JPH02157128A - Method for forming optical element - Google Patents

Method for forming optical element

Info

Publication number
JPH02157128A
JPH02157128A JP30875888A JP30875888A JPH02157128A JP H02157128 A JPH02157128 A JP H02157128A JP 30875888 A JP30875888 A JP 30875888A JP 30875888 A JP30875888 A JP 30875888A JP H02157128 A JPH02157128 A JP H02157128A
Authority
JP
Japan
Prior art keywords
mold
molding
valve
glass
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30875888A
Other languages
Japanese (ja)
Other versions
JPH07106914B2 (en
Inventor
Tetsuo Kuwabara
鉄夫 桑原
Kiyoshi Yamamoto
潔 山本
Masaaki Yokota
正明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30875888A priority Critical patent/JPH07106914B2/en
Priority to US07/446,779 priority patent/US5032159A/en
Publication of JPH02157128A publication Critical patent/JPH02157128A/en
Publication of JPH07106914B2 publication Critical patent/JPH07106914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/005Pressing under special atmospheres, e.g. inert, reactive, vacuum, clean
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent the fusion of glass to a forming mold at high temp. and to obtain an optical element with the transmissivity not deteriorated by press- forming a glass material with the forming mold in the atmosphere of the mixture of a nonoxidizing gas and gaseous hydrocarbons. CONSTITUTION:The mold charged with a glass material is set in a device, the lid 2 of a vacuum vessel 1 is closed, water is passed through a water-cooled pipe 20, and a heater 8 is energized. At this time, the valves 16 and 18 for the gaseous mixture of Ar and CH4 are closed, and the evacuating valves 12, 13 and 14 are also closed. The valve 12 is opened to start to start evacuation, and the valve 12 is closed when the vessel is evacuated to <= about 10<-2> Torr, and the valve 16 is opened to introduce the gas contg. Ar and 1wt.% CH4 into the vacuum vessel. The material is pressed at about 10kg/cm<2>, then the pressure is turned off, and the material is cooled to a temp. below the transition point at the rate of -5 deg.C/min. The material is then cooled to <= about 200 deg.C, the valve 16 is closed, and the leak valve 13 is opened to introduce air into the vessel 1. The lid 2 is then opened, and the upper mold presser is released, and the formed product is taken out.

Description

【発明の詳細な説明】 「産業−1−の利用分野] 本発明は、レンズ、プリズム等のガラスよりなる光学素
子を、ガラス素材のブレス成形により製造する光学素子
成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Application in Industry-1-" The present invention relates to an optical element molding method for manufacturing optical elements made of glass, such as lenses and prisms, by press molding a glass material.

[従来の技術] 研磨工程を必要としないでガラス素材のブレス成形によ
ってレンズを製造する技術は従来のレンズの製造におい
て必要とされた複雑な上程をなくし、簡単且つ安価にレ
ンズを製造することを可能とし、近来、レンズのみなら
ずプリズムその他のガラスよりなる光学素子の製造に使
用されるようになってきた。
[Prior Art] The technology of manufacturing lenses by press molding glass materials without the need for a polishing process eliminates the complicated steps required in conventional lens manufacturing, making it possible to manufacture lenses easily and inexpensively. In recent years, it has come to be used to manufacture not only lenses but also prisms and other optical elements made of glass.

このようなガラスの光学素子のブレス成形に使用される
r4v材に要求される性質としては、硬さが挙げられる
。従来、この種の型材として、金属、セラミックス及び
それらをコーディングした材料等、数多くの提案がされ
ている。いくつかの例を挙げるならば、特開昭49−5
]112には13Crマルデンサイト鋼が、特開昭52
−45613にはSiC及びSi、IN<が提案されて
いる。
Hardness is one of the properties required of the R4V material used for press molding such glass optical elements. Conventionally, many proposals have been made as this type of mold material, such as metals, ceramics, and materials coated with these materials. To give some examples, JP-A-49-5
] 112 is made of 13Cr mardensite steel, which was published in JP-A-52
-45613 proposes SiC and Si, IN<.

し発明が解決しようとする課題] しかし、13crマルテンサイト鋼は酸化しやすく、さ
らに高温でFcが硝子中に拡散して硝子が着色する欠点
をもつ。S+C,Si3N4は一般的に、は酸化されに
くいとされているが、高温ではやはり酸化がおこり表面
にSiO□の膜が形成される為硝子と融着を起こし、さ
らに高硬度の為型自体の加−■゛性が極めて悪いという
欠点を持つ。
[Problems to be Solved by the Invention] However, 13cr martensitic steel has the disadvantage that it is easily oxidized and that Fc diffuses into the glass at high temperatures, causing the glass to become colored. Although S+C and Si3N4 are generally considered to be difficult to oxidize, oxidation still occurs at high temperatures and a film of SiO□ is formed on the surface, causing fusion with the glass, and furthermore, due to their high hardness, the mold itself It has the disadvantage of extremely poor additivity.

従って、本発明の目的は、ガラスの光学素r−の成形に
適した光学素子成形力法を提供することで、特に、高温
でガラスと型が融着なおこさず、型が酸化されに<<、
鉛が析出せず得られる光q゛素子透過率が低トしない光
学素子成形力法を提供することにある。
Therefore, an object of the present invention is to provide an optical element forming force method suitable for molding glass optical elements r-, and in particular, to prevent the glass and the mold from re-melting at high temperatures and to prevent the mold from being oxidized. <,
It is an object of the present invention to provide an optical element forming force method in which lead does not precipitate and the optical element transmittance obtained does not decrease.

[課題を解決するだめの手段] 本発明に従って、ガラス素材を成形用1−リを用いてブ
レス成形することによる光学素子成形力法において、該
ブレス成形をJl−酸化性ガスと炭化水素ガスとの混合
ガス雰囲気十で行なうことを特徴とする光学素子成形方
法が提供される。。
[Means for Solving the Problems] According to the present invention, in the optical element forming force method in which a glass material is press-molded using a molding machine, the press-forming is performed using a Jl-oxidizing gas and a hydrocarbon gas. An optical element molding method is provided, which is characterized in that the method is carried out in a mixed gas atmosphere of: .

本発明の方法によりガラスと成形用型との優れた離形性
が得られる機構は、必ずしも明らかではないが、混合ガ
ス中の炭化水素が成形用型の表面及びガラス表面に吸着
し、ガラス素材との間に19さ10人程度の炭化水素の
膜を形成することによると考えられる。
Although the mechanism by which the method of the present invention provides excellent mold releasability between the glass and the mold is not necessarily clear, the hydrocarbons in the mixed gas are adsorbed onto the surface of the mold and the glass, causing the glass material to This is thought to be due to the formation of a hydrocarbon film of about 19 to 10 layers between the two.

本発明について具体的に説明する。The present invention will be specifically explained.

非酸化性ガン、としては、例えばNO,Ar笠の不活性
ガス、N2ガスが挙げられる。、炭化水素ガスとしては
、例えばC114、C2II I+、C:lII 、、
が>%げられる1、また、混合ガス中の炭化水素ガスの
濃度は05〜4千…%であることが々rましい。炭化水
素ガスがQ、5?99%未満であるとガラスと成形用!
(すの密着力が増ずことににる融着が起こり易くなる傾
向があり、4重量%を越えるとガラスの強度が低トする
ことによると思われる融r1が起こり易くなる傾向があ
る。
Examples of the non-oxidizing gun include inert gas such as NO, Ar gas, and N2 gas. , as the hydrocarbon gas, for example, C114, C2II I+, C:lII, .
The concentration of hydrocarbon gas in the mixed gas is preferably 0.5 to 4,000%. If the hydrocarbon gas is less than Q, 5?99%, it is suitable for glass and molding!
(There is a tendency for fusion to occur without increasing the adhesion of the glass, and if it exceeds 4% by weight, fusion R1 tends to occur, which is thought to be due to a decrease in the strength of the glass.)

成形用型の材質としては、例えばSiC,5llN4、
Al2O□、BN、’l’ i N等の鏡面性、耐熱性
に優れたヤラミック材料が挙げられる。
Examples of the material of the molding die include SiC, 5llN4,
Yaramic materials with excellent specularity and heat resistance, such as Al2O□, BN, and 'l'iN, can be mentioned.

[実施例] 本発明を実施例に2辷り具体的に説明する。[Example] The present invention will be specifically explained using two examples.

実施例1 本発明の成形方法に用いる成形装置の例を第1図に小す
1゜ 第1図中、1は真空槽本体、2はそのフタ、3は光′!
I゛素丁を成形する/′5の1型、4はそのト型、5は
」二型をおさえるための−L型おさえ、6は版型、7は
型ホルダ−,8はヒーター、9は下型なつき上げるつき
−1−げ棒、10は該つきにげ棒を作動するエアシリン
ダ、11は油回転ポンプ、12゜3.14はバルブ、1
5はへr4Cl14混合ガス流入バイブ、16はバルブ
、17はリークバイブ、18はバルブ、19は温度セン
サー、20は水冷パイプ、21は真空槽を支持する台を
示す。
Embodiment 1 An example of a molding apparatus used in the molding method of the present invention is shown in FIG. 1. In FIG.
I ゛Molding a basic knife/'5 1 mold, 4 is its G shape, 5 is an L-shaped holder for holding down the 2 mold, 6 is a plate mold, 7 is a mold holder, 8 is a heater, 9 1 is a bar for lifting the lower mold, 10 is an air cylinder that operates the bar, 11 is an oil rotary pump, 12°3.14 is a valve, 1
5 is a r4Cl14 mixed gas inflow vibrator, 16 is a valve, 17 is a leak vibrator, 18 is a valve, 19 is a temperature sensor, 20 is a water cooling pipe, and 21 is a stand that supports the vacuum chamber.

レンズを製作する工程を次に述へる。。The process of manufacturing the lens will be described next. .

まず、型のIu)材SiCを所定の形状に加下し、レン
ズ成形面を鏡面研磨する。次にスパッタリング法により
SiCの被覆を形成する。膜厚は1.0メLmとした。
First, the Iu) material SiC of the mold is pressed into a predetermined shape, and the lens molding surface is mirror polished. Next, a SiC coating is formed by sputtering. The film thickness was 1.0 mm.

次にフラン1〜系光学硝子(SF−’+4)を所定の量
に調整し、球状にした硝子素材を型のギヤビティー内に
置き、これを装置内に設置前する。
Next, the amount of Furan 1 to system optical glass (SF-'+4) is adjusted to a predetermined amount, and the spherical glass material is placed in the gear of the mold before being installed in the apparatus.

ガラス素材を投入した型を装置内に設置してから真空槽
1のフタ2を閉じ、水冷パイプ20に水を流し、ヒータ
ー8に?L流を通ず。この時Ar”Cl1a混合ガス用
バルブ16及び18は閉じ、排気系バルブ12.13.
14も閉じている。尚油回転ポンプ11は常に回転して
いる。
After placing the mold containing the glass material in the device, the lid 2 of the vacuum chamber 1 is closed, water is poured into the water cooling pipe 20, and the heater 8 is heated. Not through L flow. At this time, the Ar"Cl1a mixed gas valves 16 and 18 are closed, and the exhaust system valves 12, 13.
14 is also closed. Note that the oil rotary pump 11 is constantly rotating.

バルブ12を開は排気をはじめI 0−2Torr以ト
になったらバルブI2を閉じ、バルブ16を開いて(A
r+ 1%(重量%、以下同じ) CI+4+ガスをボ
ンへより真空槽内に導入する。所定温度になったらエア
シリンダ10を作動させてl Okg/cm2の圧力で
5分間加圧する。圧力を除去した後、冷却温度を一5°
C/minで転位点以下になるまで冷却し、その後は一
り0℃/min以上の速度で冷却を行ない、200 ’
C以下に下がったらバルブ16を閉じ、リーグバルブ1
3を開いて真空槽1内に空気を導入する。それからフタ
2を開は旧型おさえをはずして成形物を取り出す。
Valve 12 is opened to begin exhaustion. When the temperature becomes below 0-2 Torr, valve I2 is closed, and valve 16 is opened (A
r+ 1% (weight %, same hereinafter) CI+4+ gas is introduced into the vacuum chamber through a bong. When the temperature reaches a predetermined temperature, the air cylinder 10 is operated to pressurize it at a pressure of 1 kg/cm2 for 5 minutes. After removing the pressure, reduce the cooling temperature to -5°
C/min until it becomes below the dislocation point, and then cooled at a rate of 0°C/min or more for 200'
When the temperature drops below C, close valve 16 and close league valve 1.
3 to introduce air into the vacuum chamber 1. Then, open the lid 2, remove the old type presser, and take out the molded product.

」−記のようにして、フリント系光学硝子S[?14(
軟化点5p=586℃、転位点1− g =485°C
)を使用して、レンズを成形した。この時の成形条件す
なわち時間−温度関係図を第2図にボす。
” - As described above, flint-based optical glass S[? 14(
Softening point 5p = 586°C, dislocation point 1-g = 485°C
) was used to mold the lens. The molding conditions at this time, that is, the time-temperature relationship diagram is shown in FIG.

このようにして行った成形において、型とガラスの融着
は発生せず、良好な成形向がj′tられた。
In the molding performed in this manner, no fusion occurred between the mold and the glass, and a good molding direction was achieved.

また、成形雰囲気を(Ar+4%CI+ 4)ガス、(
Ar+5%c u 41ガスに代えた以外は1゛記と同
様にしてガラス素材s F] 4を使用してレンズを成
形した。(Ar−1−4%CH4)ガスの場合、型とガ
ラスの融着は起きず、良好な成形向が1!、7.られた
。(八「+5%CH41ガスの場合、名士の融着が起き
ていた。
In addition, the molding atmosphere was changed to (Ar + 4% CI + 4) gas, (
A lens was molded using the glass material sF]4 in the same manner as in 1. except that the gas was replaced with Ar+5% Cu41 gas. In the case of (Ar-1-4% CH4) gas, no fusion of the mold and glass occurs, and a good molding direction is 1! ,7. It was done. (8) In the case of +5% CH41 gas, celebrity fusion occurred.

次に、上記成形雰囲気におけるガラスと型と密着力の測
定、上記で得られたレンズの透過率の測定を行った。。
Next, the adhesion between the glass and the mold in the above molding atmosphere was measured, and the transmittance of the lens obtained above was measured. .

く密着力の測定〉 Ar +Cl14  ]  %、 八r+ Cl144
 %、 八r+cl145 %、比較としてN2  Δ
「雰囲気での密着力を測定した。
Measurement of adhesion force〉 Ar + Cl14 ] %, 8r + Cl144
%, 8r+cl145%, N2 Δ for comparison
"We measured the adhesion in the atmosphere.

その結果を第3図に示す、。The results are shown in Figure 3.

第3図から明らかな様に、N2中、Ar中に較へて非酸
化性ガスArと炭化水素ガスC!14の混合ガス中では
ガラスと型との密着力が小さいことがわかル3.従って
、Ar + Cl1aガス雰囲気では1111記レンズ
成形で述へた優れた離型性が得られることになる。なお
N2ガス中530 ’Cの密着力が510°CJ:り低
下しているのは、融着によりガラスの剥れが牛したため
である。また、Ar+Cl14ガス雰囲気においてはc
14e4度が高い程密着力は減少するものの、5%ては
ガラスの強度低トによると思われる割れが発生ずること
もあり、好ましい濃度範囲は05〜4%である。。
As is clear from Fig. 3, non-oxidizing gas Ar and hydrocarbon gas C! It can be seen that the adhesion between the glass and the mold is small in the mixed gas of No. 14. Therefore, in the Ar + Cl1a gas atmosphere, the excellent mold releasability described in Lens Molding No. 1111 can be obtained. The reason why the adhesion force at 530'C in N2 gas is reduced by 510°C is because the glass peels off due to fusion. Furthermore, in an Ar+Cl14 gas atmosphere, c
The higher the 14e4 degree, the lower the adhesion, but at 5%, cracks may occur, probably due to the low strength of the glass, so the preferred concentration range is 05 to 4%. .

密着力測定に用いた装置を第4図に示す。FIG. 4 shows the device used for adhesion measurement.

第4図中、31は真空槽、32は水冷管、33.34は
架台、35は真空ポンプ、36は給気管、37は真空排
気管、338はリーク管、39.40゜41.42はバ
ルブ、43はエアーシリンダー、44はロードセル、4
5はロット、46.47は熱電対、48は断熱体、49
はヒーター、50は架台、51は」二型保持リング、5
2は供試材の上型、53は版型、54は硝子素材、55
は下型、56は台座、57は架台を示す。
In Fig. 4, 31 is a vacuum chamber, 32 is a water cooling pipe, 33.34 is a stand, 35 is a vacuum pump, 36 is an air supply pipe, 37 is a vacuum exhaust pipe, 338 is a leak pipe, 39.40° 41.42 is Valve, 43 is air cylinder, 44 is load cell, 4
5 is a lot, 46.47 is a thermocouple, 48 is an insulator, 49
is a heater, 50 is a stand, 51 is a type 2 retaining ring, 5
2 is the upper mold of the sample material, 53 is the plate mold, 54 is the glass material, 55
56 is a lower die, 56 is a pedestal, and 57 is a pedestal.

次に、密49力測定の手順を述へる。Next, the procedure for measuring the dense 49 force will be described.

第4図に示すように、フリント系のガラス素材(SF]
4)54を下型55の1゛に1戒せ、供試材の」−型5
2をロッド45の平面に上型保持リング51で装着する
。真空ポンプ35は常に回転している。給気用バルブ3
9、リークバルブ42、排気系バルブ40.41が閉じ
た状態から、バルブ40を開の真空槽内の排気を開始す
る。真空槽内がI 0−2Torr以下になったらバル
ブ40を閉じ、バルブ36を開いてボンへより(Ar+
 I%CILIがスな真空槽内に導入する6、次に、水
冷管32に水を流し、ヒーター49に電流を通す。上型
、ドll;11の温度が530℃になったらエアシリン
ダー43を作動さ七ロット45を下降させI OJ/c
m”の1力で5分間加圧する。加圧後の状態を第5図に
示す。第5図中、58は成形体を示す。次に、エアシリ
ンダーを作動させ圧力を除去した後ロットな徐々に」二
貸させる。この時成形体58とL型の離型に要する力を
ロードセル44により測定する。
As shown in Figure 4, flint-based glass material (SF)
4) Apply 54 to 1 inch of the lower mold 55, and place the sample material into the mold 5.
2 is mounted on the flat surface of the rod 45 with an upper die holding ring 51. The vacuum pump 35 is constantly rotating. Air supply valve 3
9. From the state where the leak valve 42 and the exhaust system valves 40 and 41 are closed, the valve 40 is opened to begin exhausting the inside of the vacuum chamber. When the inside of the vacuum chamber becomes I0-2 Torr or less, close the valve 40, open the valve 36, and release the gas to the bomb (Ar+
The water is introduced into a vacuum chamber with a constant I% CILI level 6. Next, water is caused to flow through the water cooling tube 32, and an electric current is passed through the heater 49. When the temperature of the upper mold and 11 reaches 530°C, operate the air cylinder 43 and lower the 7 lot 45 to I OJ/c.
Pressure is applied for 5 minutes with 1 force of m''. The state after pressurization is shown in Fig. 5. In Fig. 5, 58 indicates the molded product. Next, after removing the pressure by operating the air cylinder, the lot is Gradually let them borrow two. At this time, the force required to release the molded body 58 from the L shape is measured by the load cell 44.

〈透過率の測定〉 前記レンズ成形で得られた3種のレンズについて透過率
を「I u製作所製自記記録分光光度計340により測
定した。その結果を第6図に小ず。d線(587,56
mm1における透過率は(Ar+1%CU、 )ガス、
(Ar+ 4%C114)ガス、(Δr+5%C04)
ガスのいずれの場合にも約86%でガラス素材S l−
’ l 4と同じであり、成形にJ:る劣化はなかった
。これは成形時にガラス中の酸化鉛の還元が全と起きて
いないことを示すものである。
<Measurement of Transmittance> The transmittance of the three types of lenses obtained by the above lens molding was measured using a self-recording spectrophotometer 340 manufactured by IU Manufacturing Co., Ltd. The results are shown in Figure 6. ,56
The transmittance in mm1 is (Ar+1%CU, ) gas,
(Ar+4%C114) gas, (Δr+5%C04)
In all cases of gas, about 86% of the glass material S l-
It was the same as 4, and there was no deterioration in molding. This indicates that the reduction of lead oxide in the glass did not occur at all during molding.

透過率測定条件。Transmittance measurement conditions.

送り速度: 3m1n / IQO−850%m  (
波長域)スリット幅:2nm 縦倍率・100% 測定子−ト:UV−VIS(紫外−可視)センサ:フ」
トマル 実施例2 第7図〜第12図は、本発明の成形方法に用いる他の装
置を示す図である。
Feed speed: 3m1n / IQO-850%m (
Wavelength range) Slit width: 2 nm Vertical magnification: 100% Measuring point: UV-VIS (ultraviolet-visible) sensor:
Tomal Example 2 FIGS. 7 to 12 are diagrams showing other apparatuses used in the molding method of the present invention.

この装置の全体的構成は、素材取入室61、加熱部62
、素材移替部63、ブレス部65、徐冷部66及び成形
品取出室67から成るものである。素材取入室61、加
熱部62、素材移替部63及びブレス部65は同一ライ
ン状にあり、これらのラインと並列して徐冷部66が配
設されている。
The overall configuration of this device includes a material intake chamber 61, a heating section 62
, a material transfer section 63, a press section 65, an annealing section 66, and a molded product removal chamber 67. The material intake chamber 61, the heating section 62, the material transfer section 63, and the press section 65 are arranged in the same line, and a slow cooling section 66 is arranged in parallel with these lines.

加熱部62の入口近傍には第1の移送室81が構成され
、この第1の移送¥81に上記素材取入室61が設けら
れている。ブレス部65の出[二1近傍には第2の移送
室82が構成され、徐冷部(3(3の人1−1には第3
の移送室83が構成され、これら第2と第33の移送室
は移送路85で連結されている。、又、徐冷部6〔3の
出[]近傍には第4の移送室84が構成され、この第4
の移送室84には移動された成形品取出室67が設けら
れ、第4の移送室84と十記第1の移送45s+とけ回
送路86で連結されている1、このJ:つな構成により
本成形装置は連続的な循環路を成して成形室99を構成
している。。
A first transfer chamber 81 is constructed near the entrance of the heating section 62, and the material intake chamber 61 is provided in this first transfer chamber 81. A second transfer chamber 82 is constructed near the exit of the breath section 65 (21), and a slow cooling section (3
A transfer chamber 83 is constructed, and these second and 33rd transfer chambers are connected by a transfer path 85. In addition, a fourth transfer chamber 84 is constructed near the outlet of the slow cooling section 6 [3], and this fourth
The transferred molded product take-out chamber 67 is provided in the transfer chamber 84, and is connected to the fourth transfer chamber 84 by a first transfer 45s + melting recirculation path 86. This molding apparatus has a molding chamber 99 that forms a continuous circulation path. .

71は、この成形室99を移送せしめられるパレットで
あり、該パレット71上には素材載置台72とブレス成
形用の−11(” 73及び下型74とが定の間隔を有
して配設されている。又、l;’ !fil!74の外
周には、」−型73の載に1動作を案内するとともに下
型733の位置決め川としてガイド部材87が下型74
の上端部よりやや突出するように固設されている。1−
型73及び下j(:474のブレス成形面は、夫々光学
素子機能面を成形するための鏡面73 a、74aが施
されている。
71 is a pallet to which this molding chamber 99 is transferred, and on the pallet 71, a material mounting table 72, a -11 (" 73 for press molding) and a lower mold 74 are arranged with a fixed interval. Also, on the outer periphery of l;' !fil! 74, a guide member 87 is provided to guide one movement of the lower mold 73 onto the lower mold 73 and to serve as a positioning guide for the lower mold 733.
It is fixed so that it protrudes slightly from the upper end. 1-
The press molding surfaces of the mold 73 and the lower j (:474) are provided with mirror surfaces 73a and 74a for molding optical element functional surfaces, respectively.

パレット71を上記径路中にて移送せしめる手段として
、第1の移送室81には押出しシリンダ91が設けられ
、この押出しシリンダーによりパレット71はブレス部
〔35に移動せしめられる。第2の移送室82には押出
しシリンダー93と引出しシリンダー92とが設けられ
、引出しシリンダー 92によりブレス部65に移動せ
しめられたパレット71が第2の移送室82に引出され
、押出しシリンダー93により該第2の移送室に移動さ
れたパレット71が第3の移送室83にまで押出される
。第3の移送室83には押出しシリンダー94が設けら
れ、この押出しシリンダにより当該第3の移送室83に
移動せしめられたパレット71が第4の移送室84直前
まで押111される1、第4の移送室84には押出しシ
リンダ95と引出しシリンダー96とが設4−.lられ
ており、引出しシリンダー96により第4の移送室84
直01jまで移動されたパレット71が該第4の移送室
84まで引出される。2次いで、この第4の移送室84
に移動されたパレット7Iは押出しシリンダー95によ
り再び第1の移送室81まで押出される。
As a means for transferring the pallet 71 in the above-mentioned path, an extrusion cylinder 91 is provided in the first transfer chamber 81, and the pallet 71 is moved to the press section [35] by this extrusion cylinder. The second transfer chamber 82 is provided with a push-out cylinder 93 and a draw-out cylinder 92, and the pallet 71 moved to the brace part 65 by the draw-out cylinder 92 is pulled out to the second transfer chamber 82, and the pallet 71 is pulled out by the push-out cylinder 93. The pallet 71 moved to the second transfer chamber is pushed out to the third transfer chamber 83. The third transfer chamber 83 is provided with an extrusion cylinder 94, and the pallet 71 moved to the third transfer chamber 83 is pushed 111 to just before the fourth transfer chamber 84 by the extrusion cylinder. A push-out cylinder 95 and a draw-out cylinder 96 are installed in the transfer chamber 84 of 4-. 1, and a drawer cylinder 96 connects the fourth transfer chamber 84
The pallet 71 that has been moved to the straight position 01j is pulled out to the fourth transfer chamber 84. 2 Then, this fourth transfer chamber 84
The pallet 7I that has been moved is pushed out again to the first transfer chamber 81 by the pushing cylinder 95.

かくして、パレット71は−1一連したシリンダの押出
し或は引出し動作により各17稈に移送され、本装置の
成形室99内を移動することができる。なお、パレット
71は成形室99内に設けられた不図示のレール上に載
置され、シリンダーの押出し或は引出しによりレール上
を移動する。
In this manner, the pallet 71 is transferred to each of the 17 culms by a series of cylinder extrusion or withdrawal operations, and can be moved within the molding chamber 99 of the apparatus. Note that the pallet 71 is placed on a rail (not shown) provided in the molding chamber 99, and is moved on the rail by pushing out or pulling out a cylinder.

次に、−1−記成形室の各部に−)い゛C説明Jる。Next, each part of the molding chamber described in -1-) will be explained.

素材移替部62及び成形品取出室07には−114;+
173を下型74に所要間隔をあけて持にげるための持
I−げハント76.80(第10図)が設けられている
。この持トげハントは、不図示のリフト1;3 手段により−1−下動する。さらに、素材移替部(33
には、素材取入室61にて素材載置台721−に配置さ
れた素材75を下I−I、lj 74−1−に移替える
ための吸着フィンガー64が設けられており(台10図
)、ト記持十げハンド76の作動によりtr、型73が
 Fノ持十げられた後、該吸イクハント64が作動し、
素材75が下型74十の所定位置に移替えられる。この
吸着フィンガー64は、上記のにうな素材75の移替時
に、該素材75が正確にト型74七−の所定位置に配置
されるよう、パレット71+の素材載置台72と下型7
4とが有する所定間隔の長さだけ1−1ミ確に平行移動
する一定のストロークを有して作動するように構成され
ている。
−114;+ in the material transfer section 62 and the molded product removal chamber 07;
Holders 76 and 80 (FIG. 10) are provided for lifting the mold 173 to the lower die 74 at a required interval. This handle hunt is moved downward by a lift means (not shown). Furthermore, the material transfer department (33
is provided with a suction finger 64 for transferring the material 75 placed on the material mounting table 721- in the material intake chamber 61 to the lower I-I, lj 74-1- (table 10 figure), After the tr and mold 73 are lifted by F by the operation of the lifting hand 76, the suction hunt 64 is activated,
The material 75 is transferred to a predetermined position on the lower mold 740. This suction finger 64 is connected to the material mounting table 72 of the pallet 71
It is configured to operate with a constant stroke of 1-1 millimeter parallel translation by a predetermined interval length between 4 and 4.

又、素材取入室61及び成形品取出室67には、素材7
5を載置台72−1−に配置したり、成形品78を1−
型74から取出すための吸着フィンガー79が設GJら
れている(第12図)。
In addition, the material 7 is stored in the material intake chamber 61 and the molded product removal chamber 67.
5 on the mounting table 72-1-, or place the molded product 78 on the mounting table 72-1-.
A suction finger 79 for taking out the mold 74 is provided (FIG. 12).

ブレス部65には、ブレス成形時に1−型73を押圧す
るためのブレス用ロッI・77が設けられている(第1
1図)。
The breath portion 65 is provided with a breath rod I/77 for pressing the mold 1 73 during breath molding (the first
Figure 1).

なお、本装置において成形室99の内部は、1−Fll
 73及び1リーシ74を形成する型材が高d1、じト
て酸化されるのを防11−するよう、真空り[気の後、
雰囲気ガスを充填する必要があるため、上記の持手げハ
ント7〔3、吸着フィンガー64及びブレス四ツ1〜フ
フ笠と炉体99外壁との摺動部分には充分のシールドを
施しておく必要がある1、 叉、本装置においては、図示は省略しであるが、素材7
5を素材取入’[61に取入れる際、外気が成形室99
の内部に侵入しない」:うに、雰囲気置換室を設ける必
要がある。雰囲気のCI+4ガス濃度を調整するため赤
外線式ガス分析;?1100を成形室に設けである。
In addition, in this apparatus, the inside of the molding chamber 99 is 1-Fll.
In order to prevent the mold material forming the 73 and 1 rishi 74 from being oxidized due to high d1,
Since it is necessary to fill with atmospheric gas, the sliding parts of the above-mentioned handle hunt 7 [3, suction fingers 64 and four braces 1 to Fufu hat and the outer wall of the furnace body 99 should be sufficiently shielded. Although not shown in the drawings, this device requires a material 7.
5 into the material intake' [61, when outside air is taken into the molding chamber 99
"Do not infiltrate the inside of the sea urchin.": It is necessary to provide an atmosphere exchange room for sea urchins. Infrared gas analysis to adjust the CI+4 gas concentration in the atmosphere;? 1100 is installed in the molding room.

次に1一連のように構成された装置の動作について第8
図〜第12図に示すブレス成形−「稈+++nに従って
説明する。第8図は素材75が配filされていない状
態のパレット75を示す9、 まず、上記したように、I゛ド型73.74のペリ材の
酸化防止のために、成形室99の内部を不図示の真空ポ
ンプによりI X ] 0−2Torrまで真空排気し
た後、(Ar+ 1%cn4)ガスを充填する。
Next, we will discuss the operation of the device configured as follows.
Brace molding shown in FIGS. 12 to 12 will be explained according to the culm+++n. FIG. In order to prevent oxidation of the periphery material 74, the inside of the molding chamber 99 is evacuated to IX]0-2 Torr using a vacuum pump (not shown), and then filled with (Ar+1%cn4) gas.

C114ガス濃度は、赤外線式ガス分析計100を用い
てr「容値内にプロセスコントロールする。
The C114 gas concentration is process-controlled using an infrared gas analyzer 100 to within a volume value.

次いで、ヒーター97.98に通電し、炉内温度を所定
値にまで冒温する。界温完−r後、素材取入室61にて
1−記雰囲気置換室を通し、吸着フィンガー79により
第9図に示すように素材75を素材取入室61にあるパ
レット71の載置台72上に配置する。
Next, the heaters 97 and 98 are energized to raise the temperature inside the furnace to a predetermined value. After the completion of the ambient temperature, the material 75 is passed through the atmosphere exchange chamber described in 1-1 in the material intake chamber 61 and placed on the mounting table 72 of the pallet 71 in the material intake chamber 61 using the suction finger 79 as shown in FIG. Deploy.

次に、子連した如く押出しシリンダー91.93.94
.95及び引出しシリンダー92.96を作動して順次
パレット71が成形品取出室67から素材取入室61に
送られてくるたびに素材75を上記の方法で各々の載置
台72十に配置する。
Next, the extrusion cylinder 91.93.94
.. 95 and the drawer cylinders 92 and 96, each time the pallet 71 is sequentially sent from the molded product take-out chamber 67 to the material intake chamber 61, the material 75 is placed on each mounting table 720 in the above-described manner.

このような動作を繰り返し1−iうことにより、最初の
パレット71に供給された素)イア5と一1′、型73
及び−上型74が素材移替部63付近においてブレス成
形に必要な温度にまで加熱された時点で素材75のF型
74への移替えを11う。
By repeating this operation 1-i, the blanks 5 and 1' supplied to the first pallet 71 and the mold 73
and - When the upper mold 74 is heated to a temperature necessary for press molding near the material transfer portion 63, the material 75 is transferred to the F-type 74 (step 11).

なお、この時、素材75とL型73及び上型74とは略
同d11度にまて加熱されていることが望ましい。こう
することにより、移替後の素材75の温度が1型73或
は下2(す74の温度によって変化することなく最適な
ブレスtiA度条件下でブレス成形を行うことができる
1、 そして、素材移咎部6:3において、第10図に示すよ
うに、持1−げハント76により1型7:3を持1ユげ
、次いで吸着フィンガー64により素材75を吸着して
上型74+に移替える。この後、押出しシリンダー91
を押出して素材75の移替えが完工したパレット71を
ブレス部65の位1〆イに移動させる。この時、持手、
げハント76を除去すると共に、ブレス用ロット77を
作動さセ、所定のブレス斤にて、上型7;3を押圧し、
素材75に対するブレス成形を行なう。
Note that at this time, it is desirable that the material 75, the L-shaped mold 73, and the upper mold 74 be heated to approximately the same temperature of d11 degrees. By doing this, the temperature of the material 75 after transfer does not change depending on the temperature of the first mold 73 or the bottom mold 74, and the press molding can be performed under the optimal press temperature condition. In the material transfer section 6:3, as shown in FIG. After this, the extrusion cylinder 91
The pallet 71 on which the material 75 has been transferred by extruding is moved to the first position of the brace part 65. At this time, the handle
At the same time as removing the handle 76, actuate the brace rod 77, press the upper die 7; 3 with a predetermined brace loaf,
Breath molding is performed on the material 75.

次いで、ブレス用ロット77の押圧を解除し、十、型7
3はブレス時における状態を紺持したまま、押出しシリ
ンダー91の作動により、このパレット71はブレス部
65から該ブレス部65の出Ml (=J近に移動せし
められる。
Next, release the pressure on the bracelet rod 77, and press the mold 7.
3 maintains its state at the time of pressing, and by operating the extrusion cylinder 91, this pallet 71 is moved from the pressing portion 65 to near the exit Ml (=J) of the pressing portion 65.

さらに、このパレット71を引出しシリンダー92によ
り引出して第2の移送室82に移動した後、押出しシリ
ンダー93により押出し、移送路85を経て移送室83
に移送する。
Furthermore, after this pallet 71 is pulled out by the drawer cylinder 92 and moved to the second transfer chamber 82, it is pushed out by the extrusion cylinder 93, and passed through the transfer path 85 to the transfer chamber 82.
Transfer to.

次いで、パレット71は押出しシリンダー94の押出し
により、成形品の取出室67の方向に押出されるが、押
出し方向の0i」方には他のパレット7Iが配列された
状態にあるので、1述のような動作が継続する中で、当
該パレット71が徐冷部66の出口(=J近に至る間七
型73と上型74内で保持された成形品78は徐冷部6
6を通過し、ここで徐々に冷却せしめられる1、こうし
て、徐冷部66の先頭位置まで移動したパレット71は
引出しシリンダー96により成形品取出室67に至る。
Next, the pallet 71 is extruded by the extrusion cylinder 94 in the direction of the molded product removal chamber 67, but since another pallet 7I is arranged in the 0i direction in the extrusion direction, While this operation continues, the molded product 78 held in the seventh mold 73 and the upper mold 74 reaches the exit (=J) of the slow cooling section 66 while the pallet 71 approaches the exit (=J) of the slow cooling section 66.
6, where it is gradually cooled 1. The pallet 71, which has thus moved to the leading position of the slow cooling section 66, reaches the molded product take-out chamber 67 by the drawer cylinder 96.

次に、持−1げハント80が作動して上型73が除去さ
れ、次いで吸着フィンガー79により成形品78が取出
される。そして、この成形品取出しの完rしたパレット
71は押出しシリンダー95の押出しにより回送路86
を経て素材取入室61に移送される。
Next, the holding hunt 80 is operated to remove the upper mold 73, and then the molded product 78 is taken out by the suction fingers 79. Then, the pallet 71 from which the molded products have been taken out is pushed out by the extrusion cylinder 95 into the feeding path 86.
The material is then transferred to the material intake room 61.

」−記装置は、素材15はブレス成形の直曲の素材移替
え時まで素材載面台12−1−に配置6され1−1型7
3及び下型14から分離された状態にあるため、素材1
5と型73.74との反応が極力防雨される構造になっ
ている。
In the device described in ``-, the material 15 is placed 6 on the material loading table 12-1- until it is time to transfer the straight curved material for press molding.
3 and the lower die 14, the material 1
The structure is such that the reaction between Type 5 and Type 73 and 74 is as rain-proof as possible.

このようにして行った成形において、If、11とガラ
スの融着は発生せず、良好な成形面が/jIられた。
In the molding performed in this manner, no fusion of If, 11 and the glass occurred, and a good molding surface was obtained.

また、得られたレンズの透過率も(j線(587,56
nm)て86%と良!Ifであった。
In addition, the transmittance of the obtained lens was also determined (j-line (587, 56
nm) is good at 86%! It was If.

[発明の効果] 本発明の方法によれば、高氾1でガラスと型が融着な起
さず、をが酸化されに<<、鉛が析出せず得られる光学
素子の透過率が低−トしない。
[Effects of the Invention] According to the method of the present invention, the glass and the mold do not fuse with each other in high flood 1, lead is not oxidized, lead is not precipitated, and the transmittance of the obtained optical element is low. -Do not play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学素子成形方法に用いる成形装置の
断面図である。第2図はレンズ成形の際の時間温度関係
図である。第;3図はガラスと型の密着力成形温度関係
図であり、第4図は密着力測定に用いる装置であり、第
5図は測定の際の力旧二に後の状態を示す拡大図である
。第6図は成形体の透過率測定図である。第7図〜第1
2図は本発明の方法に用いる他の成形装置の断面図であ
り、第7図はその全体的平面図、第8図〜第12図は各
上程におけるパレットの概略断面図である。 l・・・真空槽本体、   2・・・フタ、3・・・旧
型、      4・・・下型、5・・・」−型おさえ
、   6・・・用型、7・・・型ホルダ−、8・・・
ヒーター9・・・つき上げ棒、    10・・・エア
シリンダ、11・・・1111回転ポンプ、 12.1
3.14・・・バルブ、15・・・流入パイプ、  I
6・・・バルブ、17・・・流出パイプ、   18・
・・バルブ、19・・・温度センサー、 20・・・冷
水パイプ、21・・・台、       31・・・真
空槽、32・・・水冷管、    33.34・・・架
台、35・・・真空ポンプ、  36・・・給気管、3
7・・・真空排気管、  38・・・リーク管、39.
40.41.42・・・バルブ、43・・・エアーシリ
ンダー44・・・ロードセル、 46、47・・・熱電対、 49・・・ヒータ 51・・・十型保持リング、 53・・・用型、 55・・・下型、 57・・・架台、 61・・・素材取入室、 63・・・素材移替部、 66・・・徐冷部、 72・・・素材載着台、 74・・・下型。 45・・・ロット、 48・・・断熱体、 50・・・架台、 52・・・」−型、 54・・・(1肖丁素材、 56・・・台座、 58・・・成形体、 62・・・加熱部、 65・・・ブレス部、 71・・・パレット、 73・・・」−型、
FIG. 1 is a sectional view of a molding apparatus used in the optical element molding method of the present invention. FIG. 2 is a time-temperature relationship diagram during lens molding. Figure 3 is a diagram showing the relationship between the adhesion force and molding temperature between the glass and the mold, Figure 4 is the device used to measure the adhesion force, and Figure 5 is an enlarged view showing the state of the force and temperature during measurement. It is. FIG. 6 is a transmittance measurement diagram of the molded body. Figure 7 ~ 1st
FIG. 2 is a sectional view of another molding apparatus used in the method of the present invention, FIG. 7 is an overall plan view thereof, and FIGS. 8 to 12 are schematic sectional views of pallets at each upper stage. l...Vacuum chamber body, 2...Lid, 3...Old model, 4...Lower mold, 5..."-mold holder, 6...Mold, 7...Mold holder- , 8...
Heater 9... Lifting rod, 10... Air cylinder, 11... 1111 Rotary pump, 12.1
3.14...Valve, 15...Inflow pipe, I
6... Valve, 17... Outflow pipe, 18.
... Valve, 19... Temperature sensor, 20... Cold water pipe, 21... Stand, 31... Vacuum tank, 32... Water cooling pipe, 33.34... Frame, 35... Vacuum pump, 36... Air supply pipe, 3
7... Vacuum exhaust pipe, 38... Leak pipe, 39.
40.41.42... Valve, 43... Air cylinder 44... Load cell, 46, 47... Thermocouple, 49... Heater 51... Ten-shaped retaining ring, 53... For Mold, 55... Lower mold, 57... Frame, 61... Material intake chamber, 63... Material transfer section, 66... Annealing section, 72... Material mounting table, 74 ...lower mold. 45... lot, 48... heat insulator, 50... mount, 52...''-mold, 54... (1 portrait material, 56... pedestal, 58... molded body, 62...Heating part, 65...Brace part, 71...Pallet, 73..."-mold,

Claims (1)

【特許請求の範囲】 1、ガラス素材を成形用型を用いてブレス成形すること
による光学素子成形方法において、該ブレス成形を非酸
化性ガスと炭化水素ガスとの混合ガス雰囲気下で行なう
ことを特徴とする光学素子成形方法。 2、混合ガス中の炭化水素ガスの濃度が 0.5〜4重量%である請求項1記載の光学素子成形方
法。
[Claims] 1. In an optical element molding method by press molding a glass material using a mold, the press molding is performed in a mixed gas atmosphere of a non-oxidizing gas and a hydrocarbon gas. Characteristic optical element molding method. 2. The optical element molding method according to claim 1, wherein the concentration of hydrocarbon gas in the mixed gas is 0.5 to 4% by weight.
JP30875888A 1988-12-08 1988-12-08 Optical element molding method Expired - Fee Related JPH07106914B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30875888A JPH07106914B2 (en) 1988-12-08 1988-12-08 Optical element molding method
US07/446,779 US5032159A (en) 1988-12-08 1989-12-06 Method of manufacturing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30875888A JPH07106914B2 (en) 1988-12-08 1988-12-08 Optical element molding method

Publications (2)

Publication Number Publication Date
JPH02157128A true JPH02157128A (en) 1990-06-15
JPH07106914B2 JPH07106914B2 (en) 1995-11-15

Family

ID=17984938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30875888A Expired - Fee Related JPH07106914B2 (en) 1988-12-08 1988-12-08 Optical element molding method

Country Status (1)

Country Link
JP (1) JPH07106914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188652A (en) * 1990-10-26 1993-02-23 Matsushita Electric Industrial Co., Ltd. Machine for molding optical element
US5201927A (en) * 1990-10-26 1993-04-13 Matsushita Electric Industrial Co., Ltd. Method of producing the optical element
JP2012031016A (en) * 2010-07-30 2012-02-16 Olympus Corp Method and apparatus for producing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188652A (en) * 1990-10-26 1993-02-23 Matsushita Electric Industrial Co., Ltd. Machine for molding optical element
US5201927A (en) * 1990-10-26 1993-04-13 Matsushita Electric Industrial Co., Ltd. Method of producing the optical element
JP2012031016A (en) * 2010-07-30 2012-02-16 Olympus Corp Method and apparatus for producing optical element

Also Published As

Publication number Publication date
JPH07106914B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US6810686B2 (en) Process for manufacturing glass optical elements
JPH0531504B2 (en)
JPH06211528A (en) Method for molding of glass lens
CN101866825A (en) Substrate processing apparatus, substrate annealing method, and semiconductor device manufacturing method
US5032159A (en) Method of manufacturing optical device
JPS6126528A (en) Apparatus for producing pressed lens
JPH02157128A (en) Method for forming optical element
JP3103272B2 (en) Equipment for manufacturing quartz glass articles
TW593174B (en) Press-forming method and machine for glass
JP2644597B2 (en) Manufacturing method for molding optical element
JP2986647B2 (en) Method for manufacturing optical glass element
JPH05193963A (en) Method for forming glass optical element
JP3234871B2 (en) Method for manufacturing glass optical element
JPH0283221A (en) Mold for forming optical element
JPH0477322A (en) Glass blank for producing optical element
JP3524567B2 (en) Method and apparatus for molding glass optical element
JPH06345455A (en) Production of optical glass element and apparatus for production
JP3753415B2 (en) Glass optical element molding method
JPS63151628A (en) Mold for forming optical element
JPH0372578B2 (en)
JPH0710557A (en) Method for molding optical element
JPH04321525A (en) Glass blank for production of optical element and production of optical element using the same glass blank
JPH0769654A (en) Forming system for optical glass element
JPH0881229A (en) Molding of glass optical element and pressing device used for the same method
JPS59116136A (en) Manufacture of optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees