JPH0215573A - Molten carbonate type fuel cell - Google Patents

Molten carbonate type fuel cell

Info

Publication number
JPH0215573A
JPH0215573A JP63165620A JP16562088A JPH0215573A JP H0215573 A JPH0215573 A JP H0215573A JP 63165620 A JP63165620 A JP 63165620A JP 16562088 A JP16562088 A JP 16562088A JP H0215573 A JPH0215573 A JP H0215573A
Authority
JP
Japan
Prior art keywords
molten carbonate
electrolyte
electrode
fuel cell
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63165620A
Other languages
Japanese (ja)
Other versions
JP2658207B2 (en
Inventor
Eriko Mori
絵里子 森
Hiroaki Urushibata
広明 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63165620A priority Critical patent/JP2658207B2/en
Publication of JPH0215573A publication Critical patent/JPH0215573A/en
Application granted granted Critical
Publication of JP2658207B2 publication Critical patent/JP2658207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/148Measures, other than selecting a specific electrode material, to reduce electrode dissolution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to retain a stable battery property in a long period, by making molten carbonate to include a specific quantity of magnesium ions, the molten carbonate which is sandwiched by a Ni electrode and a NiO electrode and is retained in an electrolytic matrix. CONSTITUTION:As molten carbonate which is sandwiched by a Ni electrode 1 and a NiO electrode 2 and is retained in an electrolytic matrix 3, one which includes 50-2000ppm of magnesium ions is used. Thus, the use of an electrolyte which includes magnesium ions may reduce the amount of the NiO cathode 2 (that is) dissolved into the electrolyte during operation, so that damage of the cathode 2 and short-circuits of the electrodes can be prevented. A stable battery property can hence be retained in a long period.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、改良された溶融炭酸塩型燃料電池に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] This invention relates to an improved molten carbonate fuel cell.

[従来の技術j 図面は、例えば刊行物(三菱電機枝根Vo1.58・N
O19・1984 、P51〜52)に示された一般的
な溶融炭酸塩型燃料電池の単電池を示す断面図である。
[Prior art j The drawings are, for example, published in the publication (Mitsubishi Electric Branch Vol. 1.58/N
019/1984, pages 51-52) is a cross-sectional view showing a unit cell of a general molten carbonate fuel cell.

(1)はN1電極でN1多孔質板によるアノード、(2
)はNi0t極でNiO多孔質板によるカソード、(3
)は例えばLi AlO2で形成された電解質マトリク
スである。電解質には通常溶融炭酸塩として 62 m
olJ Li 2 CO3−38mo14に2cO3の
共融混合物を用いている。(4) (5)はそれぞれ燃
料酸化剤ガスの出入口のパイプであり、(6)(7)は
それぞれのガスの流路、(8) (9)はセル枠である
(1) is the N1 electrode, an anode made of N1 porous plate, (2
) is a Ni0t electrode with a cathode made of a NiO porous plate, (3
) is an electrolyte matrix formed of, for example, LiAlO2. The electrolyte usually contains 62 m as molten carbonate.
A eutectic mixture of 2cO3 in olJ Li2CO3-38mol4 is used. (4) and (5) are the inlet and outlet pipes for the fuel oxidizing gas, (6) and (7) are the flow paths for the respective gases, and (8) and (9) are the cell frames.

次にこの種の溶融炭酸塩型燃料電池の動作について説明
する。燃料電池は、水素などの燃料ガスと、空気などの
酸化剤ガスのもつ化学エネルギーを電気化学的な反応に
よって、直接電気エネルギーに変換し、電力を得る装置
である。このt気化学反応を効率良く行わせるために、
一般的には、多孔質な!極が用いられる。7ノードおよ
びカソードにおける反応は次の通夛である。
Next, the operation of this type of molten carbonate fuel cell will be explained. A fuel cell is a device that directly converts the chemical energy of a fuel gas such as hydrogen and an oxidant gas such as air into electrical energy through an electrochemical reaction to obtain electric power. In order to carry out this gas chemical reaction efficiently,
In general, porous! poles are used. The reactions at the 7 nodes and cathode are as follows.

7ノード  N2+CO3−4H20+co2+2e−
・・・(1)カソード  CO2”/202+2a−C
Oi−・=(2)アノードでは式(1)に示される様に
燃料のN2は電解質中のC0=−と反応し、水とCO2
と′電子を生成する。この電子は、アノードを通して外
部負荷に送られた後、カソードに流れ込ひ。カソードで
は、この電子と002および酸化剤の02からCO23
−を生成し、電解質中に溶解することによって電池反応
が進行する。
7 nodes N2+CO3-4H20+co2+2e-
...(1) Cathode CO2"/202+2a-C
Oi-・=(2) At the anode, as shown in equation (1), N2 in the fuel reacts with C0=- in the electrolyte, forming water and CO2.
and ′ generate electrons. The electrons are sent to an external load through the anode and then flow into the cathode. At the cathode, CO23 from this electron and 002 and the oxidizing agent 02
The battery reaction progresses by producing - and dissolving it in the electrolyte.

〔発明が解決しようとする課題] 従来の溶融炭酸塩型燃料電池は以上のように構成されて
いるが、電池運転中に、カソード(Nip)が電解質中
に式(3)の反応で溶解する。
[Problem to be solved by the invention] A conventional molten carbonate fuel cell is configured as described above, but during cell operation, the cathode (Nip) dissolves in the electrolyte by the reaction of formula (3). .

NiO+ Co 2− Ni” + Co七     
   −(3)この現象によって、カソードの定電反応
面積が減少したシ、カソードと電解質マトリクス層との
間の接触が悲くなシ、電池特性に息影響を及ぼすという
問題点があった。また、溶解したNi2+はマトリクス
中に拡散し、7ノード側から拡散してくるN2によって
還元さ7L%金@Niとしてマトリクス中に析出するの
で、電池の電気的短絡を生じるという問題点があった。
NiO+ Co 2- Ni” + Co7
(3) This phenomenon causes problems such as a decrease in the electrostatic reaction area of the cathode, poor contact between the cathode and the electrolyte matrix layer, and adversely affecting battery characteristics. In addition, dissolved Ni2+ diffuses into the matrix, is reduced by N2 diffusing from the 7 node side, and precipitates in the matrix as 7L% gold@Ni, which causes an electrical short circuit in the battery. .

この発明は、上記のような課題を解消するためになされ
たもので、長期間安定な電池特性を維持する溶融炭酸塩
型燃料電池を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain a molten carbonate fuel cell that maintains stable cell characteristics for a long period of time.

〔課題を解決するための手段J この発明の溶融炭酸塩型燃料電池は、Ni電極とNiO
電極で挟持され、電解質マトリックスに保持される溶融
炭酸塩がマグネシウムイオンを50〜200Qpptn
含有するものである。
[Means for Solving the Problems J The molten carbonate fuel cell of this invention has a Ni electrode and a NiO
The molten carbonate sandwiched between the electrodes and retained in the electrolyte matrix carries magnesium ions at 50-200Qpptn.
It contains.

[作用」 この発明におけるマグネシウムイオンヲ含む電解質の使
用によシ、運転中のNiOカソードの電解質への溶解量
を減少させ、カソードの損傷と電極の短絡を防止するこ
とができる。
[Function] By using the electrolyte containing magnesium ions in the present invention, the amount of NiO cathode dissolved in the electrolyte during operation can be reduced, and damage to the cathode and short circuit of the electrodes can be prevented.

〔実施例] 以下、この発明の一実施例を説明する。〔Example] An embodiment of this invention will be described below.

例えば従来の電解質(62mo14Li2 COa −
38mo1%に2CO3)に1 mol Nの塩基性炭
酸マグネシウム(3Mgco3・Mg(OH)z・3H
20)を混合し、650℃で融解させた。冷却後、との
電解質中のM2R度を測定したところ約2000重量p
pmであった。この電解質を使用して、N17ノード、
NiOカソード、LiAlO2電解質マトリクスから構
成される図面に示すような有効電極面積25esIの単
電池を組み立て、650℃で、燃料ガス804Hz−2
0%co2 、酸化剤ガス70%Air −30*CO
zを用いて運転を行った。電池特性は燃料、酸化剤ガス
利用率ともに40’J6 、150mA/cdで0.8
5Vで、従来の電解質を用いた場合と同等であった約1
000時間運転した後、電池を分解し、電解質マトリク
スに含まれるN1の屋を分析した結果、従来、 l の電解質を用いた場合とくらへて釘程度に減少していた
。また、マトリクス断面の***a察からも、マトリク
ス中に析出しているN1が、従来の電解質を用いた場合
より、はるかに少ないことが確認された。
For example, conventional electrolyte (62mo14Li2 COa −
1 mol N of basic magnesium carbonate (3Mgco3・Mg(OH)z・3H
20) were mixed and melted at 650°C. After cooling, the M2R degree in the electrolyte was measured and was approximately 2000 p
It was pm. Using this electrolyte, the N17 node,
A unit cell with an effective electrode area of 25 esI as shown in the drawing, consisting of a NiO cathode and a LiAlO2 electrolyte matrix, was assembled, and a fuel gas of 804 Hz-2 was heated at 650°C.
0% CO2, Oxidizing gas 70% Air -30*CO
Driving was performed using z. The cell characteristics are 0.8 at 40'J6 and 150mA/cd for both fuel and oxidizing gas utilization rates.
At 5V, approximately 1
After 1,000 hours of operation, the battery was disassembled and the amount of N1 contained in the electrolyte matrix was analyzed. As a result, it was found that the amount of N1 contained in the electrolyte matrix was reduced to the level of a nail, much less than when using a conventional electrolyte of 1,000 hours. Furthermore, it was confirmed from ***a observation of the cross section of the matrix that the amount of N1 precipitated in the matrix was much less than when a conventional electrolyte was used.

なお、この発明に係わるマグネシウムイオンは50〜2
000ppm含まれる。 50ppm以下ではNiOカ
ソードの溶解量低減の効果が少なく、2000ppm以
上含ませても溶解量低減の効果の増大が見られなヘス、
マグネシウムイオンを含む化合物として、塩基性炭酸マ
グネシウム(3MgCOx−Mg(OH)2”3HzO
)を用いたが、これに限らず、MgCO5・3112Q
、 MgO。
In addition, the magnesium ion related to this invention is 50 to 2
Contains 000ppm. If the content is less than 50 ppm, the effect of reducing the amount of dissolved NiO cathode is small, and even if it is contained more than 2000 ppm, no increase in the effect of reducing the amount of dissolved NiO is observed.
As a compound containing magnesium ions, basic magnesium carbonate (3MgCOx-Mg(OH)2”3HzO
) was used, but is not limited to this, MgCO5・3112Q
, MgO.

Mg(o12などでも同様の効果を示す。Similar effects are also shown with Mg(o12, etc.).

又、RI融炭酸塩の種類も上記実施例に限定されない。Furthermore, the type of RI molten carbonate is not limited to the above examples.

さらg、Nioカソードの電解質中への溶解量を低減さ
せるのに、効果のあるものとして、マグネシウムと同じ
アルカリ土類金属の例えばカルシウムイオン、バリウム
イオンおよびストロンチウムイオンがある。
Additionally, alkaline earth metals like magnesium, such as calcium ions, barium ions, and strontium ions, are effective in reducing the amount of Nio cathode dissolved in the electrolyte.

[発明の効果] 以上説明し九とおシ、この発明はNi電極とN1Qt極
で挟持され、電解質マトリックスに保持される溶融炭酸
塩がマグネシウムイオンを50〜2000ppm含有す
るものを用いることによ)、長期間安定な電池特性を維
持する溶融炭酸塩型燃料電池を得ることができる。
[Effects of the Invention] As explained above, this invention uses a molten carbonate sandwiched between a Ni electrode and a N1Qt electrode and held in an electrolyte matrix containing 50 to 2000 ppm of magnesium ions), A molten carbonate fuel cell that maintains stable cell characteristics for a long period of time can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は一般的な溶融炭酸塩型燃料電池の断面図である。 図において、(1)はN1電極、C2)はNiO電極、
(3)は電解質マトリックスである。
The drawing is a cross-sectional view of a typical molten carbonate fuel cell. In the figure, (1) is the N1 electrode, C2) is the NiO electrode,
(3) is an electrolyte matrix.

Claims (1)

【特許請求の範囲】[Claims] Ni電極とNiO電極で挟持され、電解質マトリックス
に保持される溶融炭酸塩がマグネシウムイオンを50〜
2000ppm含有する溶融炭酸塩型燃料電池。
The molten carbonate sandwiched between Ni and NiO electrodes and held in the electrolyte matrix absorbs magnesium ions from 50 to
Molten carbonate fuel cell containing 2000 ppm.
JP63165620A 1988-06-30 1988-06-30 Molten carbonate fuel cell Expired - Lifetime JP2658207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165620A JP2658207B2 (en) 1988-06-30 1988-06-30 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165620A JP2658207B2 (en) 1988-06-30 1988-06-30 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH0215573A true JPH0215573A (en) 1990-01-19
JP2658207B2 JP2658207B2 (en) 1997-09-30

Family

ID=15815823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165620A Expired - Lifetime JP2658207B2 (en) 1988-06-30 1988-06-30 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2658207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110226A (en) * 1990-10-19 1992-05-05 Norand Corporation Battery operated data entry terminal device and printer attachment
JP2007238075A (en) * 2006-02-09 2007-09-20 Nsk Ltd Electric steering device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056375A (en) * 1983-09-07 1985-04-01 Agency Of Ind Science & Technol Molten-carbonate-type fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6056375A (en) * 1983-09-07 1985-04-01 Agency Of Ind Science & Technol Molten-carbonate-type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110226A (en) * 1990-10-19 1992-05-05 Norand Corporation Battery operated data entry terminal device and printer attachment
JP2007238075A (en) * 2006-02-09 2007-09-20 Nsk Ltd Electric steering device

Also Published As

Publication number Publication date
JP2658207B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
US3847672A (en) Fuel cell with gas separator
US7344801B2 (en) High-voltage dual electrolyte electrochemical power sources
JPS5949671B2 (en) rechargeable electrochemical battery
JPS5942421B2 (en) electrochemical battery
JP2018010855A (en) Rechargeable aluminum-air electrochemical cell
Meibuhr Review of United States fuel-cell patents issued from 1860 to 1947
JPH0215573A (en) Molten carbonate type fuel cell
SU920907A1 (en) Sealed lead-acid cell
US20090253024A1 (en) Nitro-Compound Cathodes for Batteries and Semi-Fuel Cells
US4478916A (en) Method and apparatus for operating aqueous galvanic high energy cells
JPH069143B2 (en) Fuel cell storage method
US20160126575A1 (en) Electrochemical cell
RU2126192C1 (en) High-temperature lithium-oxygen (air) storage battery
US3902921A (en) Electric cells of the Leclanche type
FR2315774A1 (en) High energy density battery cell - using gaseous cathode reactant with lithium or similar metal anode, an org. solvent and an electrolyte
JP2957315B2 (en) Molten carbonate fuel cell
JP2708820B2 (en) Electrolyte of molten carbonate fuel cell
JP2003223919A (en) Direct methanol fuel cell system
US3350233A (en) Electrochemical low-temperature fuel cell
CN210778821U (en) Rechargeable sodium-water gas fuel cell unit
JPS61501478A (en) Electrochemical cells and methods
US5196274A (en) Electrochemical energy device
JPS6056375A (en) Molten-carbonate-type fuel cell
US1173965A (en) Galvanic battery.
JP3094767B2 (en) Fuel cell electrolyte replenishment method