JPH02157089A - Treatment of oil-containing waste water - Google Patents

Treatment of oil-containing waste water

Info

Publication number
JPH02157089A
JPH02157089A JP31125288A JP31125288A JPH02157089A JP H02157089 A JPH02157089 A JP H02157089A JP 31125288 A JP31125288 A JP 31125288A JP 31125288 A JP31125288 A JP 31125288A JP H02157089 A JPH02157089 A JP H02157089A
Authority
JP
Japan
Prior art keywords
flocculant
raw water
oil
water
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31125288A
Other languages
Japanese (ja)
Inventor
Katsuyasu Horiuchi
堀内 克泰
Shinichi Shirai
白井 真一
Satoru Nagai
悟 長井
Isamu Kato
勇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Kawasaki Steel Corp filed Critical Kurita Water Industries Ltd
Priority to JP31125288A priority Critical patent/JPH02157089A/en
Publication of JPH02157089A publication Critical patent/JPH02157089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To allow the water quality of raw water to automatically reach objective water quality while conserving a chemical agent by measuring the oil concn. and flow rate of raw water and injecting a flocculant corresponding to the product of the measured values to perform the flocculating separation of an oil component and measuring the concn. of the oil component remaining in treated water to correct the injection amount of the flocculant. CONSTITUTION:Raw water is sent to a CCl4 extracted substance measuring device 8 by a raw water sampling pump 7 to measure the concn. of a CCl4 extracted substance. At the same time, a flow rate is measured by a raw water flowmeter 3 and the multiplication of the above mentioned concn. and flow rate is performed by an operator 9. A flocculant is injected in waste water whose pH is controlled by a pH control tank 4 in the injection amount operated by the operator 9 from a flocculant storage tank 12 through a flocculant injection pump 13 in the pH control tank 4 to form the flocs of the oil component. Treated water floating under pressure is sampled by a treated water sampling pump 17 to be analyzed by the CCl4 extracted substance measuring device 8 and the analyzed value is compared with an objective value to correct the injection amount of the flocculant. By this method, the optimum injection of a chemical agent is certainly and automatically realized without generating wastefulness at all.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、鉄鋼業、製油化学工業、自動車工業等に於い
て発生する油分含有排水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for treating oil-containing wastewater generated in the steel industry, petrochemical industry, automobile industry, and the like.

「従来の技術」 鉄鋼業2石油化学工業、自動車工業等では、油分を含有
した排水が発生する。例えば、鉄鋼生産工程では、アル
カリ性排水が発生ずるが、冷間圧延工程では、タンデム
工程で板面に付着した圧延油を脱脂洗浄し、表面を清浄
化する工程(クリーニング工程)を有しており、この工
程では、アルカリ剤が使用されていて、この排水には油
分が多量に含まれているため、未処理では放流できない
``Conventional technology'' In the steel industry, petrochemical industry, automobile industry, etc., wastewater containing oil is generated. For example, in the steel production process, alkaline waste water is generated, but in the cold rolling process, there is a process (cleaning process) to degrease and wash the rolling oil that has adhered to the plate surface during the tandem process and clean the surface. In this process, an alkaline agent is used, and this wastewater contains a large amount of oil, so it cannot be discharged untreated.

この排水を処理するためには、一般的には加圧浮上処理
法が用いられている。この方法は、酸性薬品により、凝
集剤、凝集助剤の効果の高いPl+領域(一般的には円
I5〜8)にPl+調整した後、凝集剤を加えフロック
を粗大化させた後、マイクロエアーで、加圧浮上させる
ものである。
In order to treat this wastewater, a pressure flotation treatment method is generally used. This method uses acidic chemicals to adjust Pl+ to the Pl+ area (generally circles I5 to 8) where flocculants and coagulant aids are highly effective, then adds a flocculant to coarsen the flocs, and then uses micro air. It is floated under pressure.

上記の凝集剤、凝集助剤の投入量の決定は、運転員が現
場で水質測定を行いながら運転員自身が行っていたが、
この種の処理技術にあっては、投入量を決定する水質測
定の能率、これに基づいて投入される薬剤量等について
種々の難点があり、無駄のない合理的な薬剤の投入の提
案として、特開昭62−204811号、特開昭60−
7991号、特開昭62232540号がなされ、又、
水質測定の1つである油分測定についての改善が特公昭
55−13539号に捉案されている。
The amount of flocculant and flocculation aid mentioned above was determined by the operator himself while measuring the water quality on site.
This type of treatment technology has various drawbacks, such as the efficiency of water quality measurement to determine the input amount and the amount of chemicals to be injected based on this, so as a proposal for rational injection of chemicals without waste, JP-A-62-204811, JP-A-60-
No. 7991 and Japanese Patent Application Laid-open No. 62232540, and
Improvements in oil content measurement, which is one of water quality measurements, are proposed in Japanese Patent Publication No. 13539/1983.

さらには、最近では所謂画像処理法が提案されている。Furthermore, recently, so-called image processing methods have been proposed.

これはフロックの密度を画像処理により常時計測し、沈
降性のよいフロック形状を見い出しながら、最小の凝集
剤投入量で安定した処理水質を得るものである。
This method constantly measures the density of flocs using image processing to find floc shapes with good sedimentation properties, while achieving stable treated water quality with the minimum amount of flocculant input.

「発明が解決しようとする課題」 しかるに、叙上の諸提案には実際上、以下に挙げる欠点
がある。
``Problems to be Solved by the Invention'' However, the above-mentioned proposals actually have the following drawbacks.

例えば、前記の特開昭62−204811号にあっては
、処理の対象となる原水の水質は時々刻々変化しており
、手作業による水質測定に依存していると、(1)基本
的に排水処理設備の無人化は不可能である。
For example, in the above-mentioned Japanese Patent Application Laid-Open No. 62-204811, the quality of raw water to be treated changes from moment to moment, and manual water quality measurement is dependent on (1) basically Unmanned wastewater treatment facilities are impossible.

(2)手作業による水質測定には時間がかかり、長い間
隔を置いた測定結果をもとに処理を行うと、凝集剤2助
剤を本来の必要量以」二に投入することが余儀なくされ
る。
(2) Manual water quality measurement takes time, and if processing is performed based on measurement results taken at long intervals, it becomes necessary to add more coagulant and auxiliary agents than originally required. Ru.

また、必要量以上に投入すると、フロック形状が悪くな
り、加圧浮上では処理できず、処理水の目標値が達成で
きなくなる。
In addition, if more than the required amount is added, the shape of the flocs will deteriorate, making it impossible to treat by pressurized flotation and making it impossible to achieve the target value of treated water.

などの難点がある。There are other difficulties.

又、この特開昭62−204811号、特開昭60−7
991号、さらに特開昭62−232540号はいずれ
も原水を分析して薬剤投入量を決定することで足りると
しているが、現実には原水の水質が常に変化しているこ
とや、投入量の微調整機能を備えていないことからして
、どうしても安全値に設定されて必要量」二の投入が避
けられないという難点がある。
Also, this Japanese Patent Application Publication No. 62-204811, Japanese Patent Application Publication No. 60-7
No. 991 and JP-A-62-232540 both state that it is sufficient to determine the amount of chemicals to be added by analyzing the raw water, but in reality, the quality of the raw water is constantly changing and it is difficult to determine the amount to be added. Since it does not have a fine adjustment function, it has the disadvantage that it is inevitably set at a safe value and that it is unavoidable to dispense the required amount.

尚、叙上の投入量決定機構のなかにはあまりにも複雑化
されたものもあり、前記の画像処理方法に於ける機器と
同じくあまりにも設備費が高価である難点がある。
It should be noted that some of the input amount determining mechanisms described above are too complicated, and like the equipment used in the image processing method described above, the equipment cost is too high.

本発明は、叙上の事情に鑑み、油分含有排水の加圧浮上
処理に於いて、何んら高価な機器を要することなくして
、原水から算出決定した薬剤投入量の積算値を処理結果
に応じて自動修正して、確実に省薬剤が期し得る処理方
法を捉供することを目n勺としている。
In view of the above-mentioned circumstances, the present invention provides a treatment result that uses the integrated value of the amount of chemical input calculated from raw water in the pressure flotation treatment of oil-containing wastewater without requiring any expensive equipment. The aim is to automatically correct the situation accordingly and provide treatment methods that can reliably save on chemicals.

「課題を解決するための手段」 上記目的を達成するために、本発明の処理方法において
は、原水の油分濃度及び流量を測定し、それらの測定値
の積に対応する予め定めた投入量の凝集剤を投入して油
分の凝集分離を行い、処理水中に残留する油分濃度を測
定し、これを予め設定した処理水油分濃度目標値と比較
して前記した投入量を補正するとしたものである。
"Means for Solving the Problems" In order to achieve the above object, in the treatment method of the present invention, the oil concentration and flow rate of raw water are measured, and a predetermined amount of input corresponding to the product of these measured values is determined. A flocculant is added to coagulate and separate the oil content, the oil concentration remaining in the treated water is measured, and this is compared with a preset target value for the oil concentration in the treated water to correct the above-mentioned input amount. .

油分濃度測定は四塩化炭素抽出−赤外線吸収法疎水性溶
媒抽出−蒸発溜分法で行うとよい。
The oil concentration may be measured by carbon tetrachloride extraction-infrared absorption method, hydrophobic solvent extraction-evaporation distillation method.

「作用」 上記のように構成された処理方法によると、予め定めた
油分と凝集剤との関係と原水サンプリングの結果とから
、原水に所定量の薬剤投入がなされるが、さらに、当該
処理後の排水について所定の目標値に到達したか否か測
定がなされ、原水への薬剤投入の微調整が加えられる。
"Operation" According to the treatment method configured as described above, a predetermined amount of chemicals are added to raw water based on the predetermined relationship between oil content and flocculant and the results of raw water sampling. Measurements are taken to determine whether the wastewater has reached a predetermined target value, and fine adjustments are made to the amount of chemicals added to the raw water.

この結果、省薬剤のもとて目標の水質に自動到達し得る
As a result, it is possible to automatically reach the target water quality while using fewer chemicals.

「実施例」 実施例について図面を参照して説明すると、第1図に於
いて、工場から出されだ円19〜12の油分含有排水は
、原水槽1に貯溜された後、原水ポンプ2によりpH調
整槽4に移送される。PIljJl整槽4では、排水は
Pl+計16の測定のもと、酸貯槽10がら酸注入ポン
プ11を介して酸性薬剤を注入することによりPl+が
5〜8に1次処理される。このPl+調整は凝集剤の効
率を高めるための必要条件である。
"Example" An example will be explained with reference to the drawings. In FIG. It is transferred to the pH adjustment tank 4. In the PIljJl tank 4, the wastewater is primarily treated to 5 to 8 Pl+ by injecting an acidic agent into the acid storage tank 10 via an acid injection pump 11 while measuring a total of 16 Pl+. This Pl+ adjustment is a prerequisite for increasing the efficiency of the flocculant.

ここで、排水中の油分を除去するだめの凝集剤と凝集助
剤の投入量決定は以下の方法で行う。
Here, the input amounts of the flocculant and flocculant aid for removing oil from the wastewater are determined by the following method.

まず、原水サンプリングポンプ7により原水をCc14
抽出物質計測器8に送水し、CcZ4抽出物質濃度を測
定する。
First, the raw water is collected by Cc14 using the raw water sampling pump 7.
Water is sent to the extractable substance measuring device 8, and the CcZ4 extractable substance concentration is measured.

尚、叙上Ccl、、抽出測定は前記の特公昭55−13
539号に於けるが如く強いて連続測定に由る必要は無
く間欠測定で差し支えない。
In addition, the above Ccl, extraction measurement was carried out in the above-mentioned Special Publication 1984
It is not necessary to rely on continuous measurement as in No. 539, and intermittent measurement may be used.

何故ならば、排水処理設備には原水槽1を設置する必要
がある(設備トラブル時のバッファーのため)が、この
原水槽1の緩衝機能により、原水の油分濃度が短時間(
30分程度)で大きく変わることがないからであり、且
つ、連続測定すれば、Cd4量が多く必要となるが、C
Cl2は未処理では放流できないし、また価格も高いか
らである。
This is because it is necessary to install a raw water tank 1 in wastewater treatment equipment (as a buffer in case of equipment trouble), but the buffering function of this raw water tank 1 allows the oil concentration of the raw water to decrease for a short time (
This is because there is no significant change in the amount of Cd4 (about 30 minutes), and if continuous measurement is performed, a large amount of Cd4 is required.
This is because Cl2 cannot be released untreated and is also expensive.

上記のCd4抽出測定のプロセスと同時に原水流量計3
により流量を測定し、演算器9により上記濃度と流量と
の乗算を行う。この値が凝集剤、助剤を投入するための
基準値となるものである。演算器9は、この基準値と、
予め定めた油分と凝集剤との関係式とから凝集剤の投入
量を演算する。
At the same time as the above Cd4 extraction measurement process, the raw water flowmeter 3
The flow rate is measured, and the arithmetic unit 9 multiplies the concentration and the flow rate. This value serves as the reference value for adding flocculant and auxiliary agent. The calculator 9 uses this reference value and
The amount of flocculant to be added is calculated from a predetermined relational expression between oil content and flocculant.

Pl+調整槽4でPH調整された排水には、PH調整槽
4に於いて、演算器9で演算された投入量の凝集剤が凝
集剤貯槽12より凝集剤注入ポンプ13を介して投入さ
れ油分のフロックが形成される。
In the PH adjustment tank 4, the amount of flocculant calculated by the calculator 9 is injected into the wastewater whose pH has been adjusted in the Pl + adjustment tank 4 from the flocculant storage tank 12 via the flocculant injection pump 13, and oil content is removed. flocs are formed.

この2次処理された排水は、凝集槽5に於いて凝集剤と
同様に演算器9で積算された投入量の凝集助剤が凝集助
剤貯槽14より凝集助剤注入ポンプ15を介して投入さ
れ、油分のフロックが粗大化される。
This secondary treated wastewater is fed into the flocculating tank 5, where the flocculant in the amount accumulated by the calculator 9 is added from the flocculant storage tank 14 via the flocculant injection pump 15. The oil flocs become coarser.

上記の投入凝集剤量の算出は、処理水の油分濃度1 m
g/ i 、 coo 8〜1(bng/ Eを目標値
とした実験の結果から得られた知見にもとすいて行われ
る。
The calculation of the amount of flocculant input above is based on the oil concentration of the treated water of 1 m
g/i, coo 8 to 1 (bng/E) as the target value.

すなわち、第2図に示す如く、原水のCc!4抽出物質
濃度と上記目標値に至らしめるために要する凝集剤投入
量との間には比例関係が見い出された。
That is, as shown in FIG. 2, the Cc of raw water! A proportional relationship was found between the concentration of 4 extracted substances and the amount of flocculant input required to reach the above target value.

斜上関係は下記の通りである。The diagonal relationship is as follows.

y=o、]、8χ+25.7 ここで y:原水のCl74抽出物質濃度X:凝集剤投
入量 したがって、投入量はX・0.18  (y−25,7
)と定められる。
y=o,], 8χ+25.7 where y: Concentration of Cl74 extracted material in raw water
).

粗大化された油分フロックを含有した排水は加圧浮上槽
6に送られ、フロックは加圧浮上により除去され排水は
放流される。
The wastewater containing coarsened oil flocs is sent to the pressure flotation tank 6, the flocs are removed by pressure flotation, and the wastewater is discharged.

上記の関係式から演算される凝集剤投入量は固定ではな
く、常に最適化が図られる。
The flocculant input amount calculated from the above relational expression is not fixed, but is constantly optimized.

すなわち、加圧浮上の処理水を処理水サンプリングポン
プ17により、サンプリングし、Cl74抽出物質計測
器8で分析し、目標値と比較して投入量を補正する。補
正の仕方としては、例えば演算された投入量にさらに係
数をかげる。処理水が目標値以下の場合には、例えば0
.1ずつ下げていき、処理目標値を越えた場合には0.
1ずつ上げていくというものである。しかして、確実に
無駄の全く無い最適な薬剤投入が自動的に実現すること
となる。
That is, the pressurized and floated treated water is sampled by the treated water sampling pump 17, analyzed by the Cl74 extractable substance meter 8, and compared with a target value to correct the input amount. As a method of correction, for example, the calculated input amount is further increased by a coefficient. If the treated water is below the target value, for example 0
.. It is decreased by 1, and if it exceeds the processing target value, it is decreased to 0.
It goes up one by one. As a result, optimal drug injection without any waste can be automatically realized.

「発明の効果」 本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。
"Effects of the Invention" Since the present invention is configured as described above, it produces the effects described below.

(1)必要とする各個の機器は簡素、安価ですみ、実施
に要するコストは低くてよい。
(1) Each piece of equipment required is simple and inexpensive, and the cost required for implementation is low.

(2)各部の測定には無人化された手段を採用し得るの
で、無人運転が可能となる。
(2) Since unmanned means can be used to measure each part, unmanned operation is possible.

(3)薬剤投入量の最適化が図られるため、薬剤コスト
が低減する。
(3) Since the amount of drug input is optimized, drug costs are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を示すフロー図、第2図は原水Cd
4抽出物(油分)と凝集剤(PAC)との相関図の1例
である。 1・・・原水槽、 2・・・原水ポンプ、 3・・・原
水流量計、 4・・・PH調整槽、 5・・・凝集槽、
 6・・・加圧浮上槽、  7・・・原水サンプリング
ポンプ、  8・・・Ccf4抽出物質計測器、 9・
・・演算器、 10・・・酸貯槽、 11・・・酸注入
ポンプ、 12・・・凝集剤貯槽、13・・・凝集剤注
入ポンプ、 14・・・凝集助剤貯槽、15・・・凝集
助剤注入ポンプ、 16・・・PI計、 17・・・処
理水サンプリングポンプ。
Figure 1 is a flow diagram showing the method of the present invention, Figure 2 is raw water Cd
4 is an example of a correlation diagram between extract (oil content) and flocculant (PAC). 1... Raw water tank, 2... Raw water pump, 3... Raw water flow meter, 4... PH adjustment tank, 5... Coagulation tank,
6... Pressurized flotation tank, 7... Raw water sampling pump, 8... Ccf4 extractable substance measuring device, 9.
... Computing unit, 10... Acid storage tank, 11... Acid injection pump, 12... Coagulant storage tank, 13... Coagulant injection pump, 14... Coagulation aid storage tank, 15... Coagulation aid injection pump, 16... PI meter, 17... Treated water sampling pump.

Claims (1)

【特許請求の範囲】[Claims] (1)原水の油分濃度及び流量を測定し、それらの測定
値の積に対応する予め定めた投入量の凝集剤を投入して
油分の凝集分離を行い、処理水中に残留する油分濃度を
測定し、これを予め設定した処理水油分濃度目標値と比
較して前記した投入量を補正することを特徴とする油分
含有排水の処理方法。
(1) Measure the oil concentration and flow rate of raw water, add a predetermined amount of flocculant corresponding to the product of these measured values to coagulate and separate the oil, and measure the oil concentration remaining in the treated water. A method for treating oil-containing wastewater, characterized in that the input amount is corrected by comparing this with a preset target value for oil concentration in treated water.
JP31125288A 1988-12-09 1988-12-09 Treatment of oil-containing waste water Pending JPH02157089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31125288A JPH02157089A (en) 1988-12-09 1988-12-09 Treatment of oil-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31125288A JPH02157089A (en) 1988-12-09 1988-12-09 Treatment of oil-containing waste water

Publications (1)

Publication Number Publication Date
JPH02157089A true JPH02157089A (en) 1990-06-15

Family

ID=18014917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31125288A Pending JPH02157089A (en) 1988-12-09 1988-12-09 Treatment of oil-containing waste water

Country Status (1)

Country Link
JP (1) JPH02157089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2016052619A (en) * 2014-09-03 2016-04-14 水ing株式会社 Method and apparatus for treating organic wastewater containing fat and oil
CN106517457A (en) * 2016-09-05 2017-03-22 武汉长江仪器自动化研究所有限公司 Method and system for monitoring alum break failure of alum delivery pipeline of water plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289313A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Apparatus and method for treating organic waste water
JP2016052619A (en) * 2014-09-03 2016-04-14 水ing株式会社 Method and apparatus for treating organic wastewater containing fat and oil
CN106517457A (en) * 2016-09-05 2017-03-22 武汉长江仪器自动化研究所有限公司 Method and system for monitoring alum break failure of alum delivery pipeline of water plant

Similar Documents

Publication Publication Date Title
Chow et al. A rapid fractionation technique to characterise natural organic matter for the optimisation of water treatment processes
Saxena et al. An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent
EP0473653B1 (en) Effluent treatment
US5433853A (en) Method of clarifying wastestreams
JPH02157089A (en) Treatment of oil-containing waste water
CA3119243A1 (en) Measuring and controlling organic matter in waste water stream
JP3374637B2 (en) Emulsion wastewater treatment equipment containing orinoco oil
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
US5246590A (en) Water treatment to reduce fog levels controlled with streaming current detector
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
DE59302660D1 (en) Method for operating a wastewater treatment plant and device for feeding a phosphate precipitant
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
US5531905A (en) System and method to control laundry waste water treatment
FR2817547B1 (en) METHOD AND DEVICE FOR THE CONTINUOUS TREATMENT OF WASTE WATER OF INDUSTRIAL ORIGIN BY WATER VAPOR STRIPPING
JP2021065803A (en) Treatment method of fluorine-containing wastewater
JPH03123607A (en) Device for feeding flocculant
JP2003047806A (en) Flocculation apparatus and flocculation method
JPH04260404A (en) Waste liquid treatment system
JPH10180239A (en) Waste water monitoring system and waste water treating system
JPH11197405A (en) Treatment method for used emulsion type aqueous water-soluble coolant liquid and waste liquid treatment apparatus
JPS59166216A (en) Method for controlling supply of flocculant in waste water treatment
WO1998018730A1 (en) Sludge dewatering control system
RU2491230C1 (en) Electrically driven flotator
JPH0780209A (en) Treatment of plural lots of waste water