JPH02156196A - Spent fuel storage for high temperature gas nuclear reactor and its facility - Google Patents

Spent fuel storage for high temperature gas nuclear reactor and its facility

Info

Publication number
JPH02156196A
JPH02156196A JP63310593A JP31059388A JPH02156196A JP H02156196 A JPH02156196 A JP H02156196A JP 63310593 A JP63310593 A JP 63310593A JP 31059388 A JP31059388 A JP 31059388A JP H02156196 A JPH02156196 A JP H02156196A
Authority
JP
Japan
Prior art keywords
fuel
spent fuel
storage
fuel rods
rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310593A
Other languages
Japanese (ja)
Inventor
Souichi Tanaka
創一 田中
Masao Yamada
正夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63310593A priority Critical patent/JPH02156196A/en
Publication of JPH02156196A publication Critical patent/JPH02156196A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable a small sized and easy to handle spent fuel storage by separating fuel rods from graphite blocks of spent fuel-assembly, by storing only fuel rods in a spent fuel storage facility in a nuclear reactor building and by disposing graphite blocks. CONSTITUTION:A fuel assembly 5 is taken out from a reactor core 2 by using refuelling machine, is separated into fuel rods 4 and graphite blocks at an outside of a nuclear reactor 1, the fuel rods 4 are transferred to a spent fuel storage facility 7 in a nuclear reactor building and the graphite blocks from which the fuel rods 4 are extracted are brought out from the nuclear reactor building to be treated as disposing treatment. The fuel rods 4 are placed in holes of graphite blocks and therefore can be easily pulled out by an automatic remote operation. The separated fuel rods 4 are housed in a casing 12 as a group of certain number of the rods and furthermore the casing is inserted into a storage rack 9 and, after plugged with shielding plugs, are transferred to a storage pool 8 which is filled with water, and finally are cooled down and stored.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、高温ガス炉において、炉心から取り出され
た使用済燃料を貯蔵する貯蔵方法及び使用済燃料を貯蔵
するための貯蔵設備に関する。
The present invention relates to a storage method for storing spent fuel taken out from a core of a high-temperature gas reactor, and a storage facility for storing spent fuel.

【従来の技術】[Conventional technology]

高温ガス炉は、燃料を含む炉心構造を黒鉛でつくり、ヘ
リウムなどの気体を冷却材として用い高い出口温度の冷
却材を取り出せるように設計された原子炉で、その特徴
は次のとおりである。 i)新鋭火力なみの薄気条件が得られプラント効率が高
い(約40%)。 ii )安全率が高い。 iii )環境問題に有利である(熱効率が高いので、
温排水問題が軽減され環境への放射能放出が少ない)。 八I)被覆粒子燃料を用いるので、高温化に適し、高燃
焼度が得られる。 ■)高温化を利用し、て、発電以外の多目的利用に適し
ている。 日本原子力研究所の高温工学試験研究炉(以下HTTR
と称す、熱出力30MW、原子炉出口冷却材温度950
°C)に計画されている使用済燃料貯蔵方法について説
明する。 i)第3図は従来例による使用済燃料貯蔵方法を示すダ
イヤグラムであり、従来は炉心から取り出された使用済
燃料体はそのまま使用済燃料貯蔵設備に移送して貯蔵し
ていた。 1i)HTTRの炉心構造を第4図に示す。圧力容器1
に収容された炉心2は、6角柱状の減速材である黒鉛ブ
ロック3の中に燃料棒4を内蔵する燃料体5が150体
とその他400体の構成要素からなる。第5図は燃料体
5の構造を示す斜視図、第6図は燃料棒4の構造を示す
斜視図である。燃料体5は黒鉛ブロック3に穿った燃料
棒そう大穴からそう人された複数の燃料体を備え、中央
に燃料交換機のグリッパと基台するつかみ穴を設けてい
る。 ij)第7図は高温ガス炉の原子炉建屋鳥緻図である。 圧力容器lの上部のスタンドパイプから燃料交換機11
を接続し、使用済燃料をグリッパで基台させ、ブロック
単位で掴み出して使用済燃料貯蔵設備7に移送する。 ■)第8図は従来例による原子炉建屋内の使用済燃料貯
蔵設備の構成図で、第8図(A)は一部所面図、第8図
(B)は第8図(A)のへ方向矢視図、第8図(C)は
貯蔵ラックの断面図である。 炉心2から移送された使用済燃料は、貯蔵う・ツク9の
中に4体ずつ積み上げて収容され、前記貯蔵ラック9の
上部は遮蔽プラグ10で栓をして貯蔵プール8内に配置
される。 貯蔵ラック9は、貯蔵プール8内で水プール中に漬けら
れ使用済燃料を間接冷却している。このHTTRの原子
炉建屋内の使用済燃料貯蔵設備7には2炉心分の使用済
燃料の貯蔵を予定しており、貯蔵ラック9を63本設け
ている。 ■)第9図は原子炉建屋外の使用済燃料貯蔵設備の構成
図で、第9図(A)は一部所面図、第9図(B)は第9
図(A)のへ方向矢視図、第9図(C)は貯蔵ラックの
断面図である。第9図において第8図と同じ部位は同じ
番号を付しである。 さらに、原子炉建屋の外には、原子炉運転中に発生する
全ての使用済燃料を貯蔵するために、前記使用済燃料貯
蔵設備と似た構造を有する原子炉建屋外の使用済燃料貯
蔵設備に10炉心分の使用済燃料を収容する容量を持た
せ、前記原子炉建屋内の使用済燃料貯蔵設備で2年間減
衰待貯蔵を経た使用済燃料を受入で長期貯蔵を行う。 原子炉建屋外の使用済燃料貯蔵設備は複数の燃料体5を
収容した貯蔵ラック9を貯蔵セル13に配置し、前記貯
蔵ラック9にB矢印方向に空気を送って冷却している。
A high-temperature gas reactor is a nuclear reactor designed to have a reactor core structure containing fuel made of graphite, use a gas such as helium as a coolant, and be able to extract a coolant with a high outlet temperature. Its characteristics are as follows. i) Thin air conditions comparable to those of cutting-edge thermal power plants can be obtained, resulting in high plant efficiency (approximately 40%). ii) High safety factor. iii) Environmentally friendly (high thermal efficiency,
This reduces the problem of hot water drainage and releases less radioactivity into the environment). 8I) Since coated particle fuel is used, it is suitable for high temperatures and can obtain high burnup. ■) Utilizing high temperatures, it is suitable for multipurpose uses other than power generation. Japan Atomic Energy Research Institute's High Temperature Engineering Test and Research Reactor (HTTR)
thermal output 30MW, reactor outlet coolant temperature 950
The planned spent fuel storage method will be explained below. i) FIG. 3 is a diagram showing a conventional spent fuel storage method. Conventionally, spent fuel bodies taken out from a reactor core were directly transferred to a spent fuel storage facility and stored. 1i) The core structure of the HTTR is shown in Figure 4. pressure vessel 1
The reactor core 2 housed in the reactor core 2 consists of 150 fuel bodies 5 in which fuel rods 4 are built in graphite blocks 3, which are hexagonal columnar moderators, and 400 other components. FIG. 5 is a perspective view showing the structure of the fuel body 5, and FIG. 6 is a perspective view showing the structure of the fuel rod 4. The fuel body 5 is equipped with a plurality of fuel bodies that are inserted through large holes for fuel rods drilled in the graphite block 3, and has a grip hole in the center that is used as a base for the gripper of the fuel exchanger. ij) Figure 7 is a detailed diagram of the reactor building of a high-temperature gas reactor. Fuel exchanger 11 is connected to the stand pipe at the top of the pressure vessel l.
is connected, the spent fuel is placed on a base with a gripper, and the spent fuel is picked up in blocks and transferred to the spent fuel storage facility 7. ■) Figure 8 is a configuration diagram of a conventional spent fuel storage facility in a reactor building. Figure 8 (A) is a partial partial view, and Figure 8 (B) is a diagram of Figure 8 (A). FIG. 8(C) is a sectional view of the storage rack. The spent fuel transferred from the reactor core 2 is stored in storage racks 9 in stacks of four, and the upper portions of the storage racks 9 are plugged with shielding plugs 10 and placed in the storage pool 8. . The storage racks 9 are immersed in a pool of water within the storage pool 8 to indirectly cool the spent fuel. The spent fuel storage facility 7 in the reactor building of this HTTR is scheduled to store spent fuel for two reactor cores, and is equipped with 63 storage racks 9. ■) Figure 9 is a configuration diagram of the spent fuel storage facility outside the reactor building. Figure 9 (A) is a partial partial view, and Figure 9 (B) is the
FIG. 9(A) is a view taken in the direction of the arrow, and FIG. 9(C) is a sectional view of the storage rack. In FIG. 9, the same parts as in FIG. 8 are given the same numbers. Furthermore, outside the reactor building, in order to store all the spent fuel generated during reactor operation, there is a spent fuel storage facility outside the reactor building that has a structure similar to the spent fuel storage facility described above. The reactor building will have a capacity to store spent fuel for 10 cores, and the spent fuel storage facility in the reactor building will receive spent fuel that has been stored for attenuation for two years for long-term storage. In the spent fuel storage facility outside the reactor building, a storage rack 9 containing a plurality of fuel bodies 5 is arranged in a storage cell 13, and the storage rack 9 is cooled by sending air in the direction of arrow B.

【発明が解決しようとする課題】[Problem to be solved by the invention]

A、Lかしながら、使用済燃料は核物質を多量に内蔵す
るため取扱に注意を要し、この使用済燃料を貯蔵する使
用済燃料貯蔵設備は次に示す安全設計上の要求を満たす
必要がある。 )使用済燃料からの崩壊熱の除去。 ii)臨界防止。 iii )放射線遮蔽。 ■)耐震性。 ■)放射性物質の封じ込め。 これら多くの要求を満たすため、使用済燃料の貯蔵設備
には広いスペース、信頼性、除熱系統放射能を遮蔽する
ために厚さ数メートルに及ぶコンクリート遮蔽及び想定
される地震に耐えるための強固な支持構造物が必要とな
り、原子力発電設備の中でも大きなスペース及びコスト
を占めている。 B、前記HTTRは高温ガス炉の試験研究炉であるため
、取扱方法、貯蔵容量は前記のとおりであるが、将来の
実証炉では、原子炉出力が大きくなるため使用済燃料の
貯蔵容量が増し、建設費の上昇につながることが予想さ
れる。 このため発電所容量の割りに少規模でかつ低コストの使
用済燃料貯蔵設備が必要となる。 この発明は、発電所容量の割りに少規模でかつ上記目的
は、使用済燃料体の燃料棒と黒鉛プロツクとを分離し、
前記燃料体のみを原子炉建屋内の使用済燃料貯蔵設備に
貯蔵し、前記黒鉛ブロックは廃棄するようにした高温ガ
ス炉の使用済燃料貯蔵方法によって達成される。 さら
に、前記使用済燃料体から分離された複数の燃料棒を収
容するケーシングと、この複数のケーシングを貯蔵する
貯蔵ランクと、原子炉建屋内に配置され前記複数の貯蔵
ラックを収容し水を満たした貯蔵プールとから構成する
ことを特徴とする高温ガス炉の使用済燃料貯蔵設備によ
って達成される。
A,L However, spent fuel must be handled with care because it contains a large amount of nuclear material, and the spent fuel storage facility that stores this spent fuel must meet the following safety design requirements. There is. ) Removal of decay heat from spent fuel. ii) Criticality prevention. iii) Radiation shielding. ■) Earthquake resistance. ■) Containment of radioactive materials. In order to meet these many demands, spent fuel storage facilities require a large amount of space, reliability, heat removal system, concrete shielding several meters thick to shield from radiation, and strong construction to withstand expected earthquakes. This requires a large support structure, which occupies a large amount of space and cost in nuclear power generation facilities. B. Since the HTTR is a high-temperature gas reactor test and research reactor, its handling methods and storage capacity are as described above, but in future demonstration reactors, the spent fuel storage capacity will increase as the reactor output increases. This is expected to lead to an increase in construction costs. Therefore, a small-scale and low-cost spent fuel storage facility is required relative to the power plant capacity. This invention is small in scale compared to the capacity of the power plant, and the above purpose is to separate the fuel rods and graphite blocks of a spent fuel body,
This is achieved by a method for storing spent fuel for a high-temperature gas reactor, in which only the fuel assembly is stored in a spent fuel storage facility in a reactor building, and the graphite block is discarded. Furthermore, a casing for accommodating a plurality of fuel rods separated from the spent fuel body, a storage rank for storing the plurality of casings, and a storage rank arranged in the reactor building for accommodating the plurality of storage racks and filled with water. This is achieved by a spent fuel storage facility for a high-temperature gas reactor, which is characterized by comprising a storage pool.

【作 用】[For use]

使用済燃料体を燃料棒と黒鉛ブロックとに分離するので
、黒鉛ブロックは放射能が少なく廃棄物として処理する
ことができる。 使用済燃料として貯蔵する燃料棒は、燃料体に比べて重
量2体積が大幅に低減されるので、使用済燃料貯蔵設備
を縮小することができる。
Since the spent fuel body is separated into fuel rods and graphite blocks, the graphite blocks have less radioactivity and can be disposed of as waste. Since fuel rods stored as spent fuel have significantly reduced weight and volume compared to fuel bodies, spent fuel storage facilities can be downsized.

【実施例】【Example】

以下図面に基づいてこの発明の詳細な説明する。第1図
はこの発明の実施例による高温ガス炉の使用済燃料貯蔵
方法を示すダイヤグラムで、炉心2から燃料交換機を用
いて燃料体5を取り出し、原子炉1の外で燃料棒4と黒
鉛プロ・Zり3とを分離し、燃料棒4は原子炉建屋内の
使用済燃料貯蔵設備7へ移送し、燃料棒4を抜き取った
黒鉛ブロック3は廃棄処分として原子炉建屋外へ搬出す
る。 第2図はこの発明の実施例による使用済燃料貯蔵設備の
構成図である。第2図(A)は使用済燃料貯蔵設備の一
部断面図、第2図(B)は第2図(A)のケーシングの
斜視図である。 燃料棒4は黒鉛ブロック3の穴にはまり込んでいるため
、自動遠隔操作によって容易に抜き出すことができる。 分離された燃料棒4は、ケーシング12にまとめて収容
され、さらに貯蔵ラック9に挿入され遮蔽プラグ10で
栓をしてから水を満たした貯蔵プール8に移送し冷却及
び貯蔵される。 使用済燃料貯蔵設備7は前記燃料棒4を複数収納するケ
ーシング12と、この複数のケーシング12を収容する
貯蔵ラック9と、原子炉建屋内に配置されて水を満たさ
れ、複数の貯蔵ラック9を収める貯蔵プール8とから構
成される。 また燃料棒4を抜き取られた黒鉛ブロック3は放射能が
低いので、従来のごとく使用済燃料に規定される厳しい
制約を受けることなく固体廃棄物として容易に処分でき
る。
The present invention will be described in detail below based on the drawings. FIG. 1 is a diagram showing a spent fuel storage method for a high-temperature gas reactor according to an embodiment of the present invention, in which fuel bodies 5 are taken out from the reactor core 2 using a refueling machine, and fuel rods 4 and graphite particles are removed outside the reactor 1. - The fuel rods 4 are separated from the Z-type 3 and transferred to the spent fuel storage facility 7 inside the reactor building, and the graphite block 3 from which the fuel rods 4 have been removed is carried outside the reactor building as disposal. FIG. 2 is a block diagram of a spent fuel storage facility according to an embodiment of the present invention. FIG. 2(A) is a partial sectional view of the spent fuel storage facility, and FIG. 2(B) is a perspective view of the casing of FIG. 2(A). Since the fuel rods 4 are fitted into holes in the graphite block 3, they can be easily extracted by automatic remote control. The separated fuel rods 4 are housed together in a casing 12, further inserted into a storage rack 9, plugged with a shielding plug 10, and then transferred to a storage pool 8 filled with water for cooling and storage. The spent fuel storage facility 7 includes a casing 12 that stores a plurality of fuel rods 4, a storage rack 9 that stores the plurality of casings 12, and a plurality of storage racks 9 that are placed inside the reactor building and filled with water. It consists of a storage pool 8 that houses the Furthermore, since the graphite block 3 from which the fuel rods 4 have been removed has low radioactivity, it can be easily disposed of as solid waste without being subject to the strict restrictions stipulated for spent fuel as in the past.

【発明の効果】【Effect of the invention】

この発明によれば、使用済燃料体の燃料棒と黒鉛ブロッ
クとを分離し、前記分離された燃料棒のみを原子炉建屋
内の使用済燃料貯蔵設備に貯蔵し、前記黒鉛プロツタは
廃棄するようにしたので、下記の効果がある。 i)使用済燃料貯蔵設備に貯蔵される燃料棒は重量が従
来の約30%となり、体積比で従来の約60%となる。 lI)上記貯蔵物の重量並びに体積の低減に伴ってが図
れる。 山)上記効果は原子力発電所の出力が増大する程有効に
作用する。
According to this invention, the fuel rods and graphite blocks of a spent fuel assembly are separated, only the separated fuel rods are stored in a spent fuel storage facility in a reactor building, and the graphite block is disposed of. This has the following effect. i) The weight of the fuel rods stored in the spent fuel storage facility will be approximately 30% of the conventional one, and the volume ratio will be approximately 60% of the conventional one. lI) This can be achieved by reducing the weight and volume of the stored items. (Mountain) The above effect becomes more effective as the output of a nuclear power plant increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による高温ガス炉の使用済燃
料貯蔵方法を示すダイヤグラム、第2図はこの発明の実
施例による高温ガス炉の使用済燃料貯蔵設備の構成図で
、第2図(A)は使用済燃料貯蔵設備の一部断面図、第
2図(B)は第2図(A)のケーシングの斜視図、第3
図は従来例による使用済燃料の貯蔵方法を示すダイヤグ
ラム、第4図は高温ガス炉の炉心構成図、第5図は第4
図の高温ガス炉における燃料体構造を示す斜視図、第6
図は第5図の燃料体の燃料棒構造を示す斜視図、第7図
は高温ガス炉の建屋鳥嶽図、第8図は従来例による原子
炉建屋内の使用済燃料貯蔵設備の構成図で、第8図(A
)は一部断面図、第8図(B)は第8図(A)のA方向
矢視図、第8図(C)は第8図(A)の貯蔵ラック構成
図、第9図は従来例による原子炉建屋外の使用済燃料貯
蔵設備の構成図で、第9図(A)は一部断面図、第9図
(B)は第9図(A)のA方向矢視図、第9図(C)は
第9図(A)の貯蔵ラックの構成図である。 1:圧力容器、2:炉心、3:黒鉛ブロック、4:燃料
棒、5:燃料体、6:スタンドパイプ、7:使用済燃料
貯蔵設備、8;貯蔵プール、9;貯蔵ラック、lO:遮
蔽プラグ、11:燃料交換機、12:ケーシング。 図 (人グ′t+捧) (L艷、朽)0.7グ) 灯π粁体 第 図 弔 図 第 図 (A) 第 図 ○O○○0O (B) (C) 第 図
FIG. 1 is a diagram showing a spent fuel storage method for a high-temperature gas reactor according to an embodiment of the present invention, and FIG. 2 is a block diagram of a spent fuel storage facility for a high-temperature gas reactor according to an embodiment of the present invention. (A) is a partial sectional view of the spent fuel storage facility, Figure 2 (B) is a perspective view of the casing in Figure 2 (A), and Figure 3.
The figure is a diagram showing a conventional spent fuel storage method, Figure 4 is a core configuration diagram of a high-temperature gas reactor, and Figure 5 is a
A perspective view showing the structure of the fuel body in the high temperature gas reactor shown in Figure 6.
The figure is a perspective view showing the fuel rod structure of the fuel assembly in Figure 5, Figure 7 is a Toritake diagram of the high temperature gas reactor building, and Figure 8 is a configuration diagram of a conventional spent fuel storage facility in the reactor building. So, Figure 8 (A
) is a partial sectional view, FIG. 8(B) is a view in the direction of arrow A in FIG. 8(A), FIG. 8(C) is a storage rack configuration diagram in FIG. 8(A), and FIG. FIG. 9(A) is a partial sectional view, FIG. 9(B) is a view taken in the direction of arrow A in FIG. 9(A), and FIG. FIG. 9(C) is a block diagram of the storage rack of FIG. 9(A). 1: Pressure vessel, 2: Core, 3: Graphite block, 4: Fuel rod, 5: Fuel body, 6: Stand pipe, 7: Spent fuel storage facility, 8: Storage pool, 9: Storage rack, lO: Shielding Plug, 11: Fuel exchanger, 12: Casing. Figure (human gu't+dedication) (L 艷、decay) 0.7 gu) Lamp π 粁 体 G G G G G fig. (A) Graph ○○○○0O (B) (C) Graph

Claims (1)

【特許請求の範囲】 1)高温ガス炉の黒鉛ブロックと燃料棒とからなる使用
済燃料体を炉心から取り出して貯蔵する使用済燃料貯蔵
方法において、前記使用済燃料体の前記燃料棒と黒鉛ブ
ロックとを分離し、前記燃料棒のみを原子炉建屋内の使
用済燃料貯蔵設備に貯蔵し、前記黒鉛ブロックは廃棄す
るようにしたことを特徴とする高温ガス炉の使用済燃料
貯蔵方法。 2)高温ガス炉の黒鉛ブロックと燃料棒とからなる使用
済燃料体を炉心から取り出して貯蔵する使用済燃料貯蔵
設備において、前記使用済燃料体から分離された複数の
燃料棒を収容するケーシングと、この複数のケーシング
を貯蔵する貯蔵ラックと、原子炉建屋内に配置され前記
複数の貯蔵ラックを収容し水を満たした貯蔵プールとか
ら構成することを特徴とする高温ガス炉の使用済燃料貯
蔵設備。
[Scope of Claims] 1) A spent fuel storage method in which a spent fuel body consisting of graphite blocks and fuel rods of a high-temperature gas reactor is taken out from a reactor core and stored, wherein the fuel rods and graphite blocks of the spent fuel body are A spent fuel storage method for a high-temperature gas reactor, characterized in that the fuel rods are separated from the fuel rods, and only the fuel rods are stored in a spent fuel storage facility in a reactor building, and the graphite blocks are discarded. 2) In a spent fuel storage facility that takes out and stores spent fuel bodies consisting of graphite blocks and fuel rods from a high-temperature gas reactor core, a casing that accommodates a plurality of fuel rods separated from the spent fuel bodies; , a spent fuel storage for a high-temperature gas reactor, comprising a storage rack for storing the plurality of casings, and a storage pool filled with water and arranged in a reactor building and accommodating the plurality of storage racks. Facility.
JP63310593A 1988-12-08 1988-12-08 Spent fuel storage for high temperature gas nuclear reactor and its facility Pending JPH02156196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310593A JPH02156196A (en) 1988-12-08 1988-12-08 Spent fuel storage for high temperature gas nuclear reactor and its facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310593A JPH02156196A (en) 1988-12-08 1988-12-08 Spent fuel storage for high temperature gas nuclear reactor and its facility

Publications (1)

Publication Number Publication Date
JPH02156196A true JPH02156196A (en) 1990-06-15

Family

ID=18007118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310593A Pending JPH02156196A (en) 1988-12-08 1988-12-08 Spent fuel storage for high temperature gas nuclear reactor and its facility

Country Status (1)

Country Link
JP (1) JPH02156196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140097A (en) * 1985-12-14 1987-06-23 株式会社東芝 Fuel storage device for nuclear reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140097A (en) * 1985-12-14 1987-06-23 株式会社東芝 Fuel storage device for nuclear reactor

Similar Documents

Publication Publication Date Title
LaBar The gas turbine–modular helium reactor: a promising option for near term deployment
AU2011212810B2 (en) Modular nuclear fission waste conversion reactor
JP6899840B2 (en) How to operate a reactor plant, fuel loading system, and storage
US20140064432A1 (en) Particulate metal fuels used in power generation, recycling systems, and small modular reactors
JP2023123623A (en) Double standard fuel canister system
US20090323881A1 (en) Reactor geometry and dry confinement for a nuclear reactor enabling the racquetball effect of neutron conservation dry confinement to be supported by the four-factor and six-factor formula
Simnad The early history of high-temperature helium gas-cooled nuclear power reactors
JPH02156196A (en) Spent fuel storage for high temperature gas nuclear reactor and its facility
Labrousse et al. Thermos reactors
Schneider et al. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel
Young et al. Information requirements for controlled thermonuclear reactor environmental impact statements
Brown et al. Core design characteristics of the fluoride salt-cooled high temperature demonstration reactor
Lee et al. Thermal Evaluations for Hypothetically Drain-Down Spent Fuel Storage Facility at SRS
Chaplin Pressurized heavy water reactors
Bender Mirror hybrid reactor studies
Appleby Power Reactor Designs: An Annotated Bibliography
Sun et al. On the issues of fuel storage and decommissioning of the HTR-10 test reactor
Yuliang et al. On the issues of fuel storage and decommissioning of the HTR-10 test reactor
JPS6252276B2 (en)
Roekmantara Nuclear power plant radiation: personnel safety aspects
Jones Auxiliary power system for activity cooled aircraft
Trauger Operating experience and design trends for helium-cooled nuclear power reactors
Koch EBR II DESIGN
Simov et al. On detection of the possible use of VVERs for unreported production of plutonium. Final report for the period July 1988-December 1989
Fortescue Nuclear Power Plant