JPH02156136A - Spectral analyzer - Google Patents

Spectral analyzer

Info

Publication number
JPH02156136A
JPH02156136A JP30970788A JP30970788A JPH02156136A JP H02156136 A JPH02156136 A JP H02156136A JP 30970788 A JP30970788 A JP 30970788A JP 30970788 A JP30970788 A JP 30970788A JP H02156136 A JPH02156136 A JP H02156136A
Authority
JP
Japan
Prior art keywords
light
optical fiber
spectroscopic analysis
spectral analysis
photobleaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30970788A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Yoshiaki Ichige
市毛 良明
Yukio Wada
幸男 和田
Yoshiki Chigusa
佳樹 千種
Minoru Watanabe
稔 渡辺
Yasuji Hattori
服部 保次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Electric Industries Ltd
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp, Sumitomo Electric Industries Ltd filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP30970788A priority Critical patent/JPH02156136A/en
Publication of JPH02156136A publication Critical patent/JPH02156136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the holding of a spectral analysis sensitivity for a long period of time by arranging an optical fiber, a spectroscope and a photo-bleacher to achieve a longer life of the optical fiber. CONSTITUTION:Spectral analysis light from a light source 3 for spectral analysis reaches an object to be measured within a sample cell 1 via an optical fiber 8, a light converging device 7 of a photo bleacher 4 and an optical fiber 10. The spectral analysis light transmitted through the object to be measured is incident into a spectroscope 5 through an optical fiber 11. In parallel with the irradiation of the spectral analysis light, a photo bleached light irradiated from a light source 6 for photobleaching is incident into a spectroscope 5 via the light converging device 7, the optical fiber 10, the sample cell 1 and the optical fiber 11. Despite a structural defect caused in the optical fibers 10 and 11 by radiations, a drop in light transmitting property can be minimized as the photobleached light restores the defect at any time. The photobleached light is selected so that a wavelength thereof will not overlap a wavelength of the spectral analysis light thereby enabling spectral analysis with the spectroscope 5 free from effect of the photobleached light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放射線場に置かれた光ファイバを経由して(
る光を′分光分析する装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for transmitting (
This invention relates to a device for spectroscopically analyzing the light emitted by the human body.

〔従来の技術〕[Conventional technology]

放射性物質の吸収分光分析を行う場合は、安全性を確保
するために、その放射性物質を含む試料セルを遮蔽壁で
囲まれた領域内に配置する。そして、遮蔽壁の外に分光
分析用の光を発生する光源と試料セルを透過した光の分
光分析を行う分光器とを配置し、遮蔽壁に穿設された穴
を通して光源と試料セルならびに試料セルと分光器をそ
れぞれ光ファイバで接続して、分光分析を行っている。
When performing absorption spectroscopic analysis of a radioactive substance, a sample cell containing the radioactive substance is placed in an area surrounded by a shielding wall to ensure safety. Then, a light source that generates light for spectroscopic analysis and a spectrometer that performs spectroscopic analysis of the light that has passed through the sample cell are placed outside the shielding wall, and the light source, sample cell, and sample are passed through a hole in the shielding wall. Spectroscopic analysis is performed by connecting the cell and spectrometer with optical fibers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、光ファイバは、放射線を照射されると光透過性
が次第に損なわれ、ついには分光分析が不可能となって
しまう。
However, when optical fibers are irradiated with radiation, their optical transparency gradually deteriorates, eventually making spectroscopic analysis impossible.

本発明の3題は、このような問題点を解消することにあ
る。
The three problems of the present invention are to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の分光分析装置は、
放射線による前記光ファイバの損傷を回復させるための
フォトブリーチ光をその光ファイバに対して選択的に供
給するフォトブリーチ手段を備えたものである。
In order to solve the above problems, the spectrometer of the present invention has the following features:
The optical fiber is provided with a photo-bleaching means for selectively supplying photo-bleaching light to the optical fiber in order to recover damage to the optical fiber caused by radiation.

〔作用〕[Effect]

放射線の照射によって、光ファイバには分子レベルの構
造欠陥が生じ、これが光を吸収して光ファイバの損失が
大きくなり、光透過性が悪くなる。
Irradiation with radiation causes structural defects at the molecular level in the optical fiber, which absorb light, resulting in increased loss in the optical fiber and poor light transmittance.

これに対して、フォトブリーチ光を光ファイバ中に導く
と分子レベルの構造欠陥が消滅し、光透過性が回復する
On the other hand, when photobleaching light is introduced into the optical fiber, structural defects at the molecular level disappear and the light transmittance is restored.

〔実施例〕〔Example〕

第1図は、本発明の一実施例である放射性物質の吸収分
光分析を行うための分光分析装置を示す構成図である。
FIG. 1 is a configuration diagram showing a spectroscopic analysis apparatus for performing absorption spectroscopic analysis of radioactive substances, which is an embodiment of the present invention.

被δp1定体である放射性物質は試料セル1内に収めら
れており、放射能を遮蔽する遮蔽壁2で囲まれた領域内
に配置されている。遮蔽壁2の外には、分光分析用の光
源3、フォトブリーチ装置4および分光器5が置かれて
いる。フォトブリーチ装置4はフォトブリーチ用光源6
および合波器7を備えている。分光分析用光源3と合波
器7、フォトブリーチ用光源6と合波器7、合波器7と
試料セル1、および試料セル1と分光器5は、それぞれ
光ファイバ8.9.10、および11によってそれぞれ
光学的に接続されている。
A radioactive substance to be subjected to δp1 is housed in a sample cell 1, and is placed in a region surrounded by a shielding wall 2 that shields radioactivity. A light source 3 for spectroscopic analysis, a photobleaching device 4, and a spectrometer 5 are placed outside the shielding wall 2. The photo bleaching device 4 includes a light source 6 for photo bleaching.
and a multiplexer 7. The light source 3 for spectroscopic analysis and the multiplexer 7, the light source 6 for photobleaching and the multiplexer 7, the multiplexer 7 and the sample cell 1, and the sample cell 1 and the spectrometer 5 are each connected to an optical fiber 8.9.10, and 11, respectively.

なお、光ファイバ10および11は、遮蔽壁2に穿設さ
れた貫通孔12および13中を通っており、遮蔽壁2の
内側に露出している部分は試料セル1からの放射線を浴
びている。なお、図では、貫通孔12および13におい
て遮蔽92と光ファイバ10.11との間に隙間がある
が、実際にはこの隙間は放射線遮蔽物質で埋め込まれ、
放射能が遮蔽壁2の外に洩れないようになっている。合
波器7では、分光分析用光源3から光ファイバ8を経由
してきた光およびフォトブリーチ用光源6がら光ファイ
バ9を経由してきた光をいずれも光ファイバ10に導く
。合波器7から光ファイバ1oを経由してきた光は、試
料セル1を透過して光ファイバ11に導かれ、分光器5
に至る。なお、分光分析用光源3および分光器5は、従
来がらある一般的なものである。フォトブリーチ用光源
6は、例えば、キセノンランプ、重水素ランプ、水銀ラ
ンプあるいはヘリウムカドミウムレーザなど、波長が2
00〜500nm辺りの紫外領域で強い光を放つことが
できる光源を用いればよい。
Note that the optical fibers 10 and 11 pass through through holes 12 and 13 formed in the shielding wall 2, and the portions exposed inside the shielding wall 2 are exposed to radiation from the sample cell 1. . In the figure, there is a gap between the shielding 92 and the optical fiber 10.11 in the through holes 12 and 13, but in reality, this gap is filled with radiation shielding material,
Radioactivity is prevented from leaking outside the shielding wall 2. The multiplexer 7 guides both the light that has passed from the spectroscopic analysis light source 3 via the optical fiber 8 and the light that has passed from the photobleaching light source 6 via the optical fiber 9 to the optical fiber 10. The light that has passed through the optical fiber 1o from the multiplexer 7 passes through the sample cell 1, is guided to the optical fiber 11, and is sent to the spectrometer 5.
leading to. Note that the light source 3 for spectroscopic analysis and the spectrometer 5 are conventional and common ones. The light source 6 for photo bleaching is, for example, a xenon lamp, a deuterium lamp, a mercury lamp, or a helium cadmium laser, which has a wavelength of 2.
A light source that can emit strong light in the ultraviolet region around 00 to 500 nm may be used.

つぎに、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

分光分析用光R3から出射した分光分析光は、光ファイ
バ8、合波器7、光ファイバ1oを順に経て、試料セル
1内の被測定体に至る。そして、この被測定体を透過し
た分光分析光は、光ファイバ11に導かれて分光器5に
入射する。一方、この分光分析光の照射と並行して、フ
ォトブリーチ用光源3からフォトブリーチ光が照射され
る。このフォトブリーチ光は、光ファイバ9に導かれて
合波器7に至り、そこから分光分析光と同様に光ファイ
バ10、試料セル1、光ファイバ11を経て分光器5に
入射する。
The spectroscopic analysis light emitted from the spectroscopic analysis light R3 passes through the optical fiber 8, the multiplexer 7, and the optical fiber 1o in this order, and reaches the object to be measured in the sample cell 1. The spectroscopic analysis light that has passed through the object to be measured is guided to the optical fiber 11 and enters the spectrometer 5. On the other hand, in parallel with the irradiation of this spectroscopic analysis light, photobleaching light is irradiated from the photobleaching light source 3. This photobleaching light is guided to the optical fiber 9 and reaches the multiplexer 7, and from there, it enters the spectrometer 5 via the optical fiber 10, the sample cell 1, and the optical fiber 11 in the same way as the spectroscopic analysis light.

光ファイバ10および11は放射線によって構造欠陥が
生じるが、フォトブリーチ光が随時その欠陥を回復させ
るので、光透過性の低下が最小限に抑えられる。分光器
5には分光分析光とフォトブリーチ光の両方が同時に入
射されるが、波長が分光分析光の波長と重ならないよう
なフォトブリーチ光を予め選択しておくことにより、分
光器5はフォトブリーチ光の影響を何等受けることなく
分光分析光に基づく分光分析を行うことができる。
Although structural defects occur in the optical fibers 10 and 11 due to radiation, the photobleaching light recovers the defects at any time, so that the decrease in light transmittance is minimized. Both the spectroscopic analysis light and the photobleach light are incident on the spectrometer 5 at the same time, but by selecting in advance the photobleaching light whose wavelength does not overlap with the wavelength of the spectroscopic analysis light, the spectrometer 5 Spectroscopic analysis based on spectroscopic analysis light can be performed without being affected by bleach light in any way.

また、フォトブリーチ光と分光分析光を同時に照射する
とフォトブリーチ光により分光分析が妨害されるような
場合には、第2図に示すように、外部制御可能な光路切
替器14を合波器7の代わりに用いると共に、分光器5
の手前にシャッタ15を挿入し、両者をコントローラ1
6で制御すればよい。すなわち、非測定時には光ファイ
バ10を光ファイバ9側に接続すると同時にシャツ夕1
5を閉じてフォトブリーチをかけておき、測定を行う直
前に光ファイバ10を光ファイバ8側に接続すると同時
にシャッタ15を開くようにコントローラ16で制御す
る。このようにすれば、分光分析光とフォトブリーチ光
を交互に照射されることになり、フォトブリーチ光によ
るブリーチ効果が残っている間のみ断続的に分光分析を
行うこともできる。
In addition, if the photobleach light and the spectroscopic analysis light are irradiated simultaneously and the photobleach light interferes with the spectroscopic analysis, as shown in FIG. It is used instead of the spectrometer 5.
Insert the shutter 15 in front of the controller 1.
It should be controlled with 6. That is, when not measuring, the optical fiber 10 is connected to the optical fiber 9 side, and at the same time the shirt
5 is closed and photobleached, and just before measurement, the controller 16 controls the optical fiber 10 to be connected to the optical fiber 8 side and simultaneously open the shutter 15. In this way, the spectroscopic analysis light and the photobleaching light are alternately irradiated, and the spectroscopic analysis can be performed intermittently only while the bleaching effect of the photobleaching light remains.

なお、フォトブリーチ光により光ファイバの放射線損失
が回復できることについては、特願昭60−27071
1公報などに開示されている。
Furthermore, regarding the fact that radiation loss in optical fibers can be recovered by photobleaching light, Japanese Patent Application No. 60-27071
1 publication, etc.

第3図は、本発明の他の実施例を示す構成図である。こ
の実施例は発光分光分析を行うものであり、試料セル2
0内の発光部が放射能を有することから、遮蔽壁2で囲
まれた内部に置かれている。
FIG. 3 is a configuration diagram showing another embodiment of the present invention. This example is for performing emission spectroscopic analysis, and the sample cell 2
Since the light emitting part inside 0 has radioactivity, it is placed inside surrounded by a shielding wall 2.

遮蔽壁2の外側には、分光器5およびフォトブリチ装置
4が配置されている。フォトブリーデ装置4は、フォト
ブリーチ用光源6とハーフミラ−21で構成されている
。試料セル20、分光器5およびフォトブリーチ用光源
6とハーフミラ−21とは、それぞれ光ファイバ22.
23.24で光学的に結合されている。
A spectroscope 5 and a photolithography device 4 are arranged outside the shielding wall 2. The photobleaching device 4 includes a photobleaching light source 6 and a half mirror 21. The sample cell 20, the spectrometer 5, the photobleaching light source 6, and the half mirror 21 are each connected to an optical fiber 22.
23 and 24 are optically coupled.

この実施例では、試料セル20内の発光部からの光は、
光ファイバ22、ハニフミラ−21および光ファイバ2
3を介して分光器5に導かれ、そこで分光分析が行われ
る。一方、フォトブリーチ用先源6を駆動してフォトブ
リーチ光を光ファイバ24中に出射すると、このフォト
ブリーチ光はハーフミラ−21で反射され、光ファイバ
22中に入射される。光ファイバ22のうち遮蔽壁2の
内側すなわち試料セル20側に露出している部分は放射
線場にあるため、そのまま放置すれば光透過性がしだい
に劣化してくるが、本実施例ではフォトブリーチ光が常
時入射されるため光透過性の劣化がほとんど進行しない
In this embodiment, the light from the light emitting section in the sample cell 20 is
Optical fiber 22, Hanifu mirror 21 and optical fiber 2
3 to a spectrometer 5, where spectroscopic analysis is performed. On the other hand, when the photobleaching source 6 is driven to emit photobleaching light into the optical fiber 24, this photobleaching light is reflected by the half mirror 21 and enters the optical fiber 22. The part of the optical fiber 22 that is exposed inside the shielding wall 2, that is, on the side of the sample cell 20, is exposed to the radiation field, so if left as it is, the light transmittance will gradually deteriorate. Since light is constantly incident, the deterioration of light transmittance hardly progresses.

上記の実施例では、いずれも彼Mj定対象自身が放射性
物質である場合を示したが、被71)1定対象が放射性
物質か否かは問題ではなく、測定系を構成する先ファイ
バが放射線場に置かれている場合には、常に本発明を適
用することができる。
In the above embodiments, the case where the target itself is a radioactive material is shown, but it does not matter whether the target is a radioactive material or not, and the fiber at the end of the measurement system is a radioactive material. The invention can be applied whenever the device is placed in the field.

また、フォトブリーチ光としては、波長が200nm前
後のものが最も有効である。波長が200nmよりも短
(なると光ファイバ中の伝送光;が少なくなり、また、
波長が長くなると光エネルギが小さくなってフォトブリ
ーチ作用が低下し、波長が1.4μm以上となると、は
とんどフォトブリーチの効果がなくなるので、フォトブ
リーチ光としては、波長が200nmがら1.4μmま
での光が望ましい。
Moreover, as photo bleaching light, one having a wavelength of around 200 nm is most effective. If the wavelength is shorter than 200 nm, the amount of light transmitted in the optical fiber will decrease, and
As the wavelength becomes longer, the light energy decreases and the photobleaching effect decreases, and when the wavelength exceeds 1.4 μm, the photobleaching effect almost disappears. Light up to 4 μm is desirable.

〔発明の効果〕 以上説明したように、本発明の分光分析装置によれば、
フォトブリーチ光を放射線場に置がれた光ファイバに対
して選択的に供給するフォトブリチ手段を備えているの
で、所望の時間に適宜フォトブリーチ光を光ファイバに
入射することができる。したがって、光ファイバの寿命
を長期化することができ、分光分析感度を長期にわたっ
て保持することができる。
[Effects of the Invention] As explained above, according to the spectrometer of the present invention,
Since the photobleaching device selectively supplies photobleaching light to the optical fiber placed in the radiation field, the photobleaching light can be appropriately applied to the optical fiber at a desired time. Therefore, the life of the optical fiber can be extended, and the spectroscopic analysis sensitivity can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す構成図、第2図は、
本発明の他の実施例を示す構成図、第3図は、本発明の
さらに別の実施例を示す構成図である。 1.20・・・試料セル、2・・・遮蔽壁、3・・・分
光分析用光源、4・・・フォトブリーチ装置、5・・・
分光器、6・・・フォトブリーチ用光源、7・・・合波
器、8.9゜10.11,22,23.24・・・光フ
ァイバ、14・・・光路切替器、15・・・シャッタ、
16・・・コントローラ、21・・・ハーフミラ− 特許出願人   動力炉・核燃料開発事業間開    
住友電気工業株式会社 代理人弁理士   長谷用  芳  樹間      
   塩   1)  辰   也第1の実施例 第  】  図 第3の実施例 第3図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is a block diagram showing still another embodiment of the present invention. 1.20... Sample cell, 2... Shielding wall, 3... Light source for spectroscopic analysis, 4... Photo bleaching device, 5...
Spectrometer, 6... Light source for photo bleaching, 7... Multiplexer, 8.9°10.11, 22, 23.24... Optical fiber, 14... Optical path switch, 15... ·Shutter,
16...Controller, 21...Half mirror Patent applicant: Power reactor/nuclear fuel development project
Sumitomo Electric Industries Co., Ltd. Patent Attorney Yoshiki Hase
Salt 1) Tatsuya 1st Example] Figure 3 Example 3

Claims (1)

【特許請求の範囲】 1、一部が放射線場に置かれた光ファイバと、この光フ
ァイバを経由してくる光を用いて分光分析を行う分光器
と、放射線による前記光ファイバの損傷を回復させるた
めのフォトブリーチ光をその光ファイバに対して選択的
に供給するフォトブリーチ手段とを備えた分光分析装置
。 2、フォトブリーチ手段は、フォトブリーチ光を発生す
るフォトブリーチ光源と、フォトブリーチ光を光ファイ
バ中に導く光結合器とを有する請求項1記載の分光分析
装置。 3、光結合器は、合波器またはハーフミラーである請求
項2記載の分光分析装置。 4、分光分析を行っていないときはフォトブリーチ光を
光ファイバに供給し、分光分析を行っているときはその
フォトブリーチ光の供給を遮断することを特徴とする請
求項1記載の分光分析装置。
[Claims] 1. An optical fiber whose part is placed in a radiation field, a spectrometer that performs spectroscopic analysis using the light that passes through this optical fiber, and a method for recovering damage to the optical fiber caused by radiation. 1. A spectroscopic analysis device comprising: photo bleaching means for selectively supplying photo bleaching light to the optical fiber. 2. The spectroscopic analysis apparatus according to claim 1, wherein the photobleaching means includes a photobleaching light source that generates photobleaching light and an optical coupler that guides the photobleaching light into the optical fiber. 3. The spectroscopic analysis apparatus according to claim 2, wherein the optical coupler is a multiplexer or a half mirror. 4. The spectroscopic analysis apparatus according to claim 1, wherein photobleaching light is supplied to the optical fiber when spectroscopic analysis is not being performed, and the supply of the photobleaching light is cut off when spectroscopic analysis is being performed. .
JP30970788A 1988-12-07 1988-12-07 Spectral analyzer Pending JPH02156136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30970788A JPH02156136A (en) 1988-12-07 1988-12-07 Spectral analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30970788A JPH02156136A (en) 1988-12-07 1988-12-07 Spectral analyzer

Publications (1)

Publication Number Publication Date
JPH02156136A true JPH02156136A (en) 1990-06-15

Family

ID=17996321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30970788A Pending JPH02156136A (en) 1988-12-07 1988-12-07 Spectral analyzer

Country Status (1)

Country Link
JP (1) JPH02156136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164611A (en) * 1991-12-18 1993-06-29 Sumitomo Electric Ind Ltd Spectrochemical analysis apparatus
WO2000046889A1 (en) * 1999-02-05 2000-08-10 Sumitomo Electric Industries, Ltd. Fiber amplifier
CN103454230A (en) * 2013-09-30 2013-12-18 重庆大学 Device for accurately detecting pesticide residues through spectrum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187845A (en) * 1984-03-08 1985-09-25 Showa Denko Kk Method and apparatus for measuring concentration of ethane gas
JPS60204640A (en) * 1984-03-28 1985-10-16 Nuclear Fuel Ind Ltd Method for decoloring and reclaiming colored glass product with irradiation
JPS6189543A (en) * 1984-09-24 1986-05-07 コルモーゲン テクノロジイズ コーポレイシヨン Method and device for measuring dual beam spectral transmittance
JPS62130340A (en) * 1985-12-03 1987-06-12 Power Reactor & Nuclear Fuel Dev Corp Method and instrument for spectrochemical analysis of material in radioactive atmosphere
JPS6370804A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Radiation resistance optical fiber transmission equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187845A (en) * 1984-03-08 1985-09-25 Showa Denko Kk Method and apparatus for measuring concentration of ethane gas
JPS60204640A (en) * 1984-03-28 1985-10-16 Nuclear Fuel Ind Ltd Method for decoloring and reclaiming colored glass product with irradiation
JPS6189543A (en) * 1984-09-24 1986-05-07 コルモーゲン テクノロジイズ コーポレイシヨン Method and device for measuring dual beam spectral transmittance
JPS62130340A (en) * 1985-12-03 1987-06-12 Power Reactor & Nuclear Fuel Dev Corp Method and instrument for spectrochemical analysis of material in radioactive atmosphere
JPS6370804A (en) * 1986-09-13 1988-03-31 Fujikura Ltd Radiation resistance optical fiber transmission equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164611A (en) * 1991-12-18 1993-06-29 Sumitomo Electric Ind Ltd Spectrochemical analysis apparatus
US5357334A (en) * 1991-12-18 1994-10-18 Sumitomo Electric Industries Ltd. Spectroanalyzer correcting for deterioration of transmissibility
WO2000046889A1 (en) * 1999-02-05 2000-08-10 Sumitomo Electric Industries, Ltd. Fiber amplifier
US6452717B1 (en) 1999-02-05 2002-09-17 Sumitomo Electric Industries, Ltd. Fiber optic amplifier
CN103454230A (en) * 2013-09-30 2013-12-18 重庆大学 Device for accurately detecting pesticide residues through spectrum

Similar Documents

Publication Publication Date Title
FI910043A0 (en) SAETT OCH APPARATUS FOR SPEKTROSKOPISK MAETNING AV KONCENTRATIONEN AV EN GAS.
US5399866A (en) Optical system for detection of signal in fluorescent immunoassay
CN102680447A (en) Device for detecting defects and laser induced damages of optical material
EP1925928A1 (en) Photothermal conversion measuring instrument
JPH02156136A (en) Spectral analyzer
Moulin et al. Uranium determination by remote time-resolved laser-induced fluorescence
Ma et al. On optical bleaching of barium fluoride crystals
De Michele et al. Multiphoton process investigation in silica by UV femtosecond laser
CN107631796B (en) A kind of fibre optic rediation monitoring device and monitoring method
US7256887B2 (en) Determining the suitability of an optical material for the production of optical elements, corresponding device, and use of said material
US7046365B1 (en) Light track observing device
JP2719257B2 (en) Spectrometer
CN109975735A (en) A kind of single fiber type arc photosensor self checking method
Patrick et al. Decrease of fluorescence in optical fiber during exposure to pulsed or continuous-wave ultraviolet light
WO2001092853A1 (en) Accelerated damage testing method and apparatus for low loss optical materials
JPH02293651A (en) Spectrochemical analysis of radioactive liquid
JPS62130340A (en) Method and instrument for spectrochemical analysis of material in radioactive atmosphere
Black et al. Infrared detection using acousto‐optic interaction with thermally induced grating in optical waveguides
JPH07146237A (en) Microscopic photometric apparatus
RU2752020C1 (en) Laser measurement unit
Milanovich et al. Measurements of optical loss in transparent solids using a novel spectrometer based on optical cavity decay
Bayrakçeken Sensitive detection of optical discrete absorption and lasing of fused silica by the depopulation of the ground state
Bueker et al. Temperature and fading effects of fiber-optic dosimeters for radiotherapy
JPS6370804A (en) Radiation resistance optical fiber transmission equipment
Lopez Comparison of radiation sources and filtering safety glasses for fluorescent nondestructive evaluation