JPH0215543A - Contour measuring method - Google Patents

Contour measuring method

Info

Publication number
JPH0215543A
JPH0215543A JP16249588A JP16249588A JPH0215543A JP H0215543 A JPH0215543 A JP H0215543A JP 16249588 A JP16249588 A JP 16249588A JP 16249588 A JP16249588 A JP 16249588A JP H0215543 A JPH0215543 A JP H0215543A
Authority
JP
Japan
Prior art keywords
sample
detectors
line direction
inclining
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16249588A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Koichi Honma
弘一 本間
Fuminobu Furumura
文伸 古村
Hisahiro Furuya
寿宏 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16249588A priority Critical patent/JPH0215543A/en
Publication of JPH0215543A publication Critical patent/JPH0215543A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to obtain a height distribution with the secondary expansion of a sample by providing two detectors facing to each other including the sample between them and obtaining the inclining components of surface elements both in the line direction to connect both detectors and in the orthogonal line direction to said line direction within the horizontal surface so as to add and integrate both inclining components. CONSTITUTION:An electron beam 13 injected from an electron gun 12 of a SEM (scanning electron microscope) is injected into a sample 16 through a group of electron lenses 14, a secondary electron 17 is emitted from the sample 16, and the signals detected by means of left and right detectors 18, 19 are arithmetically processed by means of a computer 20; that is, the inclining component of a sample surface element in the line direction of connecting two detectors 18, 19 is obtained using a relational expression between this inclining component and both detecting signals. Using this result and the relational expression indicating that the sum of both detecting signals depends on the angle of the electron beam injecting direction to the normal line direction of the surface element, the inclining component of the surface element in the orthogonal line direction within the horizontal surface against the line direction, and the inclining components in both line directions are added and integrated. The height distribution with the secondary expansion of the sample is thus obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、走査電子顕微鏡による表面形状測定方法に係
り、特に、半導体、光ディスク、磁気ディスクなどの微
細加工物の立体形状測定に好適な表面形状測定方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface shape measurement method using a scanning electron microscope, and particularly to a surface shape measurement method suitable for measuring the three-dimensional shape of microfabricated objects such as semiconductors, optical disks, and magnetic disks. Concerning a shape measurement method.

〔従来の技術〕[Conventional technology]

画像の濃淡の情報を基にして、立体形状を再構成する試
みが最近盛んになっているが、SEM(走査電子顕微鏡
)を用いたものの例に、ジャーナル・オブ・エレクトロ
ン・マイクロスコピイ(Journal of Ele
ctron Microscopy)の第34巻(19
85) 、第4号、 328−337頁に、菅沼忠雄に
より、2つの2次電子検出器を設けたSEMによる表面
形状の測定(Measurement of Surf
aceTopography Using SEM w
ith Two Sec。
Recently, attempts to reconstruct three-dimensional shapes based on image shading information have become popular, and an example of one using SEM (scanning electron microscope) is the Journal of Electron Microscopy of Ele
ctron Microscopy) Volume 34 (19
85), No. 4, pp. 328-337, Tadao Suganuma describes the measurement of surface shape using an SEM equipped with two secondary electron detectors.
aceTopography Using SEM w
ith Two Sec.

ndary E 1actron Detectors
)”と題して発表されたものがある。
ndary E 1actron Detectors
)” was published.

この方式は、試料から放出される2次電子を検出する2
つの検出器をSEMに設け、その2つの検出信号値の2
乗の差が、検出器を結ぶ方向での面素の傾き成分に概ね
比例するという性質を利用し、−ライン上の傾き、すな
わち、検出器を結ぶ方向の微分値を求めて、これを端か
ら加算積分することにより、該当ライン上の断面形状を
求めるものである。
This method detects secondary electrons emitted from the sample.
Two detectors are installed in the SEM, and the two detection signal values are
Utilizing the property that the difference in power is approximately proportional to the slope component of the surface element in the direction connecting the detectors, find the slope on the - line, that is, the differential value in the direction connecting the detectors, and use this as an end. By performing addition and integration from , the cross-sectional shape on the corresponding line is determined.

具体的には、左右2つの検出信号値をそれぞれIL、I
Rとし、基準値として用いる平坦部の左右それぞれの信
号値をI+、、n、  IRIIとし、■に近い補正用
の定数をKとすると、その面素の傾きAは次のように表
される。
Specifically, the two left and right detection signal values are IL and I, respectively.
R, the left and right signal values of the flat part used as reference values are I+, , n, IRII, and the correction constant close to ■ is K, then the slope A of the surface element is expressed as follows. .

この面素の傾きAは、また、次の(2)式で示すように
、断面形状のわかっている試料を用いて測定してその形
状を最も忠実に表すような定数kに、事前にキャリブレ
ーションを行って、決めておくことにより、基準値IL
n、 IRnを用いないで、求めることもできる。
The slope A of this surface element can also be determined by calibrating in advance to a constant k that most faithfully represents the cross-sectional shape of the sample measured using a sample whose cross-sectional shape is known, as shown in the following equation (2). The standard value IL can be determined by
It can also be determined without using n and IRn.

そして、2つの検出器を結ぶ方向をX軸、試料面上でこ
れと直交する方向にY軸を、高さ方向にZ軸をとり、Y
=Y、のライン上を走査したとき。
The direction connecting the two detectors is the X axis, the direction perpendicular to this on the sample surface is the Y axis, and the height direction is the Z axis.
=Y, when scanning the line.

X=jの点の傾きをAjとすると、x=j点の高さZj
が として表されることを用いて、Y=Y、ライン上の断面
形状を求めるものである。
If the slope of point X=j is Aj, then the height Zj of point x=j
By using the fact that is expressed as Y=Y, the cross-sectional shape on the line is determined.

また、特開昭62−6112には、SEMに4個の検出
器を設けて、まず、球面状の標準試料面について各検出
器の出力と法線方向との関係を求め、次に、測定すべき
試料について得られる各検出器の出力と上記関係とを比
較することで試料表面の各点の法線方向を求め、この法
線情報を基に試料の立体形状を求める方法が記載されて
いる。
Furthermore, in JP-A-62-6112, an SEM is equipped with four detectors, and the relationship between the output of each detector and the normal direction is determined for a spherical standard sample surface, and then the measurement A method is described in which the normal direction of each point on the sample surface is determined by comparing the output of each detector obtained for the sample with the above relationship, and the three-dimensional shape of the sample is determined based on this normal information. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術のうちの前者方法では、Y軸方向の傾
きは求めていない。2次元的な広がりを持つ高度分布を
求めるために、上述の一ライン(Y Oライン)上での
処理を数十ラインにわたって行い、斜め方向から見た鳥
緻図表示等が行われているが、しかし、その場合、(3
)式の20は各ラインで任意に設定される定数であり、
各ライン上で計算される高度の間の関係は定まっていな
い。
In the former method of the conventional techniques described above, the inclination in the Y-axis direction is not determined. In order to obtain an altitude distribution with a two-dimensional spread, the above-mentioned processing on one line (YO line) is performed over several dozen lines, and a detailed bird map is displayed as viewed from an oblique direction. , but in that case, (3
) Formula 20 is a constant that is arbitrarily set for each line,
The relationship between the altitudes calculated on each line is not fixed.

このため、全般的に平坦と見なして良いもの以外は、2
次元的な広がりでの高度分布を得ることができなかった
For this reason, except for those that can be generally considered flat, 2
It was not possible to obtain the altitude distribution in dimensional extent.

また、従来技術のうちの後者方法は、SEMに少なくと
も4個の検出器を設ける点で、2個の検出器で表面形状
を測定しようとする本発明とは、解決しようとする課題
が、相違する。
In addition, the latter method of the prior art has a different problem to be solved from the present invention, which attempts to measure the surface shape with two detectors, in that the SEM is provided with at least four detectors. do.

本発明の目的は、2個の検出器を設けたSEMを用いて
、これらの検出器からの出力信号値から試料の2次元的
広がりを持つ高度分布を得ることのできる表面形状測定
方法を提供することにある。
An object of the present invention is to provide a surface profile measurement method that uses a SEM equipped with two detectors and can obtain a two-dimensionally spread altitude distribution of a sample from output signal values from these detectors. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、試料を挟んで向き合うように配置された2
つの検出器を結ぶライン方向での試料面素の傾き成分を
、この傾き成分と雨検出信号との間の関係式を用いて、
あるいは、傾き成分と雨検出信号との対応関係をまとめ
た表を用いて求め、次にこの結果と、雨検出信号の和が
、電子ビーム入射方向が面素の法線方向に対してなす角
度に依存することを表す関係式とを用いて、両検出器を
結ぶライン方向に対して水平面内で直交するライン方向
での面素の傾き成分を求め、試料面上のある2次元的な
広がりで求められる上記両ライン方向での傾き成分を加
算積分することで試料の表面・形状を求める方法とする
ことにより、達成される。
The above purpose is to make two
The slope component of the sample surface element in the direction of the line connecting the two detectors is calculated using the relational expression between this slope component and the rain detection signal.
Alternatively, find it using a table that summarizes the correspondence between the tilt component and the rain detection signal, and then calculate the angle between the electron beam incident direction and the normal direction of the surface element by the sum of this result and the rain detection signal. Using the relational expression that expresses the dependence of This is achieved by adding and integrating the slope components in both line directions, which are determined by , to determine the surface and shape of the sample.

〔作用〕 左検出器の出力信号値をIL、右検出器の出力信号値を
IR,水平面内で両検出器を結ぶ方向をX軸とし、これ
と直交する方向にY軸をとり、高さ方向をZ軸とし、試
料表面をZ=f(X、Y)で表す。
[Operation] The output signal value of the left detector is IL, the output signal value of the right detector is IR, the direction connecting both detectors in the horizontal plane is the X axis, the direction perpendicular to this is the Y axis, and the height is The direction is the Z axis, and the sample surface is expressed as Z=f(X, Y).

信号値IL、IRとの間に成り立つ関係式、(1)式あ
るいは(2)式を用いて求めることができる。
It can be determined using the relational expression, equation (1) or equation (2), that holds true between the signal values IL and IR.

f 次に、Y方向の傾き□は次のように求められむ る。ILとInの和■は、検出ロスなどを除き試料から
放出された2次電子の総和とみなすことができる。電子
ビームの入射方向を表す単位ベクトルるので と書くことができる。
f Next, the slope □ in the Y direction can be found as follows. The sum of IL and In can be regarded as the sum of secondary electrons emitted from the sample, excluding detection loss and the like. It can be written as a unit vector representing the direction of incidence of the electron beam.

V=(0,0,1) ここで、 であるので、 式は次の 式のように書け る。V=(0,0,1) here, So, The formula is: Write it like an expression Ru.

的には、gの関数形として逆余弦則が知られている。す
なわち、試料上平坦部での信号強度をI。
Specifically, the arc cosine law is known as a functional form of g. That is, the signal intensity at the flat part on the sample is I.

とじて、次の形となる。The result is the following form.

これより。Than this.

と解くことができる。(7)式の左辺のプラス、マイナ
スの符号は、Y方向に上りか下りかを決定すれば、一意
的に求めることができる。このために式より次のように
求めることもできる。(6)式をXで微分すると となり、 したがって、 次の 式が得られる。
It can be solved as follows. The plus and minus signs on the left side of equation (7) can be uniquely determined by determining whether the direction is up or down in the Y direction. For this purpose, it can also be obtained from the formula as follows. When formula (6) is differentiated with respect to X, the following formula is obtained.

XaY 得られる。XaY can get.

■。■.

■。は観測量であるので、 式 積分することにより、従来技術では求めることができな
かった、各ラインのZ。の関係を求めることが可能とな
る。各ラインのZ。間の関係をさらに簡易に得るには、
隣接するライン間の高度差の平均とすればよい。
■. Since is an observable quantity, Z of each line, which could not be obtained with conventional technology, can be obtained by integrating the equation. It becomes possible to find the relationship between Z of each line. To more easily obtain the relationship between
The average height difference between adjacent lines may be used.

れらを用いて、ある2次元的な広がりで加算積分するこ
とにより、2次元的広がりにおける高度分布が得られる
By using these and performing addition and integration in a certain two-dimensional spread, the altitude distribution in the two-dimensional spread can be obtained.

〔実施例〕〔Example〕

以下、実施例を図面により説明する。 Examples will be described below with reference to the drawings.

第2図は本発明の一実施例を説明するための、SEMに
2個の2次電子検出器を取り付けた、ハードウェア構成
図である。鏡体11の電子銃12より射出された電子ビ
ーム13は、電子レンズ系14により収束偏向させられ
、試料台15上の試料16に入射する。それに対応して
、試料16より2次電子17が放出され、左方検出器1
8、右方検出器19により検知される。検知された信号
は、キーボード21の指示により作動するコンピュータ
20により演算処理され、演算処理された結果は、必要
に応じて検出器出力信号とともに、デイスプレィ22に
表示される。
FIG. 2 is a hardware configuration diagram in which two secondary electron detectors are attached to a SEM, for explaining one embodiment of the present invention. An electron beam 13 emitted from an electron gun 12 of a mirror body 11 is converged and deflected by an electron lens system 14, and is incident on a sample 16 on a sample stage 15. Correspondingly, secondary electrons 17 are emitted from the sample 16, and the left detector 1
8. Detected by the right detector 19. The detected signals are processed by the computer 20 operated by instructions from the keyboard 21, and the processed results are displayed on the display 22 together with the detector output signal as required.

第1図は上記実施例し;おける演算処理のフローチャー
トである。処理ステップ31では、左方検出器18の検
出信号値ILと、右方検出器19の検出信号値IRを入
力する。ステップ32では、これらの前述の 式あるいは 式により計算する。
FIG. 1 is a flowchart of arithmetic processing in the above embodiment. In processing step 31, the detection signal value IL of the left detector 18 and the detection signal value IR of the right detector 19 are input. In step 32, calculations are made using these aforementioned equations or equations.

第1図実施例では 式を用いている。In the example shown in FIG. The formula is used.

このX めでおき。This X Good luck.

これを検索することによっても求める ことは可能である。Also ask by searching this It is possible.

にa測によって得られる工。The value obtained by a measurement.

(試料平坦部におけ 算する。(at the flat part of the sample) Calculate.

実施例では 式を用いている。In the example The formula is used.

次の 式でZIJを求めることができる。next ZIJ can be calculated using the formula.

ステップ35では、 結果を、 等高線表示、 鳥撤図 表示などを用いて表示する。In step 35, The results, contour line display, bird drawing Display using display etc.

第3図に鳥徹図表示結果の一例を、第4図に等高線表示
結果の一例を示す。
FIG. 3 shows an example of the bird's-eye map display result, and FIG. 4 shows an example of the contour line display result.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2個の検出器を設けた走査電子顕微鏡
により、試料の2次元的広がりを持つ高度分布を求める
ことができる効果がある。
According to the present invention, a scanning electron microscope equipped with two detectors has the advantage of being able to obtain a two-dimensionally spread altitude distribution of a sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における信号処理のフローチャート、第
2図は本発明を実施する′JA置の一例のハードウェア
構成図、第3図は本発明で得られる鳥徹回の一例を示す
図、第4図は同じく等高線図の一例を示す図である。 符号の説明 11・・・鏡体       12・・・電子銃13・
・・電子ビーム    14・・・電子レンズ系15・
・・試料台      16・・・試料17・・・2次
電子     18・・・左方検出器19・・・右方検
出器    20・・・コンピュータ21・・・キーボ
ード    22・・デイスプレィ31〜35・・・処
理ステップ
FIG. 1 is a flowchart of signal processing according to the present invention, FIG. 2 is a hardware configuration diagram of an example of a JA device implementing the present invention, and FIG. 3 is a diagram showing an example of a bird crossing obtained by the present invention. FIG. 4 is a diagram similarly showing an example of a contour map. Explanation of symbols 11...Mirror body 12...Electron gun 13.
...Electron beam 14...Electron lens system 15.
... Sample stand 16... Sample 17... Secondary electron 18... Left detector 19... Right detector 20... Computer 21... Keyboard 22... Display 31-35.・Processing step

Claims (1)

【特許請求の範囲】[Claims] 1、試料上を電子ビームで走査し放出される2次電子を
検出しその検出信号量に応じた濃度で画像表示する走査
電子顕微鏡を用いて表面形状を測定する方法において、
試料を挟んで向き合う2つの検出器を設け、両検出器を
結ぶライン方向での試料面素の傾き成分を、この傾き成
分と両検出信号値との間の関係式を用いて、あるいは、
傾き成分と両検出信号値との対応関係をまとめた表を用
いて求め、この結果と、両検出信号値の和が、電子ビー
ム入射方向が面素の法線方向に対してなす角度に依存す
ることを表す関係式とを用いて、両検出器を結ぶライン
方向に対して水平面内で直交するライン方向での面素の
傾き成分を求め、試料面上のある2次元的な広がりで求
められる上記両ライン方向での傾き成分を加算積分する
ことにより試料の表面形状を求めることを特徴とする表
面形状測定方法。
1. In a method of measuring the surface shape using a scanning electron microscope that scans the sample with an electron beam, detects the emitted secondary electrons, and displays an image with a density corresponding to the detected signal amount,
Two detectors facing each other across the sample are provided, and the slope component of the sample surface element in the line direction connecting both detectors is calculated using the relational expression between the slope component and both detection signal values, or,
It is determined using a table that summarizes the correspondence between the tilt component and both detection signal values, and this result and the sum of both detection signal values depend on the angle that the electron beam incident direction makes with the normal direction of the surface element. Using the relational expression that expresses that A method for measuring a surface shape, characterized in that the surface shape of a sample is determined by adding and integrating the slope components in both of the line directions.
JP16249588A 1988-07-01 1988-07-01 Contour measuring method Pending JPH0215543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16249588A JPH0215543A (en) 1988-07-01 1988-07-01 Contour measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16249588A JPH0215543A (en) 1988-07-01 1988-07-01 Contour measuring method

Publications (1)

Publication Number Publication Date
JPH0215543A true JPH0215543A (en) 1990-01-19

Family

ID=15755709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16249588A Pending JPH0215543A (en) 1988-07-01 1988-07-01 Contour measuring method

Country Status (1)

Country Link
JP (1) JPH0215543A (en)

Similar Documents

Publication Publication Date Title
Maas Methods for measuring height and planimetry discrepancies in airborne laserscanner data
JPH10311711A (en) Optical profile sensor
Vosselman On the estimation of planimetric offsets in laser altimetry data
US4912313A (en) Method of measuring surface topography by using scanning electron microscope, and apparatus therefor
JP4500653B2 (en) Sample observation method and apparatus
Gordon et al. Metric performance of a high-resolution laser scanner
Huang et al. Measurement method and recent progress of vision-based deflection measurement of bridges: A technical review
JP2005147715A (en) Light wave interference measuring method for winding surface, and interferometer device for winding surface measurement
CN104729529A (en) Method and system for judging errors of topographic map surveying system
JPS6282314A (en) Stereo measurement system for difference in light intensity
Maas On the use of pulse reflectance data for laserscanner strip adjustment
CN113920201A (en) Polar line geometric constraint fisheye camera calibration method
KR20010086014A (en) Line based characterization of a complex surface
JP2650281B2 (en) Surface shape measurement method by scanning electron microscope
JPH0215543A (en) Contour measuring method
Zhang et al. Freight train gauge-exceeding detection based on three-dimensional stereo vision measurement
Neggers et al. Principal image decomposition for multi-detector backscatter electron topography reconstruction
JPH01115043A (en) Defect inspection device by scanning electronic microscope
Liu et al. Plane-based self-calibration and improvement of three-dimensional multi-beam laser scanning with two-axis-mirror
JPH07122574B2 (en) Cross-sectional shape measurement method
JPH0349363B2 (en)
CN102999904A (en) Plane-based micro-nano object image tilt correction method
JP2625787B2 (en) Scanning electron microscope stereo measurement calibration method
Gremillet et al. Dedicated image analysis techniques for three-dimensional reconstruction from serial sections in electron microscopy
Schubert et al. Determination of the height of a microstructure sample by a SEM with a conventional and a digital photogrammetric method