetermined pressure or less. This pressure is difficult to determine unambiguously, depending on the volume of the vacuum chamber of the sputtering equipment, the size of the glass substrate to be coated with the film, and the stoppage time of the sputtering equipment between one coating and the next coating. , usually achieved by using 1.2 x 1O-2Pa or less.

また本発明にかかる熱的に曲げられたあるいは強化され
た熱線遮へいガラスは、熱的に変質劣化しない性質を有
する酸化チタニウムからなる膜を第1層とし、耐酸化性
を有する炭化珪素または炭化珪素を主成分とする膜を第
2層としているので、膜を被覆後、通常用いられている
熱的な曲げ加工や強化加工を施すことができる。
Further, the thermally bent or strengthened heat shielding glass according to the present invention has a first layer made of titanium oxide, which does not undergo thermal deterioration, and silicon carbide or silicon carbide, which has oxidation resistance. Since the second layer is a film containing as the main component, the film can be subjected to commonly used thermal bending and reinforcing processes after being coated.

[作 用] 本発明にかかる熱vA遮へいガラスの第−層として被覆
される酸化チタニウム膜と、第二層として被覆される炭
化珪素または炭化珪素を主成分とする膜からなる積層体
は、光の干渉作用により、透明なガラス基体のガラス面
の反射色調を金色にする。また、第2層の熱線遮へい機
能を有する炭化珪素または炭化珪素を主成分とする膜と
ガラス基体の間に設けられる酸化チタニウム膜は、前記
炭化珪素または炭化珪素を主成分とする膜とガラス基体
との密着性を向上せしめ、炭化珪素が木来有する高温に
おける耐酸化性と合いまって、高温加熱処理に対して被
膜の熱線遮へい機能の低下を小さくする。
[Function] The laminate consisting of the titanium oxide film coated as the first layer of the thermal VA shielding glass according to the present invention and the silicon carbide or a film mainly composed of silicon carbide coated as the second layer is light-resistant. Due to the interference effect, the reflected color of the glass surface of the transparent glass substrate becomes golden. Further, the titanium oxide film provided between the second layer of silicon carbide or a film mainly composed of silicon carbide having a heat ray shielding function and the glass substrate is a titanium oxide film provided between the silicon carbide or the film mainly composed of silicon carbide and the glass substrate. This, together with silicon carbide's inherent oxidation resistance at high temperatures, reduces the decline in the heat ray shielding function of the film during high-temperature heat treatment.

[実施例] 第1図(a)、 (blに本発明にかかる熱線遮へいガ
ラスの一部断面図を示す。1はガラス基体、2は酸化チ
タニウム膜、3は炭化珪素または炭化珪素を主成分とす
る膜、(b)は平坦なガラス基体の上に膜が被覆され、
その後曲げ加工された本発明の1実施例を示す。
[Example] Figures 1(a) and 1(bl) show partial cross-sectional views of the heat ray shielding glass according to the present invention. 1 is a glass substrate, 2 is a titanium oxide film, and 3 is silicon carbide or silicon carbide as the main component. (b) is a film coated on a flat glass substrate;
An example of the present invention which was then subjected to bending processing is shown.

以下に本発明を実施例により説明する。The present invention will be explained below using examples.

第2図は本発明の実施に用いたスパッタリング装置で、
真空槽21内の空気が真空排気ポンプ24により、メイ
ンバルブ22およびオリフィスバルブ23を通して排気
される。洗浄した6flの厚みのフロートガラス35を
ガラスホルダ34に載せて、搬送コンベア33によりタ
ーゲットの前面を通過させながら膜を被覆する方法を用
いた。カソード25およびカソード26の表面にセット
するターゲット27.28をそれぞれチタニウムおよび
炭化珪素とし、真空槽21内の圧力を6.7×10−’
Pa以下に減圧した。ガス供給管31より、バルブ32
を開いて酸素ガス100ccを真空槽21内に導入し、
オリフィスバルブ23を調節して0.27Paに調節し
た。直流電源29からチタニウムターゲット27に45
0Vの電圧を印加し、一方の端からフロートガラス35
を420 mm1n−’のスピードでターゲット27の
前をiJ1通させて、他方の端に移しフロートガラス3
5上に20nmの膜厚の酸化チタニウム膜を被覆し、電
圧の印加およびガスの導入を停止した。次に真空槽21
内の圧力を6.7 Xl0−’Pa以下にしてから、ガ
ス供給管31よりバルブ32を開いて、アルゴンガス1
00ccを真空槽21内に導入し、オリフィスバルブ2
3を調節して0.27Paに調節した。炭化珪素ターゲ
ット28に直流電源30から585Vの電圧を印加し、
前記のフロートガラス35を他方の端から逆向きに一方
の端へ330 im m1n−’のスピードでクーゲッ
ト28の前を移動させて、50nmの膜厚の炭化珪素膜
を被覆した。電圧の印加およびガスの導入を停止して、
メインバルブ22を閉めて、真空槽21内を大気圧にし
、2層からなる熱線遮へいガラスを取り出した。この熱
線遮へいガラスの光学特性を、曲げ加工および熱的強化
加工の加熱条件に相当する、大気中で630°C110
分間の熱処理を行う前および後のサンプルについて測定
したものを第1表に示す。
Figure 2 shows the sputtering equipment used to implement the present invention.
The air in the vacuum chamber 21 is exhausted by the vacuum pump 24 through the main valve 22 and the orifice valve 23 . A method was used in which a cleaned float glass 35 with a thickness of 6 fl was placed on a glass holder 34 and coated with a film while being passed in front of the target by a conveyor 33. Targets 27 and 28 set on the surfaces of cathode 25 and cathode 26 are made of titanium and silicon carbide, respectively, and the pressure inside vacuum chamber 21 is set to 6.7 x 10-'
The pressure was reduced to below Pa. From the gas supply pipe 31, the valve 32
is opened and 100cc of oxygen gas is introduced into the vacuum chamber 21.
The orifice valve 23 was adjusted to 0.27 Pa. 45 from DC power supply 29 to titanium target 27
Apply a voltage of 0V and remove the float glass 35 from one end.
Pass the iJ1 in front of the target 27 at a speed of 420 mm1n-' and transfer it to the other end and attach the float glass 3.
5 was coated with a titanium oxide film having a thickness of 20 nm, and the application of voltage and the introduction of gas were stopped. Next, the vacuum chamber 21
After reducing the internal pressure to 6.7
00cc is introduced into the vacuum chamber 21, and the orifice valve 2
3 was adjusted to 0.27 Pa. Applying a voltage of 585 V from the DC power supply 30 to the silicon carbide target 28,
The float glass 35 was moved in front of the cuget 28 from the other end to the other end at a speed of 330 im m1n-' to cover the silicon carbide film with a thickness of 50 nm. Stop applying voltage and introducing gas,
The main valve 22 was closed, the inside of the vacuum chamber 21 was brought to atmospheric pressure, and the two-layer heat ray shielding glass was taken out. The optical properties of this heat ray shielding glass were determined at 630°C and 110°C in the atmosphere, which corresponds to the heating conditions for bending and thermal strengthening.
Table 1 shows the measurements taken on the samples before and after the minute heat treatment.

また、これらのサンプルの耐摩耗性を調べるために、テ
ーパ社製摩耗試験機を使用し砥石C5−10F、荷重5
00gの条件で300回転のテストをした結果、可視光
線透過率の変化は1%以下で、肉眼ではほとんど変化は
認、められなかった。
In addition, in order to examine the wear resistance of these samples, we used a Taper wear tester with grinding wheel C5-10F and a load of 5.
As a result of a test at 300 rotations under the condition of 00g, the change in visible light transmittance was less than 1%, and almost no change was observed with the naked eye.

[比較例コ 次に窒化チタニウムを用いた従来の例について説明する
[Comparative Example Next, a conventional example using titanium nitride will be explained.

洗浄した3菖真の厚みのフロートガラス35を、第2図
のターゲット27.28をチタニウムとしたスパッタリ
ング装置のガラスホルダ34に載せて、搬送コンベア3
3によりクーゲットの前面を通過させながら膜を被覆す
る方法を用いた。真空槽21内の圧力を6.7 X 1
0−’Pa以下に減圧した。
The cleaned float glass 35 with a thickness of 3 irises is placed on the glass holder 34 of the sputtering device in which the targets 27 and 28 in FIG.
3, a method was used in which the film was coated while passing through the front surface of the Couget. The pressure inside the vacuum chamber 21 is 6.7 x 1
The pressure was reduced to 0-'Pa or less.

ガス供給管31より、バルブ32を開いて窒素ガス50
%アルゴンガス50%からなる100ccの混合ガスを
真空槽21内に導入し、オリフィスバルブ23を調節し
て0.27Paに調節した。直流電源29からチタニウ
ムクーゲット27に580Vの電圧を印加し、チタニウ
ムターゲット27のスO バッタを開始した。一方の端からフロートガラス35を
760 mm m1n−’のスピードでターゲットの前
を通過させて他方の端に移し、フロートガラス35上に
膜厚が30nmの窒化チタニウム膜を被覆し、電圧の印
加およびガスの導入を停止した。次に真空槽21内の圧
力を6.7 X 10−’Pa以下に排気してから、ガ
ス供給管31より、バルブ32を開いて酸素ガス100
ccを真空槽21内に導入し、オリフィスバルブ23を
調節して0.27Paに調節した。直情型a30からチ
タニウムターゲソ1−28に450Vの電圧を印加し、
前記窒化チタニウム膜を被覆したフロートガラス35を
他方の端から逆向きに170 mm m1n−’のスピ
ードでターゲット28の前を移動させて、膜圧が50n
mの酸化チタニウムを被覆し、電圧印加およびガスの導
入を停止した。メインバルブ22を閉めて真空槽21内
を大気圧にし、2層からなる熱線遮へいガラスを取り出
した。この熱線遮へいガラスの光学特性を、曲げ加工お
よび熱的強化加工の加熱条件に相当する、大気中で63
0°C110分間の熱処理を行う前および後のサンプル
について測定したものを第1表に示す。
From the gas supply pipe 31, open the valve 32 and supply nitrogen gas 50
100 cc of a mixed gas consisting of 50% argon gas was introduced into the vacuum chamber 21, and the pressure was adjusted to 0.27 Pa by adjusting the orifice valve 23. A voltage of 580 V was applied from the DC power supply 29 to the titanium target 27, and the titanium target 27 started to scatter. The float glass 35 is passed in front of the target at a speed of 760 mm m1n-' from one end and transferred to the other end, a titanium nitride film with a thickness of 30 nm is coated on the float glass 35, and a voltage is applied and Gas introduction was stopped. Next, after exhausting the pressure inside the vacuum chamber 21 to 6.7 x 10-'Pa or less, open the valve 32 from the gas supply pipe 31 to supply 100% oxygen gas.
cc was introduced into the vacuum chamber 21, and the orifice valve 23 was adjusted to 0.27 Pa. Applying a voltage of 450V from the direct type a30 to the titanium target sensor 1-28,
The float glass 35 coated with the titanium nitride film was moved in front of the target 28 in the opposite direction from the other end at a speed of 170 mm m1n-' until the film thickness was 50 nm.
m titanium oxide was coated, and voltage application and gas introduction were stopped. The main valve 22 was closed to bring the inside of the vacuum chamber 21 to atmospheric pressure, and the two-layer heat ray shielding glass was taken out. The optical properties of this heat ray shielding glass were evaluated at 63°C in the atmosphere, which corresponds to the heating conditions for bending and thermal strengthening.
Table 1 shows the measurements taken on the samples before and after heat treatment at 0°C for 110 minutes.

■ 以上により、本発明の熱線遮へいガラスの実施例のb9
の値は、金の蒸着膜のそれに近く、よりゴールド色調を
呈することが分る。また加熱処理においても、日射透過
率の上昇がより小さいという特徴を有することが分る。
■ From the above, b9 of the embodiment of the heat ray shielding glass of the present invention
It can be seen that the value of is close to that of the gold vapor deposited film, and the film exhibits a more gold tone. It can also be seen that heat treatment also has the characteristic that the increase in solar transmittance is smaller.

[発明の効果] 本発明の熱線遮へいガラスは、ガラス面側の反射色調が
金色であるため、建築物の窓ガラスとしてガラス面側を
室外側に施行することにより、外部からは金色にみえ、
豪華な雰囲気を建築物に与えることができる。また、本
発明の熱により曲げ加工された熱線遮へいガラスは、建
築物の外観に多様なデザインを可能とし、かつ、金色を
呈する膜の被覆が曲げ加工前の平坦なガラス基体に被覆
されているため、色調のムラが小さい。さらに本発明に
よれば、膜の耐候性および耐摩耗性があるため、複層ガ
ラスにすることなく単板で使用できる。
[Effects of the Invention] Since the heat ray shielding glass of the present invention has a golden reflective color tone on the glass surface side, by applying the glass surface side to the outdoor side as a window glass of a building, it looks golden from the outside,
It can give a luxurious atmosphere to buildings. In addition, the thermally bent heat ray shielding glass of the present invention enables various designs for the exterior of buildings, and the gold-colored film is coated on a flat glass substrate before bending. Therefore, there is little unevenness in color tone. Further, according to the present invention, since the film has weather resistance and abrasion resistance, it can be used as a single sheet without requiring double glazing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図tag、 (b)は本発明の熱線遮へいガラスの
一部断面図、第2図は本発明の実施に用いたスバ、7タ
リング装置の断面模式図である。 1・・・ガラス基体、2・・・酸化チタニウム膜、3・
・炭化珪素または炭化珪素を主成分とする膜、21・・
・真空層、22・・・メインバルブ、23・・・オリフ
ィスバルブ、25.26・・・カソード、27.28・
・ターゲット、29.30・・・直流電源、31・・・
ガス供給管、32・・バルブ、33・・・搬送コンヘア
、34・・・ガラスボルダ、35・・・フロートガラス
。 特許出願人 日本板硝子株式会社
FIG. 1(b) is a partial cross-sectional view of the heat ray shielding glass of the present invention, and FIG. 1...Glass substrate, 2...Titanium oxide film, 3.
・Silicon carbide or a film containing silicon carbide as a main component, 21...
・Vacuum layer, 22... Main valve, 23... Orifice valve, 25.26... Cathode, 27.28.
・Target, 29.30...DC power supply, 31...
Gas supply pipe, 32... Valve, 33... Conveyor container, 34... Glass boulder, 35... Float glass. Patent applicant Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】 1)透明なガラス基体の一方の表面に、膜厚が10〜3
0nmの酸化チタニウムである第1層と、前記第1層の
上に0.85≦x≦1.1、0≦y≦0.25のSiC
_xO_yで示される組成の、膜厚が35〜70nmで
ある炭化珪素または炭化珪素を主成分とする第2層が被
覆された熱線遮へいガラス。 2)前記炭化珪素または炭化珪素を主成分とする第2層
の膜厚が、40〜55nmである特許請求範囲第1項記
載の熱線遮へいガラス。 3)透明なガラス基体の一方の表面に、熱的な曲げ加工
または強化加工が施されるに先立ち、前記酸化チタニウ
ムの第1層と前記炭化珪素または炭化珪素を主成分とす
る第2層とが被覆されたことを特徴とする特許請求範囲
第1項または第2項記載の熱線遮へいガラス。
[Claims] 1) On one surface of a transparent glass substrate, a film with a thickness of 10 to 3
A first layer of titanium oxide with a thickness of 0 nm, and a SiC layer with a thickness of 0.85≦x≦1.1 and 0≦y≦0.25 on the first layer.
Heat ray shielding glass coated with silicon carbide or a second layer mainly composed of silicon carbide having a composition represented by _xO_y and having a film thickness of 35 to 70 nm. 2) The heat ray shielding glass according to claim 1, wherein the silicon carbide or the second layer containing silicon carbide as a main component has a thickness of 40 to 55 nm. 3) Before thermal bending or strengthening is performed on one surface of the transparent glass substrate, the first layer of titanium oxide and the silicon carbide or second layer mainly composed of silicon carbide are formed. The heat ray shielding glass according to claim 1 or 2, characterized in that the heat ray shielding glass is coated with.
JP63313205A 1988-12-12 1988-12-12 Heat ray shielding glass with a reflective color of gold Expired - Lifetime JP2574018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313205A JP2574018B2 (en) 1988-12-12 1988-12-12 Heat ray shielding glass with a reflective color of gold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313205A JP2574018B2 (en) 1988-12-12 1988-12-12 Heat ray shielding glass with a reflective color of gold

Publications (2)

Publication Number Publication Date
JPH02157141A true JPH02157141A (en) 1990-06-15
JP2574018B2 JP2574018B2 (en) 1997-01-22

Family

ID=18038368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313205A Expired - Lifetime JP2574018B2 (en) 1988-12-12 1988-12-12 Heat ray shielding glass with a reflective color of gold

Country Status (1)

Country Link
JP (1) JP2574018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650938A1 (en) * 1993-11-02 1995-05-03 Saint-Gobain Vitrage Transparent substrate coated with a metallic nitride layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650938A1 (en) * 1993-11-02 1995-05-03 Saint-Gobain Vitrage Transparent substrate coated with a metallic nitride layer

Also Published As

Publication number Publication date
JP2574018B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP4814161B2 (en) Coating with low emissivity and low solar reflectance
EP1667809B1 (en) Heat treatable coated article with niobium zirconium inclusive ir refelecting layer and method of making same
EP0336257B1 (en) Low emissivity film for automotive head load reduction
US6994910B2 (en) Heat treatable coated article with niobium nitride IR reflecting layer
RU2424202C2 (en) Air oxidisable scratch resistant protective layer for optical coatings
JP2888507B2 (en) Metal vacuum-coated article and method for producing the same
US4900633A (en) High performance multilayer coatings
JP2505278B2 (en) High-permeability, low-radioactive article and method for producing the same
JP2625079B2 (en) Solar controlled durable thin film coating with low emissivity
US7534497B2 (en) Temperable high shading performance coatings
JP3139031B2 (en) Heat shielding glass
US6890659B2 (en) Heat treatable coated article with niobium zirconium inclusive IR reflecting layer and method of making same
JPS61111940A (en) High permeability and low radiation product and manufacture
US20070009745A1 (en) High shading performance coatings
EP1893543B1 (en) Coated glass pane
JPS63183164A (en) Heatable article having high transmissivity and low emissivity
FI96507B (en) Glass product and method for making a titanium-containing coating on a glass substrate
US6881487B2 (en) Heat treatable coated articles with zirconium or zirconium nitride layer and methods of making same
JPH02157141A (en) Heat ray shielding glass showing reflected gold color
JPH05213632A (en) Production of heat-treated coated glass
JPH0255246A (en) Heat ray-shading glass of high permanence and production thereof
JPH01314163A (en) Heat ray shielded glass
JPH06293536A (en) Manufacture of heat ray reflector
JPH03173763A (en) Transparent article
JPH05833A (en) Transparent article and its production