JPH0215558B2 - - Google Patents

Info

Publication number
JPH0215558B2
JPH0215558B2 JP14216081A JP14216081A JPH0215558B2 JP H0215558 B2 JPH0215558 B2 JP H0215558B2 JP 14216081 A JP14216081 A JP 14216081A JP 14216081 A JP14216081 A JP 14216081A JP H0215558 B2 JPH0215558 B2 JP H0215558B2
Authority
JP
Japan
Prior art keywords
reaction
phosphonitrile
sodium
halide
toluidine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14216081A
Other languages
Japanese (ja)
Other versions
JPS5843985A (en
Inventor
Masayoshi Suzue
Juji Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP14216081A priority Critical patent/JPS5843985A/en
Publication of JPS5843985A publication Critical patent/JPS5843985A/en
Publication of JPH0215558B2 publication Critical patent/JPH0215558B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はホスホニトリル酸エステルの製造法に
関する。さらに詳しくは、本発明は酸性度が低
く、残留ハロゲン原子の量の低減したホスホニト
リル酸エステルの製造法に関する。 ホスホニトリル酸エステルはポリウレタン、ポ
リエステル、ポリオレフイン、ビニル重合体、ポ
リアクリレート、ポリメタクリレート、ネオブレ
ン、天然ゴム、ブタジエン−スチレン共重合体、
再生セルロースなどの高分子化合物と共重合体を
形成させるか、もしくは単に混合することによつ
て該高分子化合物に難燃性、耐熱性などを付加す
ることができる有用な化合物である。 ホスホニトリル酸エステルは、一般にホスホニ
トリルハライドを脱ハロゲン化水素剤の存在下で
アルコールと反応させることにより製造されてい
る。これら従来の方法に用いられている脱ハロゲ
ン化水素剤は (1) 水酸化ナトリウムに代表されるアルカリ金属
水酸化物、 (2) 炭酸ナトリウムに代表されるアルカリ金属炭
酸塩、または (3) ピリジンに代表される第3級アミン類などの
塩基性物質である。 しかし(1)のアルカリ金属水酸化物を用いる方法
は反応生成物が非常に酸性の強いものとなり、ま
たアルカリ金属水酸化物の塩基性が強いため原料
のホスホニトリルハライドを分解するという欠点
があり、そのため工業的スケールでの製造には不
適当である。 (2)のアルカリ金属炭酸塩を用いる方法は(1)のア
ルカリ金属水酸化物を用いる方法にくらべると、
えられるホスホニトリル酸エステルの酸性度はか
なり低減することができる。しかし、反応時に副
生する水の存在によりつぎの反応式にしたがつて
生成すると考えられるP−O−P結合を有する粘
性の高い副生成物が混入してくるため好ましくな
い。 さらに(2)の方法では上記反応式の中間体中にみ
られるP−OH基により反応生成物の酸性度は充
分満足しうる程度まで低減することができない。 (3)の第3級アミンを用いる方法は、脱ハロゲン
化水素剤が(1)および(2)の方法にくらべて高価であ
ること、使用するアルコールが多価アルコールで
あるため目的物が水溶性であり、第3級アミンの
除去が困難となることおよび除去された第3アミ
ンは一部分または大部分がハロゲン化水素酸塩と
なつているため、再使用にはアルカリ処理、蒸留
などの工程を必要とすることなどの欠点がある。 また叙上の従来法によつてえられるホスホニト
リル酸エステル中には未置換の塩素原子が比較的
多く残留してしまうため、たとえばウレタン用ポ
リオールとして使用するばあいには、未置換塩素
原子がポリウレタン中に含まれるハロゲン成分と
なり経時変化等によりポリウレタンの劣化、さら
にはその周辺材料の腐食等の要因となることから
好ましくない。したがつて一般に活性ハロゲン化
物を生成する因子となる未置換ハロゲン原子をで
きるだけ少なくすることが重要である。 本発明者らは、かかる現状に鑑み鋭意研究を重
ねた結果、脱ハロゲン化水素剤を用いずにホスホ
ニトリルハライドと2価以上のアルコールを反応
させ、反応時に生成するハロゲン化水素を逐時反
応系外に放出させることにより従来の欠点を克服
できることを見出し、本発明を完成するにいたつ
た。 脱ハロゲン化水素剤を用いなければ、生成する
ハロゲン化水素により原料または目的化合物が分
解されてしまうか、または反応がまつたく進行し
ないと考えられがちであるが、本発明によれば原
料または目的化合物は殆んど分解されず、反応は
円滑に進行することがわかつた。また生成物の酸
価(1gの試料中のP−OH基を中和するのに要
する水酸化カリウムの重量(mg))は従来法にく
らべて低く、より高度にエステル化されたもので
あつた。 反応時に生成するハロゲン化水素を除去するに
は、反応液に不活性気体を吹き込むことによりさ
らに容易に行なわれる。吹き込みは反応液をバブ
リングするか反応液上にガスを通過させる方法に
よつて行なえばよいが、通常後者の方法で充分な
効果がえられる。 本発明に使用されるホスホニトリルハライドは
とくに限定されないが、たとえば特開昭54−
145395号公報または特開昭54−145395号公報に開
示されている方法にしたがつて製造される3量体
および4量体のホスフアゼンオリゴマー混合物
(重量比85:15〜75:25)、あるいは大環状ホスフ
アゼンオリゴマー、線状ホスフアゼンオリゴマー
などがあげられる。 またアルコールとしては、たとえばエチレング
リコール、プロピレングリコール、1,4−ブタ
ンジオール、2,2−ジメチル−1,3−プロパ
ンジオール、ペンタン−2,4−ジオール、3−
メチルペンタン−2,5−ジオールなどのグリコ
ール類、またはジエチレングリコール、トリエチ
レングリコール、ポリエチレングリコール、ジプ
ロピレングリコール、ポリプロピレングリコール
などのポリオキシアルキレングリコール類などの
2価アルコールまはグリセロール、ペンタエリス
リトール、ソルビトールなどの3個以上の水酸基
を有する多価アルコール類などがあげられる。え
られる反応生成物の取り扱いやすさおよび収率の
面から好ましいアルコールは、2,2−ジメチル
−1,3−プロパンジオールおよびジプロピレン
グリコールである。 メタノール、エタノール、プロパノール、ブタ
ノールなど1価の低級脂肪族アルコールを用いた
ばあい、反応においてホスホニトリルの分解を伴
なうため好ましくない。ちなみに、これら1価の
アルコールの少量を2価のアルコール類または1
価の高級アルコール類と併用するばあいには、該
分解は問題のない程度まで押えることができる。 また叙上の方法により未置換ハロゲン原子の含
有率は1〜5%程度まで低下させることができる
が、さらにその方法によつてえられる生成物に金
属アルコラート、アンモニア、第1級アミンまた
は第2級アミンを加えて反応させることにより、
未置換ハロゲン原子のほとんど残留しない(未置
換ハロゲン原子含有率0.1%未満)ホスホニトリ
ル酸エステルをうることができる。 用いうる金属アルコラートの具体例としては、
たとえばナトリウムのメチラート、エチラート、
n−プロピルアルコラート、イソプロピルアルコ
ラート、フエノラート、p−クロルフエノラー
ト、1,1,1−トリフルオロエチラート、オク
タフルオロプロピルメチルアルコラート、o−メ
チルフエノラート、m−メチルフエノラート、p
−メチルフエノラートなどがあげられるが、なか
んづくナトリウムのメチラート、n−プロピルア
ルコラート、1,1,1−トリフルオロエチラー
トまたはフエノラートが好ましく、そのまままた
はアルコール溶液もしくはテトラヒドロフラン溶
液として加えられる。 また用いうる第1級または第2級アミン化合物
としては、具体的にはメチルアミン、エチルアミ
ン、プロピルアミン、イソプロピルアミン、アニ
リン、ジメチルアミン、ジエチルアミンまたはジ
プロピルアミンなどがあげられ、そのままでまた
はベンゼン、トルエン、キシレンなどの芳香族炭
化水素系溶媒に溶かして加えられる。 ホスホニトリルハライドとアルコールの反応は
溶媒の存在下または無溶媒で反応温度を70〜180
℃、好ましくは85〜135℃として、5〜30時間行
なう。発生するハロゲン化水素ガスは叙上のごと
く反応液の温度を高温に保つことによつて、自発
的な廃ガス圧により殆んど反応系外に放出されて
除去できる。このハロゲン化水素ガスの除去は、
たとえば不活性気体を反応液にバブリングさせる
かまたは反応液上を通過させることによつてより
円滑に行なうことができる。 溶媒は、反応初期において昇華により反応容器
上部に析出する未反応ホスフアゼンオリゴマーお
よび(または)結晶性アルコールを洗い落して反
応を均一に進行させる目的などのために加えられ
る。そのような溶媒としては、たとえばベンゼ
ン、トルエン、キシレン、クロルベンゼンなどの
芳香族炭化水素系溶媒が好ましい。 反応生成物中に残存する未反応のハロゲンを前
記アルコラート化合物またはアミン化合物によつ
て置換する反応は室温ないし使用した溶媒の沸点
温度で3〜8時間の条件下で行なうが、アルコラ
ート化合物を用いるばあいアルコラート溶液を室
温下に添加し、ついで1〜5時間室温下で撹拌し
たのち、反応を完結させるためにさらに50〜100
℃で0.5〜2時間反応させるのが好ましい。また
アミン化合物を用いるばあい、アミン化合物の反
応性および物理的性質によつて適宜反応条件を選
択して行なう。 つぎに参考例、実施例よび比較例をあげて本発
明をより詳細に説明するが、本発明はそれらの実
施例のみに限定されるものではない。 参考例 1 還流冷却器、温度計、撹拌機、三塩化りん滴下
器および塩素ガス吹込み管を備えた1フラスコ
にモノクロルベンゼン500ml、塩化アンモニウム
36.5g(0.68モル)および酸化亜鉛0.5gを仕込ん
で混合分散液をえた。該分散液を温度130℃に加
熱し、還流下で三塩化りん85.1gを0.89g/分の
速度で96分間にわたつて滴下すると同時に塩素ガ
ス45.4gを0.47g/分の速度で96分間にわたつて
供給した。三塩化りんおよび塩素ガスを供給した
後、さらに144分間還流(132℃)を行なつて反応
を完結した。ついで吸引過して未反応の塩化ア
ンモニウムを除去し、液を10〜20mmHgの減圧
下にて30〜40℃でモノクロルベンゼンを留去して
反応生成物70.4gをえた。該反応生成物の三塩化
りんを基準とした収率は98.1%であつた。該反応
生成物中より石油エーテルにより環状ホスフアゼ
ンオリゴマーを抽出した。石油エーテル留去後の
環状ホスフアゼンオリゴマーの収量は68.3gであ
つた。吸引過により結晶性の3よび4量体と油
状の大環状ホスフアゼンオリゴマーとを分離し結
晶性の3および4量体ホスフアゼンオリゴマーを
64.5gえた。 実施例 1 撹拌棒、温度計、還流冷却管よびガス導入管を
付した1の4ツ口フラスコに、2,2−ジメチ
ル−1,3−プロパンジオール312g(3モル)
および塩化ホスホニトリル3量体116g(1/3モル
または1ユニツトモル)を量り取り、チツ素ガス
気流中、90〜100℃で20時間加熱撹拌して反応さ
せた。反応終了後、生成物にテトラヒドロフラン
500mlを加え、分解副生成物と考えられる少量の
不溶物(白色結晶)を過して除き、ついで過
を減圧下濃縮することにより、未反応の2,2−
ジメチル−1,3−プロパンジオールを含有する
粘稠な微黄色油状物300gをえた。 この油状物は平沼自動滴定装置(硝酸銀滴定)
および日立吸光度測定装置を用いて分析した結
果、未置換塩素含量2.1%、リン含量9.5%であつ
た。また、JIS K 1557のポリウレタン用ポリエ
ール試験方法によつて測定した酸価および水酸基
価はそれぞれ7.1KOHmg/gおよび250KOHmg/
gであつた。 実施例 2 塩化ホスホニトリル3量体に代えて、参考例1
の方法で製造した塩化ホスホニトリル3量体およ
び4量体の混合物116gを用いたほかは実施例1
と同様にして実験を行ない、粘稠な微黄色油状物
305gをえた。 えられた油状物の分析結果を第1表に示す。 実施例 3 塩化ホスホニトリル3量体に代えて、参考例1
の方法で製造した3および4量体の結晶性成分を
分離しない塩化ホスホニトリル環状オリゴマー
116gを用いたほかは実施例1と同様にして実験
を行ない、粘稠な微黄色油状物295gをえた。 えられた油状物の分析結果を第1表に示す。 実施例 4 2,2−ジメチル−1,3−プロパンジオール
に代えて、ジプロピレングリコール403g(3モ
ル)を用いたほかは実施例1と同様にして実験を
行ない、粘稠な微黄色油状物302gをえた。 えられた油状物の分析結果を第1表に示す。 比較例 1 撹拌棒、温度計、還流冷却管および塩化カルシ
ウム管を付した2の4ツ口フラスコにジプロピ
レングリコール268g(1モル)と炭酸カリウム
276g(2モル)を量り取り、塩化ホスホニトリ
ルハライド3量体116g(1ユニツトモル)をベ
ンゼン400mlに溶かした溶液を約2時間かけて滴
下した。反応液をさらに20時間加熱還流して、反
応を完結させた。反応液を冷却したのち、ベンゼ
ン500mlを加え、ついで不溶の無機残渣を過し
て除いた。液は、超微細の無機残渣によつても
わずかに白濁しているため、さらにNo.5Cの紙
に過助剤を使用して精密過を行ない無機残渣
を完全に除去した。液を減圧下で濃縮して粘稠
な微黄色油状物210gをえた。 えられた油状物の分析結果を第1表に示す。
The present invention relates to a method for producing phosphonitrile esters. More specifically, the present invention relates to a method for producing a phosphonitrile ester having low acidity and a reduced amount of residual halogen atoms. Phosphonitrile esters include polyurethane, polyester, polyolefin, vinyl polymer, polyacrylate, polymethacrylate, neorene, natural rubber, butadiene-styrene copolymer,
It is a useful compound that can add flame retardancy, heat resistance, etc. to a polymer compound such as regenerated cellulose by forming a copolymer with the polymer compound, or by simply mixing the compound. Phosphonitrile esters are generally produced by reacting phosphonitrile halides with alcohols in the presence of dehydrohalogenating agents. The dehydrohalogenating agents used in these conventional methods are (1) alkali metal hydroxides such as sodium hydroxide, (2) alkali metal carbonates such as sodium carbonate, or (3) pyridine. Basic substances such as tertiary amines represented by However, the method (1) using an alkali metal hydroxide has the disadvantage that the reaction product is very acidic and that the strong basicity of the alkali metal hydroxide decomposes the raw material phosphonitrile halide. , so it is unsuitable for production on an industrial scale. The method (2) using an alkali metal carbonate has the following advantages compared to the method (1) using an alkali metal hydroxide:
The acidity of the resulting phosphonitrile ester can be reduced considerably. However, due to the presence of water produced as a by-product during the reaction, a highly viscous by-product having a P-O-P bond, which is thought to be produced according to the following reaction formula, is mixed in, which is not preferable. Furthermore, in method (2), the acidity of the reaction product cannot be reduced to a sufficiently satisfactory level due to the P-OH group found in the intermediate of the above reaction formula. In the method (3) using a tertiary amine, the dehydrohalogenating agent is more expensive than the methods (1) and (2), and the alcohol used is a polyhydric alcohol, so the target product is water-soluble. This makes it difficult to remove the tertiary amine, and the removed tertiary amine is partially or mostly converted to hydrohalide, so reuse requires steps such as alkali treatment and distillation. There are disadvantages such as requiring In addition, since relatively many unsubstituted chlorine atoms remain in the phosphonitrile ester obtained by the conventional method described above, when used as a polyol for urethane, for example, unsubstituted chlorine atoms remain in the phosphonitrile ester. This is not preferable because it becomes a halogen component contained in the polyurethane and causes deterioration of the polyurethane due to changes over time and further corrosion of surrounding materials. Therefore, it is generally important to reduce as much as possible unsubstituted halogen atoms, which are a factor in forming active halides. As a result of extensive research in view of the current situation, the present inventors have discovered that by reacting phosphonitrile halide with dihydric or higher alcohol without using a dehydrohalogenating agent, the hydrogen halide generated during the reaction is reacted sequentially. The present inventors discovered that the conventional drawbacks could be overcome by releasing the compound to the outside of the system, and completed the present invention. It is often thought that if a dehydrohalogenating agent is not used, the raw material or target compound will be decomposed by the generated hydrogen halide, or the reaction will not proceed as quickly, but according to the present invention, the raw material or target compound It was found that the compound was hardly decomposed and the reaction proceeded smoothly. In addition, the acid value of the product (the weight (mg) of potassium hydroxide required to neutralize the P-OH group in 1 g of sample) is lower than that of the conventional method, and the product is more highly esterified. Ta. Hydrogen halide produced during the reaction can be more easily removed by blowing an inert gas into the reaction solution. Blowing may be carried out by bubbling the reaction liquid or by passing a gas over the reaction liquid, but the latter method usually provides sufficient effects. The phosphonitrile halide used in the present invention is not particularly limited, but for example,
A mixture of trimer and tetramer phosphazene oligomers (weight ratio 85:15 to 75:25) produced according to the method disclosed in JP-A No. 145395 or JP-A-54-145395, or Examples include macrocyclic phosphazene oligomers and linear phosphazene oligomers. Examples of the alcohol include ethylene glycol, propylene glycol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, pentane-2,4-diol, 3-
Glycols such as methylpentane-2,5-diol, dihydric alcohols such as polyoxyalkylene glycols such as diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, and polypropylene glycol, or glycerol, pentaerythritol, sorbitol, etc. Examples include polyhydric alcohols having three or more hydroxyl groups. Preferred alcohols from the viewpoint of ease of handling and yield of the resulting reaction product are 2,2-dimethyl-1,3-propanediol and dipropylene glycol. The use of monovalent lower aliphatic alcohols such as methanol, ethanol, propanol, and butanol is not preferred because the reaction involves decomposition of phosphonitrile. By the way, a small amount of these monohydric alcohols can be mixed with dihydric alcohols or monohydric alcohols.
When used in combination with higher alcohols, the decomposition can be suppressed to a non-problematic level. In addition, although the content of unsubstituted halogen atoms can be reduced to about 1 to 5% by the method described above, the product obtained by the method may also contain metal alcoholates, ammonia, primary amines or secondary halogen atoms. By adding and reacting with grade amine,
It is possible to obtain a phosphonitrile acid ester in which almost no unsubstituted halogen atoms remain (unsubstituted halogen atom content less than 0.1%). Specific examples of metal alcoholates that can be used include:
For example, sodium methylate, ethylate,
n-propyl alcoholate, isopropyl alcoholate, phenolate, p-chlorophenolate, 1,1,1-trifluoroethylate, octafluoropropylmethyl alcoholate, o-methylphenolate, m-methylphenolate, p
Among them, sodium methylate, n-propyl alcoholate, 1,1,1-trifluoroethylate or phenolate are preferred, and are added as such or as an alcoholic or tetrahydrofuran solution. Specific examples of primary or secondary amine compounds that can be used include methylamine, ethylamine, propylamine, isopropylamine, aniline, dimethylamine, diethylamine, and dipropylamine, which may be used as is or benzene, It is added after being dissolved in an aromatic hydrocarbon solvent such as toluene or xylene. The reaction between phosphonitrile halide and alcohol is carried out in the presence of a solvent or without a solvent at a reaction temperature of 70 to 180 °C.
C., preferably 85 to 135.degree. C., for 5 to 30 hours. By keeping the temperature of the reaction solution at a high temperature as described above, most of the generated hydrogen halide gas can be discharged out of the reaction system and removed by the spontaneous exhaust gas pressure. The removal of this hydrogen halide gas is
For example, this can be carried out more smoothly by bubbling an inert gas into the reaction liquid or passing it over the reaction liquid. The solvent is added for the purpose of uniformly proceeding the reaction by washing away unreacted phosphazene oligomers and/or crystalline alcohol that precipitate at the top of the reaction vessel due to sublimation in the early stage of the reaction. As such a solvent, aromatic hydrocarbon solvents such as benzene, toluene, xylene, and chlorobenzene are preferred. The reaction of replacing the unreacted halogen remaining in the reaction product with the alcoholate compound or amine compound is carried out at room temperature or the boiling point temperature of the solvent used for 3 to 8 hours. The alcoholate solution was added at room temperature, then stirred at room temperature for 1-5 hours, and then stirred for an additional 50-100 hours to complete the reaction.
Preferably, the reaction is carried out at a temperature of 0.5 to 2 hours. When an amine compound is used, reaction conditions are appropriately selected depending on the reactivity and physical properties of the amine compound. Next, the present invention will be explained in more detail by reference examples, working examples, and comparative examples, but the present invention is not limited only to these examples. Reference example 1 500 ml of monochlorobenzene and ammonium chloride were placed in a flask equipped with a reflux condenser, thermometer, stirrer, phosphorus trichloride dropper, and chlorine gas blowing tube.
A mixed dispersion was obtained by charging 36.5 g (0.68 mol) and 0.5 g of zinc oxide. The dispersion was heated to a temperature of 130°C, and under reflux, 85.1 g of phosphorus trichloride was added dropwise at a rate of 0.89 g/min over 96 minutes, and at the same time, 45.4 g of chlorine gas was added at a rate of 0.47 g/min over 96 minutes. It was supplied across the board. After supplying phosphorus trichloride and chlorine gas, reflux (132°C) was further performed for 144 minutes to complete the reaction. Then, unreacted ammonium chloride was removed by suction, and monochlorobenzene was distilled off from the liquid at 30 to 40°C under a reduced pressure of 10 to 20 mmHg to obtain 70.4 g of a reaction product. The yield of the reaction product was 98.1% based on phosphorus trichloride. A cyclic phosphazene oligomer was extracted from the reaction product with petroleum ether. The yield of cyclic phosphazene oligomer after distilling off the petroleum ether was 68.3 g. The crystalline trimers and tetramers and the oily macrocyclic phosphazene oligomers are separated by suction filtration to obtain the crystalline trimers and tetramers phosphazene oligomers.
I gained 64.5g. Example 1 312 g (3 mol) of 2,2-dimethyl-1,3-propanediol was placed in a four-necked flask equipped with a stirring bar, thermometer, reflux condenser, and gas introduction tube.
and 116 g (1/3 mole or 1 unit mole) of phosphonitrile chloride trimer were weighed out and reacted by heating and stirring at 90 to 100° C. for 20 hours in a nitrogen gas stream. After the reaction is complete, add tetrahydrofuran to the product.
500 ml of unreacted 2,2-
300 g of a viscous, pale yellow oil containing dimethyl-1,3-propanediol was obtained. This oily substance is detected by Hiranuma automatic titration equipment (silver nitrate titration).
As a result of analysis using a Hitachi absorbance measuring device, the unsubstituted chlorine content was 2.1% and the phosphorus content was 9.5%. In addition, the acid value and hydroxyl value measured by the JIS K 1557 polyurethane test method were 7.1KOHmg/g and 250KOHmg/g, respectively.
It was hot at g. Example 2 In place of phosphonitrile chloride trimer, Reference Example 1
Example 1 except that 116 g of a mixture of phosphonitrile chloride trimer and tetramer prepared by the method of Example 1 was used.
An experiment was carried out in the same manner as above, and a viscous slightly yellow oil was obtained.
I gained 305g. The analysis results of the obtained oil are shown in Table 1. Example 3 Instead of phosphonitrile chloride trimer, Reference Example 1
Phosphonitrile chloride cyclic oligomer produced by the method without separating the trimeric and tetrameric crystalline components
The experiment was carried out in the same manner as in Example 1, except that 116 g was used, and 295 g of a viscous, pale yellow oil was obtained. The analysis results of the obtained oil are shown in Table 1. Example 4 An experiment was carried out in the same manner as in Example 1, except that 403 g (3 mol) of dipropylene glycol was used instead of 2,2-dimethyl-1,3-propanediol, and a viscous slightly yellow oil was obtained. I gained 302g. The analysis results of the obtained oil are shown in Table 1. Comparative Example 1 268 g (1 mol) of dipropylene glycol and potassium carbonate were placed in a 4-necked flask equipped with a stirring bar, thermometer, reflux condenser, and calcium chloride tube.
276 g (2 mol) was weighed out, and a solution of 116 g (1 unit mol) of chlorinated phosphonitrile halide trimer dissolved in 400 ml of benzene was added dropwise over about 2 hours. The reaction solution was further heated under reflux for 20 hours to complete the reaction. After cooling the reaction solution, 500 ml of benzene was added, and then the insoluble inorganic residue was removed by filtration. Since the liquid was slightly cloudy due to ultrafine inorganic residues, it was further subjected to precision filtration using No. 5C paper with a filter aid to completely remove the inorganic residues. The liquid was concentrated under reduced pressure to obtain 210 g of a viscous, pale yellow oil. The analysis results of the obtained oil are shown in Table 1.

【表】 実施例 6 2,2−ジメチル−1,3−プロパンジオール
の使用量を104g(1モル)に代え、反応時間を
7時間としたほかは実施例5と同様にして実験を
行ない、微黄色のワツクス状生成物165gをえた。 えれた油状物の未置換塩素率は19.5%であつ
た。 実施例 7 前記実施例6の方法でえられた未処理の反応液
に28%ナトリウムメチラートのメタノール溶液
193g(ナトリウムメチラートとして1モル)を
室温下で1時間かけて滴下した。反応は発熱反応
であるが、冷却を行なわずに自然還流の温度を上
限温度として放冷しながら15時間反応を行なつ
た。反応終了後、過剰のナトリウムメチラートは
35%塩酸水溶液を少量ずつ加えて中和し、不溶の
無機物を過して除いた。つぎに液を減圧下に
濃縮して、粘稠な微黄色油状物150gをえた。 えられた油状物の分析結果を第2表に示す。 実施例 8 前記実施例6の方法でえられた未処理の反応液
にトルエン100gを加えて希釈したのち、アンモ
ニアガス約2モルを室温下で5時間かけて吹き込
み、ついでさらに室温下で2時間撹拌した。生成
した塩化アンモニウムの結晶を過して除き、
液を減圧下濃縮して粘稠な微黄色油状物135gを
えた。 えられた油状物の分析結果を第2表に示す。 実施例 9 前記実施例6の方法でえられた未処理の反応液
に、ナトリウムトリフルオロエチラート122gを
THF488gに溶かした溶液を室温下で2時間かけ
て滴下した。反応は発熱反応であるが、冷却を行
なわずに自然還流の温度を上限として放冷しなが
ら15時間反応を行なつた。反応終了後、過剰のナ
トリウムトリフルオロエチラートは35%塩酸水溶
液を少量ずつ加えて中和し、不溶の無機物を過
して除いた。つぎに液を減圧下に濃縮して、粘
稠な微黄色油状物145gをえた。 えられた油状物の分析結果を第2表に示す。 実施例 10 前記実施例6の方法でえられた未処理の反応液
にトルエン100gを加えて希釈したのち、アニリ
ン186g(3モル)を室温下で加え、ついで5時
間撹拌し、反応を完結させた、アニリン塩酸塩と
考えられる不溶物を過して除き、液を減圧下
に濃縮して粘稠な茶褐色油状物142gをえた。 えられた油状物の分析結果を第2表に示す。
[Table] Example 6 An experiment was conducted in the same manner as in Example 5, except that the amount of 2,2-dimethyl-1,3-propanediol used was changed to 104 g (1 mol), and the reaction time was changed to 7 hours. 165 g of a slightly yellow waxy product was obtained. The unsubstituted chlorine content of the obtained oil was 19.5%. Example 7 A methanol solution of 28% sodium methylate was added to the untreated reaction solution obtained by the method of Example 6 above.
193 g (1 mol as sodium methylate) was added dropwise at room temperature over 1 hour. Although the reaction was exothermic, it was allowed to cool for 15 hours without cooling, with the natural reflux temperature being the upper limit temperature. After the reaction is complete, excess sodium methylate is
A 35% aqueous hydrochloric acid solution was added little by little to neutralize, and insoluble inorganic substances were removed by filtration. The liquid was then concentrated under reduced pressure to obtain 150 g of a viscous, pale yellow oil. The analysis results of the obtained oil are shown in Table 2. Example 8 After diluting the untreated reaction solution obtained by the method of Example 6 by adding 100 g of toluene, about 2 moles of ammonia gas was blown into it at room temperature over 5 hours, and then further at room temperature for 2 hours. Stirred. The ammonium chloride crystals formed are removed by filtration.
The liquid was concentrated under reduced pressure to obtain 135 g of a viscous slightly yellow oil. The analysis results of the obtained oil are shown in Table 2. Example 9 122 g of sodium trifluoroethylate was added to the untreated reaction solution obtained by the method of Example 6.
A solution dissolved in 488 g of THF was added dropwise at room temperature over 2 hours. Although the reaction was exothermic, it was allowed to cool to the natural reflux temperature as an upper limit without cooling for 15 hours. After the reaction was completed, excess sodium trifluoroethylate was neutralized by adding 35% aqueous hydrochloric acid solution little by little, and insoluble inorganic substances were removed by filtration. The liquid was then concentrated under reduced pressure to obtain 145 g of a viscous, pale yellow oil. The analysis results of the obtained oil are shown in Table 2. Example 10 The untreated reaction solution obtained by the method of Example 6 was diluted by adding 100 g of toluene, and then 186 g (3 moles) of aniline was added at room temperature, followed by stirring for 5 hours to complete the reaction. Insoluble matter believed to be aniline hydrochloride was removed by filtration, and the liquid was concentrated under reduced pressure to obtain 142 g of a viscous brown oil. The analysis results of the obtained oil are shown in Table 2.

【表】 実施例 11 2,2−ジメチル−1,3−プロパンジオール
に代えてジプロピレングリコール134g(1モル)
を用いたほかは実施例6と同様にして実験を行な
い、微黄色油状物193gをえた。 えられた油状物の未置換塩素含量は18.5%であ
つた。 実施例 12 前記実施例11の方法でえられた未処理の反応液
に28%ナトリウムメチラートのメタノール溶液
193g(ナトリウムメチラートとして1モル)を
室温下で1時間かけて滴下した。反応は発熱反応
であるが、冷却を行なわずに自然還流の温度を上
限温度として放冷しながら15時間反応を行なつ
た。反応終了後の処理は前記実施例7と同様にし
て行ない、粘稠な微黄色油状物182gをえた。 えられた油状物を分析した結果、未置換塩素含
量は0.04%、リン含量は12.5%であつた。また酸
価は3.5KOHmg/g、水酸基価は118KOHmg/g
であつた。
[Table] Example 11 134 g (1 mol) of dipropylene glycol in place of 2,2-dimethyl-1,3-propanediol
The experiment was carried out in the same manner as in Example 6 except that 193 g of a pale yellow oil was obtained. The unsubstituted chlorine content of the obtained oil was 18.5%. Example 12 A methanol solution of 28% sodium methylate was added to the untreated reaction solution obtained by the method of Example 11 above.
193 g (1 mol as sodium methylate) was added dropwise at room temperature over 1 hour. Although the reaction was exothermic, it was allowed to cool for 15 hours without cooling, with the natural reflux temperature being the upper limit temperature. The treatment after the completion of the reaction was carried out in the same manner as in Example 7, and 182 g of a viscous, pale yellow oil was obtained. Analysis of the obtained oil revealed that the unsubstituted chlorine content was 0.04% and the phosphorus content was 12.5%. Also, the acid value is 3.5KOHmg/g, and the hydroxyl value is 118KOHmg/g.
It was hot.

Claims (1)

【特許請求の範囲】 1 ホスホニトリルハライドと2価以上のアルコ
ールの反応を脱ハロゲン化水素剤を存在させず
に、発生するハロゲン化水素を逐次反応液から除
去する方法によつて行なうことを特徴とするホス
ホニトリル酸エステルの製造法。 2 ホスホニトリルハライドと2価以上のアルコ
ールの反応を脱ハロゲン化水素剤を存在させず
に、発生するハロゲン化水素を遂次反応液から除
去する方法によつて行ない、ついで金属アルコラ
ート、アンモニア、第1級アミンまたは第2級ア
ミンを加えることを特徴とする未置換ハロゲン原
子含有率の低いホスホニトリル酸エステルの製造
法。 3 前記金属アルコラートがナトリウムメチラー
ト、ナトリウム n−プロピルアルコラート、ナ
トリウム、1,1,1−トリフルオロエチラート
またはナトリウムフエノラートである特許請求の
範囲第2項記載の製造法。 4 前記第1級アミンまたは第2級アミンがメチ
ルアミン、エチルアミン、プロピルアミン、イソ
プロピルアミン、ブチルアミン、アミルアミン、
ヘキシルアミン、ヘブチルアミン、アリルアミ
ン、アニリン、O−トルイジン、m−トルイジ
ン、p−トルイジン、ジメチルアミン、ジエチル
アミン、ジプロピルアミン、ジイソプロピルアミ
ン、ジブチルアミン、ジアミルアミンまたはジア
リルアミン、メチルアニリンである特許請求の範
囲第2項記載の製造法。
[Claims] 1. A method characterized in that the reaction between a phosphonitrile halide and a dihydric or higher alcohol is carried out in the absence of a dehydrohalogenating agent, and the generated hydrogen halide is sequentially removed from the reaction solution. A method for producing a phosphonitrile ester. 2. The reaction between phosphonitrile halide and dihydric or higher alcohol is carried out in the absence of a dehydrohalogenating agent by a method in which the generated hydrogen halide is sequentially removed from the reaction solution, and then the metal alcoholate, ammonia, and A method for producing a phosphonitrile acid ester with a low content of unsubstituted halogen atoms, which comprises adding a primary amine or a secondary amine. 3. The manufacturing method according to claim 2, wherein the metal alcoholate is sodium methylate, sodium n-propyl alcoholate, sodium, 1,1,1-trifluoroethylate, or sodium phenolate. 4 The primary amine or secondary amine is methylamine, ethylamine, propylamine, isopropylamine, butylamine, amylamine,
Hexylamine, hebutylamine, allylamine, aniline, O-toluidine, m-toluidine, p-toluidine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, diamylamine or diallylamine, methylaniline The manufacturing method described in Section 2.
JP14216081A 1981-09-08 1981-09-08 Preparation of phosphonitrilic ester Granted JPS5843985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14216081A JPS5843985A (en) 1981-09-08 1981-09-08 Preparation of phosphonitrilic ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14216081A JPS5843985A (en) 1981-09-08 1981-09-08 Preparation of phosphonitrilic ester

Publications (2)

Publication Number Publication Date
JPS5843985A JPS5843985A (en) 1983-03-14
JPH0215558B2 true JPH0215558B2 (en) 1990-04-12

Family

ID=15308752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14216081A Granted JPS5843985A (en) 1981-09-08 1981-09-08 Preparation of phosphonitrilic ester

Country Status (1)

Country Link
JP (1) JPS5843985A (en)

Also Published As

Publication number Publication date
JPS5843985A (en) 1983-03-14

Similar Documents

Publication Publication Date Title
EP0147379B1 (en) Making nitrodiarylamines
EP1651737B1 (en) Flame retardant phosphonate additives for thermoplastics
EP0070573A1 (en) Flame retardant polyurethane containing alkyl bis(3-hydroxypropyl)phosphine oxide
EP0613902A1 (en) Process for the manufacture of poly(hydrocarbylene aryl phosphate)compositions
JPH068311B2 (en) Method for producing phosphazene esters
JPS62238223A (en) Fluorine-containing polyhydric alcohol, manufacture and use
EP0428802A1 (en) Preparation of polyoxyalkylene glycol amines
JPH0215558B2 (en)
JP3731909B2 (en) Method for producing hydroxyoxaalkylmelamine
US4451410A (en) Process for preparing condensed polyalkoxyphosphazene
WO1994010123A1 (en) Process for producing tetrabromophthalic diesters
US4036882A (en) Amine formal polymers and process of making the same
US3462518A (en) Oxyalkylated cyclic polymeric bis(hydroxyphenoxy)phosphonitriles
EP0244916A1 (en) Method of making organic solvent soluble zinc alkoxy alkoxides
EP0179443B1 (en) Novel fluorine-containing amine amides and preparation thereof
US6022937A (en) Polyether polyols based on triazole group containing compounds and a process for their production
US5391816A (en) Formation of 1-phenylvinyl-1-phosphonic acid
WO2008100316A1 (en) Phosphate-containing flame retardants
US4394330A (en) Phosphonate derivatives of polyalkylene polyamines as flame retardants
JPH01301713A (en) Production of polyether polyol
EP0131051B1 (en) Quaternary ammonium compounds and method for their manufacture
IE42197B1 (en) Process for the production of polyalkylene oxides with terminal urethane groups
US4157343A (en) Preparation of aromatic diamines
JPS6247858B2 (en)
JPS58219190A (en) Phosphonitrilic esters and its preparation